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This paper proposes analytical and semianalytical models of the ultrasonic backscattering cross
section �BCS� of various geometrical shapes mimicking a red blood cell �RBC� for frequencies
varying from 0 to 90 MHz. By assuming the first-order Born approximation and by modeling the
shape of a RBC by a realistic biconcave volume, different scattering behaviors were identified for
increasing frequencies. For frequencies below 18 MHz, a RBC can be considered a Rayleigh
scatterer. For frequencies less than 39 MHz, the general concept of acoustic inertia tensor is
introduced to describe the variation of the BCS with the frequency and the incidence direction. For
frequencies below 90 MHz, ultrasound backscattering by a RBC is equivalent to backscattering by
a cylinder of height 2 �m and diameter 7.8 �m. These results lay the basis of ultrasonic
characterization of RBC aggregation by proposing a method that distinguishes the contribution of
the individual RBC acoustical characteristics from collective effects, on the global blood
backscattering coefficient. A new method of data reduction that models the frequency dependence
of the ultrasonic BCS of micron-sized weak scatterers is also proposed. Applications of this method
are in tissue characterization as well as in hematology. © 2007 Acoustical Society of
America. �DOI: 10.1121/1.2715452�
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I. INTRODUCTION

A. Background

Ultrasound �US� tissue characterization techniques pro-
vide means to assess the pathophysiological state of organs
by measuring a number of ultrasonic tissue properties. There
is however a certain need to understand how these measur-
able acoustical indices relate to biophysical phenomena oc-
curring at the cellular or the subcellular scale. Tissue micro-
structural characteristics �such as cell size, cellular
organization, fiber anisotropy, etc.� are indeed expected to
provide meaningful information for diagnosis, as they are
directly related to biological processes.

Previous works in ultrasonic tissue characterization have
studied the relation between the microstructure and various
acoustical tissue properties as the backscattering coefficient
and spectral characteristics.1,2 The typical approach considers
that mammal tissue can be acoustically modeled as a con-
tinuous random distribution of mass density and bulk com-
pressibility. The correlation length of their correlation func-
tion can be related to the size of a discrete microscopic
scatterer, with replicas randomly spread in the bulk volume.
The propagation of the interrogating US wave within this
type of medium is conditioned by the particle acoustic prop-
erties, the properties of the embedding medium, the particle
number density and size, and the level of spatial organization
of the scatterers.
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This paper focuses on a typical example of heteroge-
neous biological milieu: blood. This biofluid can be me-
chanically described as a colloidal suspension of flexible
cells flowing within the plasma, which is itself a Newtonian
liquid. Erythrocytes form the vast majority of blood cells
�99% in number� and occupy a large volume fraction �hema-
tocrit� of 35–45% under normal conditions. Because of the
coexistence of erythrocytes and liquid phases, blood exhibits
a shear-thinning rheological behavior. When flowing at a low
shear rate, red blood cells �RBCs� adhere and form a struc-
tured network of clusters. The increase of the shear rate re-
sults in a reversible disaggregation of RBCs. The intricate
packing of the so-called rouleaux of RBCs results in a vis-
cosity increase. In various pathological conditions, including
cardiovascular diseases and hemoglobinopathies, blood vis-
cosity is abnormally high. Hemodynamics can be markedly
affected by such hyperviscosity syndrome, especially in the
microcirculation.

Several groups are investigating the possibility to detect
abnormal RBC aggregation and the associated hemorheo-
logical disorders with US. Some clinical observations of
blood hyperechogenicity appearing in low shear or static
flow conditions have qualitatively demonstrated the potential
of US to image RBC aggregation. This phenomenon is en-
countered in echocardiography or in vascular imaging and
was given the name of spontaneous echo contrasts or smoke-
like echoes.3,4 A better quantification of this scattering en-
hancement would allow the extraction of valuable biophysi-
cal parameters that characterize red cell adhesion.

The measurement of RBC aggregation indices �aggre-

gate size, anisotropy, etc.� through the quantification of blood
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ultrasound backscattering however requires an acoustical
model. Before understanding backscattering of US by an en-
semble of interacting RBCs, a first obvious step is to prop-
erly quantify US backscattering by a single erythrocyte. This
is the purpose of this paper.

B. Literature review

At a low frequency �in the range of a few megahertz�
and for weak scattering particles, the relation between the
backscattering cross section �BCS� and the RBC acoustical
properties is simple and is conveyed by the Rayleigh
formulation.5 In this approximation, subwavelength geomet-
ric details do not affect the BCS and therefore cannot be
inferred by “inverting” low frequency scattering data. In the
case of red blood cells, the validity of the Rayleigh assump-
tion can be questioned when the acoustical frequency ex-
ceeds 27 MHz. This approximation is indeed valid when
ka�1, where k=� /c is the wave number and a=2.82 �m is
the effective erythrocyte radius. The effective radius is de-
fined in this paper as 4�a3 /3=Vs where Vs is the volume of
the RBC, roughly 94 �m3. When the frequency is above
27 MHz, ka=� /10�0.31 considering that the speed of
sound c=1540 m/s �Ref. 6� and therefore the Rayleigh va-
lidity is questionable. As high frequency ultrasound imaging
systems �intravascular imaging, small animal scanners� cur-
rently use frequencies above 20 MHz, the need to extend
Rayleigh formulation of the BCS seems obvious.

A few studies of various domains of acoustics experi-
mentally, theoretically or numerically examined non-
Rayleigh aspects of weak acoustical backscattering when ka
becomes nonnegligible. In marine acoustics, Stanton et al.7

proposed a number of models of the angle-averaged back-
scattering cross section of individual zooplankton based on
the Born first-order approximation. By modeling the animals
as bent cylinders for ka�5, the study showed good agree-
ments between predictions given by the backscattering mod-
els �obtained by measuring animal dimensions� and experi-
mental acoustical data. This proved the utility of the simple
first-order Born approximation to take into account the com-
plex geometry of the scatterer.

For the problem of ultrasound backscattering by a single
red blood cell, Kuo and Shung8 and Coussios9 also discussed
the limitations of the Rayleigh formulation. Kuo and Shung8

measured the backscattering coefficient of a diluted suspen-
sion of porcine RBCs and the experimentally determined
BCS was shown to scale as k4Vs

2 for frequencies below
30 MHz, as predicted by the Rayleigh approximation. In the
same study, numerical results obtained by the Jakeman’s
T-matrix method predicted that the red cell shape affected the
BCS and that the frequency dependence only slightly devi-
ated from k4Vs

2 for ka�1 �87 MHz�. This study considered
frequencies from 1 MHz to 1.7 GHz, approximately.
Coussios9 analytically derived the BCS of a thin cylinder
with approximate RBC dimensions, using the Born weak
scattering assumption and showed that the spherical and cyl-
inder models gave similar values of the BCS for frequencies

�20 MHz. The effect of the particle shape became only sig-
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nificant for frequencies above 20 MHz �the maximum fre-
quency considered in this study being 60 MHz�.

C. Objectives

Following these studies, this paper has two objectives.
The analytical framework opened by Coussios9 who used the
Born approximation is generalized to take into account the
realistic biconcave shape of the RBC. Analytical or semi-
analytical results are then used to predict how microscale
geometric features influence the high frequency BCS of
erythrocytes above 20 MHz. It is shown that different scat-
tering behaviors can be distinguished depending on the ultra-
sonic frequency.

II. THEORY AND METHODS

A. The backscattering cross section

The ability of a material particle to generate acoustical
echoes is commonly quantified by the BCS that is defined as
follows. Consider a monochromatic plane wave with com-
plex amplitude pi�r�= p0eik·r, where r is the spatial vector, p0

is the incident pressure amplitude, and k represents the wave
vector. This pressure wave propagates in a linear fluid char-
acterized by a mass density �0 and an adiabatic compress-
ibility �0. A fluid particle of volume Vs centered in O creates
a fluctuation of density and compressibility. The interaction
between the incident wave and the particle results in a de-
viation of the incident wave that redistributes the acoustical
energy in space.10 The total pressure amplitude p�r� can be
mathematically decomposed as the sum of the unperturbated
incident pressure field pi�r� and of the scattered pressure
ps�r�. In the far field of the particle, the scattered field has the
asymptotic form11

ps�rer� = p0
eik·r+i	0

r

�er,k�1/2. �1�

In this expression, er is the unit vector pointing in the obser-
vation direction, 	0 is a phase term �that will not be further
discussed in this paper�, and 
�er ,k� is the scattering cross
section of the particle. In pulse-echo US, when the target lies
in the far field of the transducer, the scattering direction that
mainly contributes to the transduced radio-frequency signal
corresponds to the reverse direction: er=−k /k. For this rea-
son, the quantity that characterizes particle backscattering is
the backscattering cross-section �noted 
b� defined as

b�k�=
�−k /k ,k�.

In the rest of the paper, one will be interested only in
backscattering, and therefore the term insonification angle or
simply angle will be used to describe the direction of
the wave vector k with respect to the RBC. There will be no
ambiguity on the scattering vector direction which is
simply −k.

B. Rayleigh scattering

The expression of the BCS of a small fluid sphere �ka
�1� that has a constant density �=�0�1+��� and compress-

ibility �=�0�1+���, where �� and �� are the relative con-
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trasts in density and compressibility with respect to the back-
ground medium, was originally derived by Rayleigh �see
Ref. 10�. It can be expressed as


b�k� =
k4Vs

2

16�2��� −
��

1 − ��/3
�2

. �2�

In the case of a weak scatterer, the contrast values �� and ��

are small and a second-order approximation reduces Eq. �2�
to:


b�k� =
k4Vs

2

4�2 �z
2, �3�

where �z= ���−��� /2 is the small relative contrast of acous-
tical impedance between the scatterer and the surrounding
medium. It can be noted that the acoustic cross section of a
small sphere scales as the fourth power of frequency and
therefore increases rapidly with increasing frequency.

C. Form factor of a homogeneous scatterer
considering the Born approximation

Equation �3� is valid for a small, homogeneous, and
weak spherical scatterer. Now, for any type of scattering par-
ticle, a nondimensional corrective term F�k�, named the
form factor, can be defined as


b�k� =
k4Vs

2

4�2 ��z	2F�k� , �4�

where ��z	= �1/Vs�
Vs
�z�r�d3r represents the spatially aver-

aged impedance contrast of the particle. The deviation of the
form factor from one quantifies the influence of the particle
geometry and orientation on the BCS. In the Born approxi-
mation �ps� pi� that applies for weak scattering conditions,
the form factor has a simple expression �easily retrieved
from Eq. �8.1.20� of Ref. 10� related to the spatial Fourier
spectrum of the impedance contrast:

F�k� =
1

��z	2Vs
2��

Vs

�z�r�e2ik·rd3r�2

. �5�

This expression is in agreement with the fact that the form
factor approaches unity �and Rayleigh scattering� when the
particle size is negligible with respect to the wavelength
�e2ik·r→1�.

D. Form factors of simple geometrical shapes

Analytical expressions of the form factor can be found
for homogeneous scatterers having simple shapes. The case
of three important shapes �sphere, ellipsoid, and cylinder� is
given in Table I. The range of wave numbers for which Ray-
leigh scattering applies within 5% accuracy is also indicated.
Note that these analytical forms are compatible with Ref. 12
for spheres and ellipsoids and the cylinder form agrees with
the general expression obtained by Coussios �Eq. �13� of

Ref. 9�.
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E. Form factor of an axisymmetrical particle
mimicking a RBC

Consider now a homogeneous particle having the sym-
metries of a RBC �see Fig. 1�, i.e., a symmetry of revolution
around �Oz� and a mirror symmetry with respect to �Oxy�.
The shape of the RBC can then be described by the radial
profile:13

z0�r� =
h0

2
��2r/D� , �6�

where h0 is the particle thickness along �Oz�, ��u� is the
normalized geometric profile, and D is the diameter. This
function, defined for u� �0,1�, describes the particle shape
and satisfies ��0�=1, ��1�=0. As detailed in Appendix A,
the form factor of the RBC can be formulated by using Eq.
�3� and by considering that the acoustic impedance is con-
stant, i.e., �z�r�= ��z	 when r lies within the RBC and
�z�r�=0 when r is outside of the RBC. This yields to

F�krer,kzez� = ��
0

1

u��u�J0�krDu�
sin�kzh0��u��

kzh0��u�

du�
0

1

u��u�du�2

, �7�

where J0 is the Bessel function of order 0.

TABLE I. Form factors of several descriptive shapes. The wave vector k is
decomposed in the ellipsoid system of axes k=k1e1+k2e2+k3e3, where �1, 2,
and 3 or x, y, and z� refer to the ellipsoid principal directions of the axes �a1,
a2, and a3�, or in a cylindrical system of axes k=kzez+krer. The height of the
cylinder is h0 and its radius is R. The form factor of the sphere is F�k�
=�s�2ka�, where a is its radius. J1 is the first-order Bessel function.

Particle shape
Form factor

F�k�
Rayleigh limit
�F�k��0.95�

Sphere �s�2ka�,
�s�u�= �3 sin u−3u cos u�2 /u6

ka�0.25

Ellipsoid �s�2��k1a1�2+ �k2a2�2

+ �k3a3�2�1/2�
��k1a1�2+ �k2a2�2

+ �k3a3�2�1/2�0.25
Cylinder �sin kzh0 /kzh0�2

�J1�2krR� /krR�2
�kz

2h0
2+3kr

2R2�1/2�0.38

FIG. 1. �Color online� Geometric cross section of a red blood cell defined by
the function z0�r�, where h0 is the thickness along Oz and D is the diameter

along Oxy.
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F. Acoustical inertia tensor

A second order expansion of F�k� in ka is helpful to
examine the deviation of the form factor of a homogeneous
particle from one when the frequency is increased. As de-
tailed in Appendix B, a second order Taylor expansion of Eq.
�A1� gives:

F�k� = 1 − 4k · �k + o�k2a2� , �8�

where � is a second order symmetrical positive tensor, a
characteristic tensor of the particle shape referred here as the
acoustical inertia tensor, defined by

� =
1

Vs
�

Vs

r � rd3r . �9�

In Eq. �9�, the dyadic product of the two vectors is noted �.
The principal axes of the particle are the eigenvectors of �
and its eigenvalues noted �11��22��33 scale as the sur-
face of the particle. Note that the acoustical inertia tensor
� as defined here is directly related to the inertia tensor J
�as defined in solid mechanics� of a solid particle of unit
mass density rotating around O �part 5.3.1 of Ref. 14�:

J = tr���U − � , �10�

where U is the identity tensor and tr represents the trace.
This analogy leads us to name this tensor acoustical inertia
tensor, as it directly relates to the inertia moments of a rigid
particle having the same shape. To give an example, an el-
lipsoid of semi-axes �aiei�i=1,2,3 has an acoustical inertia ten-
sor � of expression:

� =
a1

2

5
e1 � e1 +

a2
2

5
e2 � e2 +

a3
2

5
e3 � e3. �11�

For the case of the symmetrical particles as described
earlier in Eq. �6�, the inertia tensor is diagonal in the base
�ex ,ey ,ez� and can be expressed as:

� = �D2

�
0

1

u3��u�du

8�
0

1

u��u�du

�ex � ex + ey � ey�

+ h0
2

�
0

1

u��u�3du

12�
0

1

u��u�du

ez � ez� . �12�

This reduces to �=D2 /16�ex � ex+ey � ey�+h0
2 /12ez � ez in

the case of a cylinder of diameter D and height h0 ���u�
=1 for �u��1�.

G. Modeling of the physical and geometrical
properties of plasma and of a erythrocyte

In this study, the plasma is supposed non-viscous, char-
acterized by a compressibility �p=4.0910−10 Pa−1 and a
mass density �p=1021 kg m−3 �see Ref. 15�. The hemoglo-

bin solution encapsulated by the RBC membrane is supposed
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nonviscous and acoustically described by the compressibility
�RBC=3.4110−10 Pa−1 and mass density �RBC=
1092 kg m−3. The resulting impedance contrast defined in
Eq. �3� is �z=0.13. The effect of the RBC membrane on
acoustical scattering is neglected. This assumption is based
on the fact that the membrane of an intact RBC has a small
thickness of 10 nm. It could be argued that the measured
backscattering by ghost cells �damaged red cells with re-
moved hemoglobin� is far from negligible �see Ref. 16,
Chap. 7� and this could be attributed to membrane back-
scattering effects. However, as carefully discussed in Ref. 16,
this interpretation seems inappropriate. Membranes of dam-
aged cells act like nets, which suggest that lysed cells are
actually smaller but denser particles that strongly scatter US.

Red cells are very deformable and their shapes vary in
response to mechanical stress �e.g., the hemodynamic shear
forces� and to the osmolarity of the surrounding environ-
ment. In static equilibrium, as shown in Fig. 1, the RBC is a
biconcave disk13 with a volume Vs=4�a3 /3=94 �m3 �effec-
tive radius a=2.82 �m� and an optimal exchange surface
area of 135 �m2. The mean axial and radial maximum di-
mensions are, respectively, h0=0.81 �m and D=7.82 �m.
Evans and Fung13 have formulated a convenient analytic for-
mula that gives the normalized profile of a nonstressed RBC
membrane:

��u� = �1 − u2�1 + �2u2 + �4u4� , �13�

where �2=9.7 and �4=−5.4.

H. Backscattering cross sections of particles
mimicking a RBC

According to Eq. �4� and knowing the values of Vs and
�z, one can derive the backscattering cross-section of el-
ementary particles from the definition of the form factor
F�k�. Table I provides analytical expressions of F�k� for a
sphere, an ellipsoid and a cylinder. By considering cylindri-
cal coordinates, the form factor of a biconcave disk that bet-
ter mimic the shape of a RBC was shown in Eq. �7�. Numeri-
cal integration is required to compute this form factor.
Equations �8� and �12� can also be utilized if one uses Car-
tesian coordinates.

At the second order in ka and if the Born approximation
holds, the frequency dependence of the red cell BCS is given
by a Taylor expansion using Eq. �4� and the definition of the
inertia axes introduced earlier in Sec. II F �Eqs. �8� and �11��.
This results in


b�k� =
k4Vs

2

4�2 �z
2�1 −

4

5
kx

2ax
2 −

4

5
ky

2ay
2 −

4

5
kz

2az
2� + o�k6� .

�14�

Two particles with the same material properties but different
shapes will have equivalent backscattering behaviors �up to
the sixth order in ka and for all insonification angles� if they

have the same volume and the same inertia axes.

D. Savéry and G. Cloutier: Erythrocyte cross-section modeling



I. Numerical integration

The different definite integrals involved to compute the
form factors were computed by a trapezoidal method. The
interval �0, 1� was divided in N=104 segments.

III. RESULTS

A. Dimensions of the equivalent particles

The inertia axes of the model of a red cell were com-
puted using Eqs. �11� and �12�. Adjunct to the volume, these
quantities allow to derive the dimensions of the equivalent
sphere �same volume�, of the equivalent ellipsoid �same vol-
ume and same radial inertia axes� and of the equivalent cyl-
inder �same volume and same radial inertia axes� as given in
Table II. Cross sections of these different shapes are repre-
sented in Fig. 2 for visual comparison.

B. Form factor of the particles

The variations of the various form factors as a function
of the frequency and two different angles are given in Fig. 3.
The decrease of the form factor from one to zero depends on
the scattering shape and on the direction of insonification.
The more elongated a particle is along the incident direction,
the faster the form factor decreases as a function of fre-
quency. In other words, the backscattering as a function of
the incidence angle is maximal when the propagation direc-

TABLE II. Volume V and inertia characteristics of the red blood cell and
other equivalent descriptive shapes. The equivalent axes ai are computed
from the eigenvalues ai

2 /5 of the inertia tensor �. The geometrical descrip-
tors h0, D, and a are, respectively, the height, the diameter, and the effective
radius of the red blood cell �a is the radius of the sphere with equivalent
volume�.

Particle
shape

Volume
��m3�

Inertia axes
ax /a=ay /a

Inertia axis
az /a

Geometrical
descriptors ��m�

Red blood
cell

94 1.54 0.50 ho=0.81
D=7.82

Sphere 94 1 1 a=2.82
Ellipsoid 94 1.54 0.42 az=V / �4�ax

2 /3�
Cylinder 94 1.54 0.46 ho=V / ��D2 /4�=2

D=2�0.8ax=7.76

FIG. 2. �Color online� Geometric cross sections of a red blood cell and

equivalent descriptive shapes.
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tion is aligned with the smallest inertia axis �k=kz�. The in-
cident wave perpendicularly intersects the biggest section of
the particles.

C. Frequency dependence of the backscattering
cross-section

Figure 4 shows the backscattering cross section of a
RBC and of the equivalent simpler shapes along the Oz and
Ox axes, as a function of ka. Along Oz, with the exception of
the spherical descriptor, the backscattering behavior only
slightly deviates from Rayleigh scattering below 87 MHz.
Perpendicular to the long axis of each particle, non-Rayleigh
behavior quickly arises for all shape descriptors as the fre-
quency is increased.

FIG. 3. �Color online� Variation of the form factor as a function of the
reduced size parameter �ka� for different descriptive shapes. The insonifica-
tion direction is either along Oz �k=kz� or perpendicular to it �k=kr�.

FIG. 4. Normalized backscattering cross section with respect to 4�a2 as a
function of frequency �ka� for different descriptive shapes and incident

wave directions along Oz �k=kz� and Ox �k=kr�.
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D. Dependence of the backscattering cross section
on the angle of incidence of the transmitted
wave

At four frequencies corresponding to ka=0.1, 0.3, 0.6,
and 1.0, the angular dependencies of BCS between 0° and
90° �angle between ez and k� are shown in Fig. 5 for the
RBC, and the cylindrical, ellipsoidal, and spherical shapes.
For the spherical particle, no angular dependencies are noted,
as expected. At 8.7 MHz �ka=0.1�, isotropic scattering is
verified for all particles. Non-Rayleigh anisotropic scattering
is observed at 26, 52, and 87 MHz for the RBC, cylinder,
and ellipsoid. The angular variability of BCS increases for
anisotropic particles as the frequency is increased. For ex-
ample, variations of the order of 10 dB are noted at 87 MHz
for the RBC.

IV. DISCUSSION

The backscattering cross section of weak scattering par-
ticles with arbitrary shapes can be semianalytically computed
in the Born approximation. In this case, a Fourier duality
exists between the geometry of the scatterer and the wave
vector dependence of the backscattering cross section. A
semianalytical model of the RBC profile enabled to compare
the BCS of a red cell modeled by a biconcave volume with
the BCS of simpler geometrical shapes. The notion of
equivalence between two types of particles was defined in
the low frequency scattering regime. Two particles with any
given shape �sphere, ellipsoid, cylinder,…� were defined
equivalent if the coefficients of the Taylor expansion of the
BCS as a function of the wave number coincided up to the
sixth order. Up to the sixth order, finding a shape equivalent
to the RBC basically consists in matching first their volume
and then their inertia axes as defined by the inertia tensor �.

A. Weak scattering approximation

The computation of the BCS of fluid particles by Eq. �5�
follows the first-order Born approximation: it is valid when

FIG. 5. �Color online� Angle dependency of the normalized backscattering
cross section for different descriptive shapes at ka=0.1, 0.3, 0.6, and 1.0
�frequencies of 8.7, 26.1, 52.2, and 87 MHz�. The angle 	 is the angle
between Oz and the incident wave direction.
the scattered wave amplitude remains negligible with respect
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to the incident wave. The case of scattering by a sphere that
has the volume of a RBC is of interest to investigate the
validity of this approximation.

According to Refs. 9 and 17, Anderson’s exact
solution18 of sphere backscattering and the Born approxima-
tion are in close agreement for frequencies corresponding to
0�ka�1 �frequency �87 MHz�. In the case of weak scat-
terers, the physical reasons for the nonvalidity of the Born
approximation are the presence of multiple scattering, which
is very unlikely for a single scatterer, and the arising of a
resonance phenomenon. Minnaert resonance frequency for a
fluid sphere predicts resonance for a wave number corre-
sponding to ka=31/2 �i.e., a frequency of 150 MHz�.

Even if the scatterer is not strictly spherical, multiple
scattering is improbable due to the small contrasts in density
and compressibility. Resonant frequencies are more difficult
to predict, but one can postulate that it should occur around
150 MHz for a RBC. Therefore, for practical purpose, one
can estimate that our BCS prediction must be valid up to
�87 MHz, whereas the predictions for frequencies higher
than 87 MHz would have to be confronted to acoustical scat-
tering simulations that take non-Born conditions into ac-
count.

B. Transition frequency to the non-Rayleigh
scattering regime

The shape of a given particle influences the BCS
through the nondimensional form factor F�k�. Under Ray-
leigh scattering conditions �ka�1�, the BCS is essentially
independent on the particle shape, as F�k��1. Increasing the
frequency and changing the insonification angle enable to
extract geometric details finer than the simple volume at the
spatial scale of the wavelength. Having computed F�k� for
different descriptive shapes as a function of frequency and
angle, one can assess the transition frequency to which their
BCS differ by less than 5% of the Rayleigh limit �F�k�=1�.
The bounds are given in Table III. For practical purpose, the
biconcave RBC and the flat cylinder behave equivalently for
frequencies below 90 MHz.

C. Comparison with previous studies

Using the T-matrix numerical method, Kuo and Shung8

predicted that the shape �modeled by a sphere, a rounded
cylinder and a realistic biconcave shape all having the same
volumes� was of minor importance for frequencies below
30 MHz, and that the simulated BCS exhibited a k4 depen-
dence at those frequencies. However, their results at ka

TABLE III. Transition frequency �and of ka� above which biconcave RBC
scattering differs by more than 5% than reference particle shapes.

Rayleigh Sphere

Second-order
approximation

of a RBC Ellipsoid Cylinder

ka 0.20 0.24 0.45 1.06 1.55
Frequency

�MHz�
18 21 39 92 135
�0.1 showed a dependence of the BCS with the angle of
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incidence of the incident wave, and that the different types of
BCS �cylinder, biconcave disk, sphere� had diverging values
even when ka→0. This notably contradicts Rayleigh law
that states that low frequency BCS from particles having the
same volume and same acoustical properties do not differ
and are moreover isotropic. One could attribute these dis-
crepancies to the numerical T-matrix approach. For instance,
low stability and approximation formulas of special func-
tions can induce such errors. In our study, the angle and
shape influences were negligible up to 21 MHz, and the RBC
behaved as a sphere. We predict that angular variations from
a single particle can only be observed above 21 MHz, if one
considers that differences are significant when larger than
5%.

Coussios9 also proposed an analytical approach to com-
pute the scattering cross section of a RBC. The present study
can be considered as a generalization of the previous formu-
lation to a more realistic RBC shape, as it similarly used the
Fourier integral formulation of the cross section. Our results
are, however, restricted to the BCS �that considers er=−k /k�
as the 180° scattering angle prevails in medical US. In Ref.
9, the RBC morphology was modeled by two types of iso-
volumic cylinders. By introducing the notion of acoustical
inertia tensor, our study permits to find the dimensions of the
equivalent cylinder by matching its inertia axes with the re-
alistic RBC shape. Our conclusions concerning the bounds of
the different scattering regimes are close to the predictions
made by Coussios.9 Moreover, our results readily showed
that the biconcave RBC and the acoustical equivalent cylin-
der similarly backscatter ultrasonic waves, with a 5% accu-
racy for ka�1 �f �87 MHz�.

D. A new approximation formula for the frequency
dependence of backscattering from a scatterer
with cellular dimensions

According to the second order approximation of the
form factor of a RBC �using the acoustical inertia tensor�
that predicts Rayleigh scattering up to 39 MHz �ka=0.44�, it
seems appropriate to state that current medical US systems
are not sensitive to geometric details of scatterers below the
cell scale dimension of �5 �m. Such details may only be
detected if one considers higher frequencies. Accordingly,
we can propose here a simple model of frequency depen-
dence of the BCS of any type of weak scattering homoge-
neous particles with micrometric size:


b�kex� =
1

4�2k4Vs
2��z	2�1 − 4�xxk

2 + ¯ �

�
1

9
��z	2k4a6 −

4

9
�xx��z	2k6a6. �15�

In this expression, �xx=ex�ex is the component of the inertia
tensor along the direction of propagation of the insonifying
wave and a is the effective radius defined by 4

3�a3=Vs. No-
tice that the resulting frequency dependence is here approxi-
mated by a sixth-order polynomial, with two nonvanishing
coefficients. The coefficient in k4 represents the Rayleigh
contribution and the second coefficient in k6 is the contribu-

tion of the inertia axis along Ox �the second order geometric
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correction is similar to the Guinier radius of gyration ex-
tracted from neutron/x-ray diffraction studies19�.

E. Frequency dependence of backscattering from a
collection of scatterers with cellular dimensions

Classical models of backscatter in US tissue character-
ization studies5 usually model the frequency dependence by
a power law:


b�kex� = 
0�k/k0�n, �16�

where 
0 is the low-frequency limit of the BCS, k0 is a
reference wave number �often selected at 1 MHz�, and n is
the spectral slope. This nonlinear regression is character-
ized by two material properties �
0 ,n� in a given fre-
quency range. According to our analytical study, an alter-
native set of frequency independent parameters
���z	Vs ,�xx�, derived from Eq. �15�, would be more perti-
nent for US particle characterization. This new approach
of data reduction should deserve some attention.

1. Characterization of RBC aggregation

The average number density of RBCs in blood is m
�5106 mm−3, for a volume fraction H=mVs�40%.
Blood can be seen as a very dense suspension of red cells. As
each RBC is surrounded by many neighboring cells, particle
interactions are strong. The backscattering coefficient ��k�,
or differential backscattering cross section from a collection
of cells, defined as the BCS of the group of cells by unit
volume, can be expressed as20,21

��k� = m
b�k�S�− 2k� , �17�

where S�−2k� is the structure factor and 
b�k� is the BCS of
the individual RBC. The structure factor represents a correc-
tive term taking into account the spatial correlations between
scatterers. If RBCs independently scatter US, its value would
simply be one. However, RBC mutual interactions induced
by the strong particle number density and adhesion forces
leading to cell clustering result in a strong deviation of S�
−2k� from one. The feasibility of measuring experimentally
this deviation would rely on a good model of red cell BCS
as:

S�− 2k� = ��k�/m
b�k� . �18�

The backscattering coefficient ��k� can be measured experi-
mentally, m can be approximated by measuring the hemat-
ocrit in a microtube following centrifugation and the mean
volume of RBCs, whereas 
b�k� can be approximated by Eq.
�15�. It is then straightforward to obtain the structure factor
and its frequency dependence to characterize cell aggrega-
tion.

2. Potential use of US in hematology

The erythrocyte BCS may also be of interest for hema-
tological profiling, as proposed in the late seventies.22 Di-
luted suspensions of RBCs �at H�8%� roughly have a unit
structure factor, which yields to ��k�=m
b�k�. The measure-
ments of the backscatter coefficient and of the hematocrit

permit a straightforward derivation of the RBC volume Vs
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and inertia axes from �. A number of genetic diseases alter
erythrocyte morphology and deformability �hereditary ane-
mia as �-thalassemia, sickle cell anemia, spherocytosis, etc.�.
It could be of interest to develop such US tools that would
allow a characterization of the related phenotypes, by study-
ing the volume and shape response of pathologic RBCs to
pH, pO2, osmotic, or mechanical stimuli. Such studies may
eventually be attempted in vitro or in vivo in the microcircu-
lation where the volume fraction of RBCs is reduced.

V. CONCLUSION

A semianalytical expression of the erythrocyte ultrasonic
backscattering cross section has been proposed. It took into
account the acoustical contrasts between plasma and cell he-
moglobin and the peculiar biconcave shape of the RBC. Pro-
vided the Born approximation is valid, the frequency and
angle dependencies of the erythrocyte BCS were evaluated
up to 90 MHz. By the use of these results as a reference, the
accuracy of several other simplified analytical formulas
could be assessed. The Rayleigh approximation �form
factor=1, angle and shape independencies� appeared satis-
factory up to 18 MHz; a quadratic correction of the form
factor gave good approximations up to 39 MHz �over all
insonifying angles, with errors below 5%�. By deriving the
inertia tensor � from the Hessian of the form factor F�k� at
a frequency of 0 Hz, the notion of acoustical inertia axis of a
homogeneous scattering particle was defined. The RBC was
shown acoustically equivalent to a thin cylinder of height
2 �m and diameter 7.8 �m or to an oblate spheroid of semi
axes 4.3 and 1.2 �m �f �90 MHz� as those simple shapes
and the biconcave RBC have equivalent volume and acous-
tical inertia tensors. These findings give new bases to the
description of the scattering of US by blood. The knowledge
of the backscattering by a single erythrocyte is necessary to
further study US scattering by millions of packed RBCs, as
required to properly characterize red cell adhesion in shear
flow.
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APPENDIX A

This appendix details the computations required to ob-
tain the form factor of a symmetrical scatterer that has a
relative impedance contrast given by �z�r�=�z�r ,	 ,z�
= ��z	I��z��z0�r��, where z0�r� is the radial profile of the scat-
terer shape, �r ,	 ,z� are the cylindrical coordinates, and ��z	
is the homogeneous contrast of acoustical impedance of the
particle.

The backscattering cross section of a scatterer in the
Born approximation can be obtained from the general formu-

lation of Eq. �3�. That is given by
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b�k� =
k4

4�2��
Vs

�z�r�e2ik·rd3r�2

. �A1�

This integral can be written in a cylindrical system of coor-
dinates, i.e.,


b�k� =
k4

4�2�� �z�r,	,z�e2i�krr cos 	+kzz�rdrd	dz�2

. �A2�

The symmetries of the acoustical impedance allow to sim-
plify Eq. �A2� to


b�k� =
k4

4�2 ��z	2�� rI��z��z0�r�	�e
2i�krr cos 	+kzz�drd	dz�2

=
k4

4�2 ��z	2�� rdr� dzI��z��z0�r�	�e
2ikzz

�
–�

�

d	e2ikrr cos 	�
2

. �A3�

Now, the equality

J0�x� =
1

2�
�

−�

�

eix cos 	d	 �A4�

is used to compute the integral in 	:


b�k� = k4��z	2�� J0�2krr�rdr� I��z��z0�r�	�e
2ikzzdz�2

.

�A5�

As

� I��z��x�e
2iuzdz = 2x sinc�2ux� , �A6�

where sinc represents the sinus cardinal function, then Eq.
�A5� can be simplified to:


b�k� = 4k4��z	2�� rJ0�2krr�z0�r�sinc�2kzz0�r��dr�2

.

�A7�

As the form factor F�k�, given in Eq. �4�, is defined by the
formula:


b�k� =
k4Vs

2

4�2 ��z	2F�k� , �A8�

then the comparison of Eq. �A7� with Eq. �A8� gives

F�k� =
16�2

Vs
2 �� rJ0�2krr�z0�r�sinc�2kzz0�r��dr�2

. �A9�

To further simplify, let the volume of the scatterer be written
as

Vs =� rI��z��z0�r��drd	dz = 4�� z0�r�rdr . �A10�
This results in the following expression of the form factor:
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F�krer,kzez� = � 
rJ0�2krr�z0�r�sinc�2kzz0�r��dr


rz0�r�dr �2. �A11�

Finally, to obtain a normalized expression of F�k�, it can
be recalled from Eq. �6� that z0�r�=h0��u� /2, where u
=2r /D. By rearranging Eq. �A11�, the expected formula of
the form factor given in Eq. �7� is obtained:

F�krer,kzez� = � 
0
1u��u�J0�krDu�sinc�kzh0��u��du


0
1u��u�du �2. �A12�

APPENDIX B

The second order expansion of the form factor of an
homogeneous scatterer of volume Vs centered in O takes the
form F�k�=1–4k·�k+O�k2a2�. This appendix proves that:

� =
1

Vs
�

Vs

r � rd3r . �B1�

Let’s consider the Born approximation of the back-
scattering cross section, as given by Eq. �A1�:


b�k� =
k4

4�2��
Vs

�z�r�e2ik·rd3r�2

. �B2�

As ex=1+x+x2 /2+¯, the second order expansion in k of
Eq. �B2� is


b�k� =
k4

4�2��
Vs

�z�r��1 + 2ik · r − 2�k · r�2

+ ¯ �d3r�2

. �B3�

By definition of the dyadic product,

�k · r�2 = k�r � r�k . �B4�

As the scatterer is homogeneous and centered in O:

�
Vs

�z�r�rd3r = ��z	�
Vs

rd3r = 0. �B5�

Consequently, combining Eqs. �B3�–�B5�, and using �z�r�
= ��z	I�r�Vs�

, one obtains:


b�k� =
k4

4�2
��z	2��

Vs

d3r − 2k · ��
Vs

r � rd3r�k + ¯ �2, �B6�

or


b�k� =
k4

4�2
��z	2Vs

2�1 − 4k · � 1

Vs
�

Vs

r � rd3r�k + ¯ � . �B7�

The comparison of Eq. �B7� to the definition of Eq. �4� of the

form factor F�k� yields the expected result:
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F�k� = 1 − 4k · � 1

Vs
�

Vs

r � rd3r�k + ¯ . �B8�
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