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A B S T R A C T

Polar strain (radial and circumferential) estimations can suffer from artifacts because the center of a non-
symmetrical carotid atherosclerotic artery, defining the coordinate system in cross-sectional view, can be mis-
registered. Principal strains are able to remove coordinate dependency to visualize vascular strain components
(i.e., axial and lateral strains and shears). This paper presents two affine model-based estimators, the affine
phase-based estimator (APBE) developed in the framework of transverse oscillation (TO) beamforming, and the
Lagrangian speckle model estimator (LSME). These estimators solve simultaneously the translation (axial and
lateral displacements) and deformation (axial and lateral strains and shears) components that were then used to
compute principal strains. To improve performance, the implemented APBE was also tested by introducing a
time-ensemble estimation approach. Both APBE and LSME were tested with and without the plane strain in-
compressibility assumption. These algorithms were evaluated on coherent plane wave compounded (CPWC)
images considering TO. LSME without TO but implemented with the time-ensemble and incompressibility
constraint (Porée et al., 2015) served as benchmark comparisons. The APBE provided better principal strain
estimations with the time-ensemble and incompressibility constraint, for both simulations and in vitro experi-
ments. With a few exceptions, TO did not improve principal strain estimates for the LSME. With simulations, the
smallest errors compared with ground true measures were obtained with the LSME considering time-ensemble
and the incompressibility constraint. This latter estimator also provided the highest elastogram signal-to-noise
ratios (SNRs) for in vitro experiments on a homogeneous vascular phantom without any inclusion, for applied
strains varying from 0.07% to 4.5%. It also allowed the highest contrast-to-noise ratios (CNRs) for a hetero-
geneous vascular phantom with a soft inclusion, at applied strains from 0.07% to 3.6%. In summary, the LSME
outperformed the implemented APBE, and the incompressibility constraint improved performances of both es-
timators.

1. Introduction

In recent years, noninvasive vascular elastography (NIVE) has
gained increasing attention for evaluating the functionality of super-
ficial arteries. Principal strains are able to remove coordinate de-
pendency to visualize vascular strain components [1]. Currently, most
two-dimensional (2-D) elastography algorithms are based on the cross-
correlation, either in the space domain [2–10] or frequency domain
[11–13], or based on registration methods [14,15]. With known axial
(along the ultrasound beam) and lateral (perpendicular to it)

displacements between pre- and post-motion image blocks, axial and
lateral strains and shears were computed from estimated displacement
derivatives in respective directions [5,7,11,12]. Since associated high
frequency displacement noise enhances the variance of such strain es-
timators, the least squares strain estimator (LSQSE) was proposed to
increase the signal-to-noise ratio (SNR) by a piecewise linear fit
[2,4,8,10]. However, tissue motion in the imaging plane may be com-
plex and does not necessarily only undergo rigid transformations
(translations and rotations), but also compression and expansion [16].
The signal distortion caused by such complex deformations induces
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decorrelation effects. Signal processing strategies, such as temporal
stretching [17] and iterative coarse-to-fine approaches [4,18,19], have
been used to reduce decorrelation noise. Other estimators were also
proposed to reduce decorrelation noise by considering axial strain or
axial shear [14,20,21].

In addition to abovementioned rigid model-based estimators, an
alternative strategy is the affine model-based estimation methodology,
which considers all non-rigid deformations of the tissue. Space-domain
and phase-domain affine model-based methods have been investigated
for cross-sectional imaging of arteries [22–25] and cardiac structures
[26]. One of them is a registration-based algorithm [23]. It minimized a
cost function using a numerical optimization method and improve-
ments in SNR and contrast-to-noise ratio (CNR) were reported on axial
strain estimations compared to the 2-D cross-correlation, but at a higher
computational time cost.

Two other space-domain methods based on optical flow (OF) were
proposed. In [25], a two-step OF strategy was reported to improve the
performance of the axial strain estimation. More specifically, the OF
estimation was performed sequentially two times and the two axial
strain estimates were recombined. However, shear components were
unable to be recombined and the lateral strain was also not considered.
Furthermore, this latter approach [25] requires extra computational
load due to an additional OF estimation. The other affine method is the
OF-based Lagrangian speckle model estimator (LSME). In [24], Mercure
et al. concluded that this approach performed better than an optimi-
zation-based LSME due to its reliability and computational efficiency.
In [27], an OF-based LSME involving a constrained motion model was
developed to provide robust 2-D principal strain estimations. Another
method with an affine model is the affine phase-based estimator (APBE)
[26], inspired by the phase-based estimator (PBE) [28–30]. This algo-
rithm demonstrated a more accurate lateral estimation for cardiac
motions than the standard block matching algorithm.

To perform cross-sectional scans in the context of NIVE, lateral es-
timations are particularly challenging due to the lower lateral than
axial resolution of conventional focusing imaging, and the lack of phase
information in the lateral direction. To overcome this limitation, sev-
eral methods have been introduced. One assumes tissue in-
compressibility to improve the quality of lateral displacements [31],
and SNR and CNR of elastograms [11,27]. Konofagou and Ophir used
the lateral weighted interpolation of radiofrequency (RF) data to im-
prove lateral displacement estimations [32]. However, the lateral in-
terpolation and iterative scheme increase computational complexity
[33].

Angular compounding schemes were also proposed to obtain lateral
strain with more accurate axial estimations at multiple beam steering
angles, using conventional focusing imaging [8,34–36]. Another way is
to use advanced beamforming methods to enable more accurate lateral
estimations. Korukonda and Doyley [5,37] demonstrated that synthetic
aperture imaging could improve lateral NIVE estimates because of the
high lateral sampling frequency and narrow lateral beamwidth. How-
ever, due to the single element emission, the low transmit power might

be insufficient for the clinical use of NIVE [38]. Hansen et al. reported
that elastograms obtained with plane-wave angular compounding were
comparable to standard focusing angular compounding [39]. Plane
wave images are known, however, to exhibit low contrast and low re-
solution due to the lack of transmit focusing [40].

Alternatively, coherent plane wave compounding (CPWC) beam-
forming was proposed to solve these issues [41]. Under the framework
of CPWC imaging, superior lateral strains and shears were obtained,
compared with conventional OF-based LSME using standard focusing,
by considering the incompressibility constraint and a time-ensemble
approach [27]. Transverse oscillation (TO) beamforming [42,43] was
also proposed to improve lateral estimations for vector velocity [44],
cardiac motion [26] and longitudinal vascular wall motion [45] as-
sessments. In [46], TO was adapted to plane wave imaging using a
Fourier domain beamforming. In the context of cross-sectional NIVE,
however, the OF-based LSME and APBE using the combined CPWC and
TO imaging beamforming (CPWC&TO) have not yet been studied.

In this manuscript, we provide a performance evaluation of different
elastography estimators and image beamforming schemes for cross-
sectional carotid artery scanning. Validations were performed with si-
mulations and in vitro phantom experiments. Overall, three contribu-
tions were made in this paper. One contribution is on the performance
evaluation of two affine model-based estimators in the same framework
of high-frame-rate imaging. Those estimators are determining si-
multaneously, using a minimization process, the translation (axial and
lateral displacements) and deformation (axial and lateral strains and
shears) components that were then used to compute principal strains.
The second contribution is on the development of the affine-based
APBE, and the introduction of a time-ensemble approach and an in-
compressibility constraint, as proposed in [27] for the OF-based LSME.
Those improvements provided better principal strain estimations than
previous APBE. The third contribution is the introduction of transverse
oscillations (TO) into the LSME and the verification that TO imaging
may be helpful for principal strain estimations when the tissue structure
is complex and heterogeneous. In this study, the OF-based LSME of [27]
is used as a benchmark comparison method. A list of abbreviations used
in this paper is given in Table 1.

2. Theory

2.1. Image formation

2.1.1. Coherent plane wave compounding beamforming
Ultrafast plane wave imaging only needs a simultaneous single pulse

emission on all selected transducer elements to produce a plane wave
illumination unlike the conventional line-by-line scanning mode. The
image generated by this scheme, however, has low image resolution
and contrast due to the lack of transmit focusing [40]. Montaldo et al.
[41] proposed a coherent plane wave compounding beamforming to
enhance the image quality without sacrificing significantly the high
frame rate capability. Each point of an image formed by one single

Table 1
List of abbreviations.

CPWC Coherent Plane Wave Compounding beamforming
TO Transverse Oscillation beamforming
CPWC&TO Coherent Plane Wave Compounding with Transverse Oscillation beamforming
APBE Affine Phase-Based Estimator
LSME Lagrangian Speckle Model Estimator
CPWC&TO+APBE APBE tested on CPWC&TO data
CPWC&TO*+APBE APBE tested on CPWC&TO data with heterodyne demodulation
CPWC&TO+APBET APBE with the time-ensemble approach tested on CPWC&TO data
CPWC&TO+APBET&I APBE with the time-ensemble approach and the incompressibility constraint tested on CPWC&TO data
CPWC&TO+LSMET LSME with the time-ensemble approach tested on CPWC&TO data
CPWC&TO+LSMET&I LSME with the time-ensemble approach and the incompressibility constraint tested on CPWC&TO data
CPWC+LSMET&I LSME with the time-ensemble approach and the incompressibility constraint tested on CPWC data (benchmark reference of [27])
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plane wave is obtained by summing RF signals along transducer ele-
ments using certain delays, as given by [41]:

∫= +s x z RF x τ τ dx( , ) ( , ) ,i TX RX i (1)

where the coordinate x, z corresponds to the image plane, xi is the
position of the receiving transducer element,

= + = + −τ z θ x θ c τ z x x c( cos sin )/ , ( ) /TX RX i
2 2 , where τTX and τRX are

the emission and receive delays, respectively, θ is the angle of the
emission pulse, and c is the speed of sound. Once the image for one
single plane wave is beamformed, the compounded image is obtained
by summing coherently all beamformed images with several plane
waves at different angles. Twenty-one emissions between −10° and 10°
with a 1° increment provided the best image quality for vascular strain
imaging using the ultrasound probe of the current study [27]. There-
fore, we kept this configuration for simulations and in vitro experiments.

2.1.2. Filtering-based TO beamforming using CPWC images
Transverse oscillation beamforming allows producing lateral phase

information in ultrasound images. Classical TO imaging requires a
specific apodization function in reception, made of two Gaussian peaks,
to modulate the frequency spectrum of the beamformed TO image into
four identified spots [45,47]. The following equation describes this
apodization function wi:
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where xi is the position of the transducer element, =x λ z λ/z x0 ,
=σ λ z σ2 /z x0 , λz is the transmitted pulse wavelength, z is the depth of

interest, λx is the expected lateral oscillation wavelength, and σx is the
full width at half maximum (FWHM) of the Gaussian envelope. It can be
noticed in (2) that the apodization function must be changed dynami-
cally as a function of depth z to keep a constant lateral oscillation
wavelength during image beamforming. In addition, to implement
different TO parameters (i.e., λx and σx) one needs to beamform the raw
data again.

To overcome these limitations and allow determining proper para-
meters, a filtering (or convolution) method was used to generate TO
images [45]. In theory, TO filtering is able to generate oscillations with
any lateral wavelengths. One advantage of the TO filtering method is
that it is easy to control and obtain optimal TO parameters. Such post-
processing approach only needs to filter beamformed data using dif-
ferent TO parameters and does not require access to pre-beamformed
data using different apodization functions. The filtering or convolution
is only performed along the lateral direction if RF images are used,
while both lateral and axial directions should be filtered when B-mode
images are considered. In this paper, we choose to filter each line of a
RF CPWC image by multiplying it with two modulated Gaussian func-
tions in the Fourier domain, as given by (3). The filtered frequency
pattern of a RF image was made of four spots with an expected lateral
oscillation frequency. This filter Ω is available in the public domain
[48] as a Matlab graphical user interface. It is given by:
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where σx and λx are defined in (2), and xf is the lateral coordinate in the
frequency domain of the RF image.

2.2. Elastography estimator description

2.2.1. Optical flow based Lagrangian speckle model estimator
The OF-based LSME accounts for rigid and non-rigid tissue motions

using an affine transformation model, and estimates the displacement
and strain in a small region of interest (ROI), also called measurement
window (MW). Assuming that the image intensity between two con-
secutive RF images is not modified in a MW, we can deduce the optical

flow equation for an arbitrary point:

+ + =I U I U I 0,x x z z t (4)

where Ix, Iz are the spatial gradient of the image intensity, Ux , Uz re-
present the lateral and axial displacements, and It denotes the temporal
gradient of the image intensity.

In a MW, taking a 1st order Taylor expansion of displacementsUx ,Uz
of an arbitrary point, the affine description of the displacement field is
given by

= + − + −U x z U x z x x s z z s( , ) ( , ) ( ) ( ) ,x x xx xz0 0 0 0 (5)

= + − + −U x z U x z x x s z z s( , ) ( , ) ( ) ( ) ,z z zx zz0 0 0 0 (6)

where x z,0 0 are coordinates of the center of the MW, sxx, s s s, ,xz zx zz are
the lateral strain, lateral shear, axial shear, and axial strain, respec-
tively, and = ∂ ∂s U j/ij i .

Since there are two unknown variables in (4), to solve the 2-D op-
tical flow, we assume that the motion field of each pixel within a MW
with p× q pixels is the same and that the coordinates of the center of
the MW, x z,0 0, are zero. Then, we can rewrite (4) by considering (5)
and (6) for each pixel to obtain an over-determined linear equation
system for all pixels in a MW,
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Then, solving this equation system using a robust weighted least
square method, as described by (4) of [27], the affine motion vector
→ =m s s U s s U( , , , , , )xx xz x zx zz z

T is obtained. Note that derivatives of dis-
placement are not used to compute strain components.

2.2.2. Affine phase based estimator
Once there are periodic oscillations in axial and lateral directions

for a RF image, such as TO images, 2-D motions between consecutive
images can be estimated using the APBE method. This estimator is
briefly described here; more details are given in [26]. The pre-motion
and post-motion images i1 and i2 with lateral modulations at con-
secutive times t1 and t2 can be assumed using a 2-D signal model
modulated by spatial frequencies fx and fz, respectively [29]:

=i x z t w x z t πf x πf z( , , ) ( , , )cos(2 )cos(2 ),x z1 1 1 1 (8)

= + +i x z t w x z t πf x U πf z U( , , ) ( , , )cos(2 ( ))cos(2 ( )),x x z z2 2 2 2 (9)

where w1 and w2 are two 2-D windows defined arbitrarily, =f λ1/x x
and =f λ1/z z, with λx and λz defined in (2), andUx andUz being lateral
and axial components of the displacement, respectively. Note that
phases in (8) and (9) do not change when the displacement is equal to
one wavelength, thus the largest unbiased estimated displacement is
limited to half a wavelength (λ /2x in the lateral direction and λ /2z in
the axial direction).

Given the Fourier spectrum of i1 or i2, four single-quadrant analytic
signals can be obtained by keeping only one quadrant and canceling
other three quadrants. Since the 2-D Fourier transform of real images is
symmetric, only two analytic signals were considered. According to
[29], the upper left and right quadrants of each spectrum were used.
Two-dimensional displacements between consecutive images are asso-
ciated with phases of analytic signals, as described here:

= −U
πf

Φ Φ
4

,x
x

1 2

(10)
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πf

Φ Φ
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(11)

with

= ∅ −∅x x t tΦ ( , z) ( , z, ) (x, z, ),s s1 11 1 21 2 (12)

= ∅ −∅x t tΦ ( , z) (x, z, ) (x, z, ),s s2 12 1 22 2 (13)

where ∅s11, ∅s12 are extracted phases of abovementioned analytical
images for the image i1, and ∅s21, ∅s22 are phases of analytical images for
the image i2.

We can do the same process for (10) and (11) as we did for the LSME
by introducing an affine model, and then rewriting these two equations
for each pixel in a MW with p× q pixels. The affine APBE model is
obtained by combining all equations into a matrix format, as described
below in (14) and (15). The similar affine motion vector →m was ob-
tained by solving this over-determined equation system using the same
robust weighted least square method, as we did for the LSME, unlike the
classical least square fitting in [26], to provide a common framework of
comparison. This constitutes a new contribution to the APBE (new
implementation).
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2.2.3. Time-ensemble approach
Because of the ultrafast CPWC imaging mode considered in this

study, we could implement a time-ensemble approach into the APBE, as
done for the LSME in [27]. Specifically, we assumed a constant motion
over a given period of time =T n t·Δt , where nt is the number of suc-
cessive frame pairs, and tΔ is the time step between two consecutive
frames. By combining these frames, the number of linear equations in
the least square estimation is increased to ×n nt , where n is the number
of pixels in the MW of the estimator. In theory, the more time ensemble
is used, better is the robustness of the least square estimation. However,
the improvement in strain estimation is at the expense of computational
time. For the LSME, we chose a time ensemble number of 8, as it pro-
vided the best compromise between accuracy and computational time
[27]. For the developed APBE, we assessed estimation errors for dif-
ferent time ensembles (results not shown). We found exponentially
decreasing strain estimation errors as a function of the time ensemble
numbers. For example, an ensemble number of 12 provided 5% less
estimation errors than nt =8 while increasing by 50% the computation
time. Thus, to provide comparable results between APBE and LSME, we
used nt =8 for both strain estimation methods.

2.2.4. Incompressibility constraint for the affine models
Arterial tissue incompressibility is a common assumption used in

computational models of arteries [49,50], motion compensation for
strain imaging [51], ultrasound speckle tracking [52], angular strain
compounding [35,53], and ultrasound modulography [54]. Ex vivo
analyses have confirmed that arteries may be considered in-
compressible under physiological conditions [55,56]. Karimi et al. [57]
recently showed that both excised healthy and atherosclerotic human
coronary arteries are incompressible. The artery tissue is in fact slightly
compressible but may be regarded as incompressible at small strains
[55], which is attainable by the high frame rate plane wave imaging
method used in this study. In addition, as described in Sections 3.1.1
and 3.2.1, we modeled the tissue as isotropic and quasi-incompressible
(Poisson’s ratio= 0.4995) for vascular simulations. For in vitro ex-
periments, two phantoms were built with polyvinyl alcohol cryogel

(PVA-C) following the manufacturing description of [58]. The Poisson’s
ratio of this material was estimated at 0.499 ± 0.001, which corre-
sponds to an incompressibility condition [58].

The deformation of an incompressible tissue produces no volume
change, which is formulated with the divergence of the displacement
field U as ∇ =U· 0. Under the condition of 2D plane strain, the out of
plane strain component is negligible and the divergence of U can be
rewritten as ∇ = + = + =∂

∂
∂
∂U s s· 0U

x
U
z xx zz . Consequently, under these

assumptions:

= −s s ,xx zz (16)

By introducing (16) into (7) for the LSME, the motion vector →m is
reduced from six to five unknowns, and consequently the minimization
process considered the following equation:
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For the APBE, axial and lateral motion components were computed
using (14) and (15), respectively, and then the lateral strain sxx was
replaced by the axial strain −szz when considering this assumption.
Other displacement and strain components were assessed during the
minimization process and used in these equations. In [27], it was shown
that this incompressibility constraint in the LSME reduced the varia-
bility of principal strain estimations. In the current study, we aimed
improving the quality of principal strain elastograms by also in-
corporating this constraint into the APBE. Reported results considered
APBE and LSME implementations with and without the in-
compressibility constraint.

2.3. Implementation of elastography estimators and evaluation scheme

We adopted the implementation scheme of [27], which includes 7
steps. Briefly, a rigid registration using 2-D Fourier-based ensemble-
correlations [59] was first performed for each small MW between pre-
and post-deformed RF images to account for large displacements. Then,
the affine motion vector →m was computed using a weighted least-
squares method [60] from registered pre- and post-deformed MWs. For
the sake of a fair comparison, the same parameters were used for both
estimators (LSME and APBE). Image pixels in a MW were weighted by a
2-D Gaussian function with a FWHM of 1.0×1.0mm. Thus the MV size
was set at 1.3× 1.3 mm, which corresponds to 68 samples axially by 26
RF lines laterally, with the same 80% overlap in axial and lateral di-
rections. The spatial discretization of elastograms was thus
0.26×0.26mm. A 90% overlap in time was chosen for the time-en-
semble approach.

We filtered CPWC images to obtain TO images (labeled CPWC&TO).
The APBE, the APBE using the time-ensemble approach, and the con-
strained APBE (i.e., incompressibility constraint) with the time-en-
semble approach were tested on CPWC&TO data (we used the following
abbreviations (see also Table 1): CPWC&TO+APBE, CPWC&
TO+APBET and CPWC&TO+APBET&I). In addition, the LSME using
the time-ensemble approach, with or without the incompressibility
constraint, was tested with CPWC&TO and CPWC data (described as:
CPWC&TO+LSMET, CPWC&TO+LSMET&I, and CPWC+LSMET&I).
The performance of six strategies (image beamforming schemes+ es-
timators) was evaluated with simulations and in vitro phantom experi-
ments.
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3. Materials and methods

We simulated a heterogeneous vascular model with a mimicking
atherosclerotic plaque and fabricated homogeneous vessel wall and
heterogeneous phantoms for evaluation. Plane wave data were col-
lected and beamformed using CPWC imaging at 21 angles, which al-
lowed a frame rate of 500 s−1. We used the full aperture to transmit and
receive plane waves. Also, a rectangular window apodization function
was used for beamforming. The RF images were reconstructed on a
regular Cartesian grid (with 50×20 μm resolution). CPWC images
were then filtered to obtain CPWC&TO images.

3.1. Simulation of a heterogeneous image sequence

3.1.1. Finite element model
A model of a carotid artery with soft and hard inclusions in a cross-

sectional view was created using COMSOL Multiphysics (Structural
Mechanics Module, version 3.5, COMSOL, France). The plaque geo-
metry described in [61] was meshed with approximately 15,000, 6-
node triangular elements. To avoid translations and rotations of the
rigid body, a soft and compressible (elasticity modulus E=1Pa and
Poisson’s ratio =γ 0.001) layer of 1mm thickness was added on the
outer layer. This artificial outer contour was anchored and was not
considered in the elastography analysis. As reported, a wide range of
Young’s moduli, varying from 30 kPa to 270MPa, for ex vivo or in vivo
atherosclerotic tissues has been reported in the literature, depending on
plaque internal structures and measurement methods [62]. In this
study, a large soft necrotic core (E=10 kPa) was embedded in a
medium mimicking a fibrous plaque (E=600 kPa). Four calcified in-
clusions (E=5000 kPa) were also embedded within the plaque. The
Poisson’s ratio of all plaque components considered isotropic was fixed
at 0.4995 (i.e., incompressible). These mechanical parameters are close
to those used in [63,64]. Recently, similar parameters were also se-
lected for elasticity reconstruction methods [54,65,66]. Displacements
of the vessel wall between two successive image frames were computed
using the finite element method (FEM). To consider realistic dynamic
conditions, a systemic blood pressure waveform with minima and
maxima at 80 and 120mmHg (10 and 16 kPa) was applied to the si-
mulated geometry. This waveform was discretized with 500 samples to
simulate an ultrafast non-invasive ultrasound acquisition at a frame rate
of 500 s−1. The strain field was derived under plane strain conditions
from computed displacement fields.

3.1.2. Acoustic models
The ultrasound simulation program Field II [67] was used to obtain

RF images coupled with FEM simulated wall motions. The L14-5/38
linear array probe with 128 elements (Ultrasonix Medical Corporation,
Richmond, BC, Canada) was simulated by considering a 7.2MHz center
frequency, a 70% fractional bandwidth (at −6 dB) and a sampling rate
of 40MHz. The bandwidth of that probe is between 5 and 14MHz. The
central frequency of 7.2MHz allowed good resolution and acceptable
grating lobes when using CPWC imaging [41]. The abovementioned
vascular model included randomly distributed scatterers whose density
was 100 per resolution cell [68] in a cross-sectional view. For CPWC
beamforming, the full aperture was activated in transmission to create
plane waves. The vascular model was static during emission angles
changing from−10° to 10°. The plane wave data with different steering
angles were beamformed and compounded to form pre-deformation
images using the delay-and-sum algorithm [41]. To form post-de-
formation images, the displacement fields generated by the FEM were
applied on this model and the plane wave data on the deformed model
were beamformed and compounded using the same steering angles. The
CPWC image sequence was filtered to generate CPWC&TO images. All
beamformed images were contaminated with white Gaussian noise at a
SNR of 20 dB.

3.2. In vitro experiment description

3.2.1. Phantom fabrication
Two phantoms were built following the manufacturing description

in [58]. The solution had a concentration of 10% by weight of polyvinyl
alcohol dissolved in pure water and ethanol homopolymer. The weight
percentage of added particles used as acoustic scatterers (Sigmacell
cellulose, type 50, Sigma Chemical, St Louis, MO, USA) was 3%. The
homogeneous phantom consisted in a 6 freeze-thaw cycles polyvinyl
alcohol cryogel (PVA-C) material. The second phantom was constructed
to mimic a heterogeneous vascular wall with a soft inclusion. The outer
PVA-C layer was fabricated with 6 freeze-thaw cycles and the soft in-
clusion mimicking a lipid pool underwent 1 freeze-thaw cycle. The first
homogeneous phantom without any inclusion had a modulus of
182 ± 21 kPa as measured by tensile test [58]. The heterogeneous
phantom with a soft inclusion had a modulus of 25 ± 3 kPa [58], with
the surrounding material at 182 ± 21 kPa.

3.2.2. Experimental setup
The experimental setup is analog to that illustrated in Fig. 2 of [27].

The intra-luminal pressure was monitored (Vivitro Labs Inc., Victoria,
BC, Canada) and varied using a pulsatile pump (model 1421, Harvard
Apparatus, Holliston, MA). Peak and minimum pressures were set at
120 and 60mmHg, respectively, and an image sequence was acquired.
To test the robustness of the different elastography estimators to dif-
ferent strains, the image sequence was down sampled using different
time steps to produce frame rates from 500 s−1 to 9 s−1.

3.2.3. Ultrasound data acquisition
Cross-sectional RF images were acquired with a Sonix Touch ul-

trasonic system (Ultrasonix Medical Corp.) equipped with a linear array
probe of 128 elements (L14-5/38). Plane wave ultrafast data at dif-
ferent steering angles were stored on the Sonix DAQ multi-channel
system. A software development kit (TexoSDK, v6.0.1, Ultrasonix
Medical Corp.) was used to generate and record plane wave data.
Beamforming was performed in post-processing.

3.3. The choice of TO filtering parameters

As described in (3), the frequency pattern of the image formed by a
TO filter is determined by two parameters, the expected lateral oscil-
lation wavelength λx and the FWHM of the Gaussian envelope σx . In-
tuitively, smaller are λx and σx , wider is the spectrum of the filtered
image and higher is the lateral TO frequency. However, too small λx
and σx will filter most energy of the image and may induce the filter to
only keep the noise. As a result, the proper TO filtering parameters λx
and σx were determined via a simple simulation test. Two successive
frames was selected from the simulated image sequence described in
Section 2.1 with a SNR of 20 dB. Different values of λx and σx were
tested on this image pair 50 times. Parameters providing the least de-
viation between ground true FEM and computed elastograms were
chosen for TO filtering in the remaining of this study. Considering the
spectrum of compounded images and the window size of estimators, we
set the test range of λx from 0.4 to 1mm and that of σx from 0.2 to
1mm, with increments of 0.1mm.

3.4. Data analysis

3.4.1. Principal strain
The Cartesian strain tensor was transformed into the principal

minor and major strain tensors, ε ε, ,min max by using the following ex-
pression [69]:
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where sxx , szz are lateral and axial strains, and sxz, szx are corresponding
shear components. When we used the incompressibility constraint, the
lateral strain component sxx was replaced by −szz in this equation.

In this study, otherwise specified, the principal strain map between
consecutive frames was estimated for an image sequence. Then, prin-
cipal strains were cumulated over the range of pressure considered. The
largest cumulated strain map was chosen as the final elastogram.

3.4.2. Elastogram evaluation
To evaluate simulated elastograms, the normalized root-mean-

square-error (NRMSE) between FEM and estimated principal strains
was used:

=
−

∑ −=
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,
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where N is the number of pixels in an elastogram, ref is the ground truth
principal strain from the finite element analysis, and est is the estimated
strain from LSME or APBE algorithm.

Since the ground truth strain value is unknown for in vitro experi-
ments, we chose the SNR as the evaluation metric of elastograms for
homogeneous and heterogeneous phantoms. The CNR was also used for
the evaluation of elastograms of the heterogeneous phantom.
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Here, μ μ,r r1 2 and σ σ,r r1 2 are means and standard deviations of cu-
mulated principal strains in selected ROIs 1 and 2.

4. Results

4.1. Optimal TO filtering parameters

The test results on TO filtering parameter selection using different
pairs of λx and σx are represented in Fig. 1(a). The smallest estimation
deviation for principal strains was obtained for λx=0.5mm and

=σ 0.4 mmx . These values were used in the remaining of this study.
Fig. 1(b) presents the corresponding filtering mask as described by (3).

4.2. The heterogeneous vessel simulation study

Fig. 2(a) and (b) shows B-mode images of the heterogeneous artery
simulation considering CPWC and CPWC&TO beamforming. Principal
minor strains obtained with six configurations (CPWC&TO+APBE,
CPWC&TO+APBET, CPWC&TO+APBET&I, CPWC&TO+LSMET,
CPWC&TO+LSMET&I and CPWC+LSMET&I) are shown in Fig. 2(d)-
(i), respectively. We chose in Fig. 2(d) the time-ensemble length =n 1t
(i.e., no time-ensemble) for the APBE tested on CPWC&TO data (CPWC
&TO+APBE), whereas =n 8t for other five configurations (as de-
scribed in Section 2.2.3). Visually, Fig. 2(e) presents less estimation
errors than Fig. 2(d), which suggests that the time-ensemble approach
improved the estimation accuracy of the APBE. Around 12 and 8 o’clock
(outside soft and hard inclusions), the principal minor strain is expected
to decrease with radial distance from the lumen, which is known as the
strain decay phenomenon [70]. The strain decay is difficult to ap-
preciate from Fig. 2(d)–(f). Quantitatively, the APBE with the in-
compressibility constraint and using the time-ensemble approach tested
on CPWC images with TOs (Fig. 2(f)) provided the smallest estimation
error (NRMSE=10.6%) when compared with the APBE with the time-
ensemble approach tested on CPWC images with TOs, CPWC&
TO+APBET (Fig. 2(e), NRMSE=13.0%) and the APBE tested on
CPWC images with TOs, CPWC&TO+APBE (Fig. 2(d),
NRMSE=14.2%), which confirms that the combination of the time-
ensemble approach and incompressibility constraint improved the
performance of the APBE. With the LSME, the principal minor strains in
Fig. 2(g)–(i) provided more homogeneous and clear outlines of the soft
inclusion than APBE elastograms. Moreover, the strain decay at 12 and
8 o’clock is observed. The performance of the LSME, with and without
the incompressibility constraint, tested on CPWC images with and
without TOs (CPWC&TO+LSMET, CPWC&TO+LSMET&I and
CPWC+LSMET&I) is overall comparable, with NRMSE at 9.0%, 8.6%
and 8.4%, respectively.

Regarding the principal major strain, the same conclusions apply.
The APBE with the time-ensemble approach (Fig. 2(l)) showed less
estimation artifacts than APBE without time averaging (Fig. 2(k)).
However, both panels (k) and (l) did not delineate properly the soft
inclusion around 4 to 6 o’clock. With the incompressibility constraint
(panel (m)), the outline of the soft inclusion was better depicted. The
NRMSE confirmed those visual observations; normalized errors were
17.4%, 14.5% and 12.9% for panels (k)–(m), respectively. With the

Fig. 1. (a) The choice of TO filtering parameters using different pairs of λx and σx . Here the test range of λx is from 0.4 mm to 1 mm and that for σx is from 0.2 mm
to 1 mm, with 0.1 mm increment. From this simulation, =λ 0.5 mmx and =σ 0.4 mmx provided the smallest estimation deviation (NRMSE) for principal strains
and these values were chosen as the TO filtering parameters in our study. (b) The corresponding filtering mask.
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LSME, the incompressibility constraint, CPWC&TO+LSMET&I

(Fig. 2(o)) and CPWC+LSMET&I (Fig. 2(p)), allowed better outlines of
the soft inclusion than the implementation without this constraint,
CPWC&TO+LSMET (Fig. 2(n)). LSME provided better results com-
pared with the three APBE implementations, with NRMSE at 9.6%
(panel (n) with TO beamforming), 9.4% (panel (o) with TO beam-
forming), and 9.5% (panel (p) with no TO), respectively.

4.3. In vitro experiments

4.3.1. The homogeneous vascular phantom study
Fig. 3(a)–(c) shows a picture, and cross-sectional CPWC and CPWC

with TOs B-mode images of the homogeneous phantom without any
inclusion. As done for the simulation study, the following description
compares principal strains of six APBE and LSME implementations.
APBE results in panels (d)–(f) confirmed the simulation study. Indeed,
the time-ensemble approach and incompressibility constraint improved
principal minor strain estimates but several artifacts are noticed on
those elastograms. More consistent estimates were obtained with the
LSME. The strain decay phenomenon is clearly seen in panels (g)–(i).
Visually, a more homogeneous strain texture was obtained with the
LSME that considered the time-ensemble and incompressibility con-
straint, and CPWC beamforming (i.e., the implementation of [27], see
panel (i)). To evaluate quantitatively the performance of those im-
plementations, two regions of interest were selected to calculate the
SNR (dashed green lines in Fig. 3(i)). One was selected as a 4-mm radius
circle surrounding the lumen, whereas the other was an arc from 3 to 8
o’clock 5mm away from the lumen center. SNRs in Fig. 3(d)–(i) are
11.1 dB, 11.3 dB, 12.0 dB, 15.9 dB, 14.2 dB and 16.5 dB, respectively.
The best SNR was obtained with the implementation of the LSME with
the time-ensemble and incompressibility constraint on CPWC data

(CPWC+LSMET&I).
Regarding principal major strains of Fig. 3(j)–(o), visual observa-

tions are similar to those reported for principal minor strain elasto-
grams. Overall, artifacts are observed on all strain maps and transverse
oscillation beamforming seemed to emphasize the variance of both
APBE and LSME estimators. With TO, the implementation of the in-
compressibility constraint (Fig. 3(l) and (n)) provided more consistent
estimation at 5 o’clock compared with cases without that constraint
(Fig. 3(k) and (m)). The best result was obtained with the LSME with
the time-ensemble and incompressibility constraint on CPWC data, as
confirmed by SNR results. On panels (j)–(o), SNRs are 7.2 dB, 7.5 dB,
12.0 dB, 8.9 dB, 14.2 dB and 16.5 dB, respectively.

Fig. 4 presents the SNR analysis on principal strains for a wide range
of applied strains (from 0.07% to 4.5%). Those results are confirming
observations of Fig. 3 on cumulated strain maps at a frame rate of
500 s−1. Except for the highest strain of 4.5%, CPWC beamforming with
LSME considering the time-ensemble and incompressibility constraint
provided the best SNRs. The worse performance was obtained with
APBE on CPWC images with TOs (CPWC&TO). The time-ensemble ap-
proach and incompressibility constraint improved SNRs of principal
strains for both APBE and LSME. Especially, as seen in Fig. 4(b), all
implementations of the incompressibility constraint provided higher
SNRs for principal major strains than implementations without that
constraint. Differences in performance tended to decrease as the applied
strain was increased.

4.3.2. The heterogeneous phantom study
Fig. 5 shows visual assessment of the heterogeneous phantom with a

soft inclusion under the lumen, B-mode images using both beamforming
approaches, and cumulated principal strain maps. Regarding principal
minor strains, fewer artifacts are seen when the time-ensemble and then

Fig. 2. B-mode images and principal strains for a simulated vascular phantom with one soft inclusion and four hard inclusions. First row: the CPWC image and CPWC
&TO image. Second row: ground truth of the principal minor strains from finite-element model and the principal minor strain estimated with the APBE on CPWC&TO
data, the APBE using the time-ensemble approach on CPWC&TO data, the APBE using the incompressibility constraint and the time-ensemble approach on CPWC&
TO data, the LSME using the time-ensemble approach on CPWC&TO data, the LSME using the incompressibility constraint and the time-ensemble approach on CPWC
&TO data, and the LSME using the incompressibility constraint and the time-ensemble approach on CPWC data, whose NRMSE are 14.2%, 13.0%, 10.6%, 9.0%,
8.6%, 8.4%, respectively. Third row: ground truth of the principal major strains from finite-element model and the principal major strain estimated with the APBE
and LSME using the same strategies, whose NRMSE are 17.4%, 14.5%, 12.9%, 9.6%, 9.4%, and 9.5%, respectively.
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the incompressibility constraint were added to the APBE estimator.
When compared with LSME implementations (panels (g)–(i)), more
deformations are noticed within the soft inclusion for the different
APBE estimates (panels (d)–(f)). In general, with the exception of a few
artifacts at 3 o’clock, the soft inclusion was well delineated with LSME

implementations. Some overestimation of the inclusion dimension is
nevertheless noticed with the LSME implementation on CPWC data
(CPWC+LSMET&I). For quantitative analyses, 5 small rectangles of
0.5 mm×0.5mm with the same distance away from the lumen center
were selected (see white ROIs and the manual segmentation of the

Fig. 3. B-mode images and principal strains of a homogeneous phantom in vitro experiment. First row: the cross-section image of the phantom, the CPWC image and
CPWC&TO image. Second row: the principal minor strains estimated with the APBE on CPWC&TO data, the APBE using the time-ensemble approach on CPWC&TO
data, the APBE using the incompressibility constraint and the time-ensemble approach on CPWC&TO data, the LSME using the time-ensemble approach on CPWC&
TO data, the LSME using the incompressibility constraint and the time-ensemble approach on CPWC&TO data, and the LSME using the incompressibility constraint
and the time-ensemble approach on CPWC data, whose SNRs are 11.1 dB, 11.3 dB, 12.0 dB, 15.9 dB, 14.2 dB, 16.5 dB respectively. Third row: the principal major
strains estimated with the APBE and LSME using the same strategies, whose SNRs are 7.2 dB, 7.5 dB, 12.0 dB, 8.9 dB, 14.2 dB, and 16.5 dB, respectively.

Fig. 4. SNRs calculated from principal strains estimated with CPWC&TO+APBE, CPWC&TO+APBET, CPWC&TO+APBET&I, CPWC&TO+LSMET, CPWC&
TO+LSMET&I, and CPWC+LSMET&I over a range of applied strains from 0.07% to 4.5%. (a) Principal minor strains. (b) Principal major strains. Five realizations
were considered.
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inclusion on panel (o)). Three ROIs were chosen within the soft inclu-
sion that was manually segmented from B-mode images to calculate the
SNR. The two others were selected out of the soft inclusion to calculate
the CNR together with the above three ROIs. SNRs from left to right in
Fig. 5(d)–(i) were 7.6 dB, 9.5 dB, 18.3 dB, 12.5 dB, 19.4 dB and 21.1 dB,
respectively. CNRs were −5.2 dB, 4.1 dB, 10.2 dB, −2.6 dB, 11.5 dB
and 16 dB, respectively. According to SNR and CNR results, the best
implementation is with the LSME considering the time-ensemble and
incompressibility constraint on CPWC-beamformed data (i.e., the
benchmark reference of [27]).

Regarding principal major strains, similar to previous results, all
APBE implementations with CPWC&TO beamforming did not allow
identifying the soft inclusion precisely. A lot of artifacts are also noticed
with the LSME tested on CPWC&TO images when the incompressibility
constraint was ignored (panel m). With the incompressibility con-
straint, the LSME provided clearer depiction of the inclusion (panels n
and o). SNRs in Fig. 5(j)–(o) were 9.7 dB, 11.5 dB, 18.3 dB, 12.6 dB,
19.4 dB and 21.1 dB, respectively. CNRs were −8.5 dB, 0.4 dB, 10.2 dB,
3.2 dB, 11.5 dB and 16.0 dB, respectively. Again, the LSME with the
time-ensemble and incompressibility constraint with CPWC beam-
forming provided the best results among all implementations.

SNR and CNR analyses of elastograms over different applied strains,
from 0.07% to 3.6%, are given in Fig. 6. Overall, results are consistent
with the visual observation of Fig. 5. LSME configurations considering
the time-ensemble and incompressibility constraint applied on CPWC
images with (CPWC&TO+LSMET&I) and without TOs (CPWC+LSMET
&I) still provided the highest SNRs and CNRs. Principal strains from the
APBE with the time-ensemble and incompressibility constraint on

CPWC images with TOs (CPWC&TO+APBET&I) had higher SNRs and
CNRs than the other two APBE implementations, which confirms again
that the time-ensemble and incompressibility constraint improve the
performance of this estimator. Similar to Fig. 4(b), configurations
considering the incompressibility constraint (CPWC&TO+APBET&I,
CPWC&TO+LSMET&I and CPWC+LSMET&I) presented higher SNRs
for principal major strains. With a few exceptions, CNRs were also
higher for both principal minor and major strains when the in-
compressibility constraint was used (Fig. 6(c) and (d)). Except for the
minimum strain of 0.07%, at 500 images per second, and the maximum
strain of 3.6%, transverse oscillation beamforming improved the per-
formance of the LSME in terms of SNRs and CNRs for this specific
phantom.

5. Discussion

The APBE proposed in [26] was applied on sectorial cardiac images
of standard focusing with TOs. Although an affine model that could
directly provide access to the deformation matrix was introduced, ra-
dial, circumferential and longitudinal strains were computed from the
derivative of the displacement field. In the current study, we adapted
the APBE for vascular applications by introducing a time-ensemble
approach and an incompressibility constraint to directly assess de-
formations (no derivatives). The new APBE was shown to provide better
strain estimations than the APBE implementation without time en-
semble and incompressibility with simulations and in vitro experiments.
Moreover, we combined CPWC and TO beamforming to obtain CPWC&
TO images. The higher frame rate of CPWC&TO imaging compared with

Fig. 5. B-mode images and principal strains of a heterogeous phantom in vitro experiment. First row: the cross-section image of the phantom, the CPWC image and
CPWC&TO image. Second row: the principal minor strains estimated with the APBE on CPWC&TO data, the APBE using the time-ensemble approach on CPWC&TO
data, the APBE using the incompressibility constraint and the time-ensemble approach on CPWC&TO data, the LSME using the time-ensemble approach on CPWC&
TO data, the LSME using the incompressibility constraint and the time-ensemble approach on CPWC&TO data, and the LSME using the incompressibility constraint
and the time-ensemble approach on CPWC data, whose SNRs are 7.6.dB, 9.5 dB, 18.3 dB, 12.5 dB, 19.4 dB, and 21.1 dB, respectively, and CNRs are −5.2 dB, 4.1 dB,
10.2 dB, −2.6 dB, 11.5 dB, and 16 dB, respectively. Third row: the principal major strains estimated with the APBE and LSME using the same strategies, whose SNR
are 9.7 dB, 11.5 dB, 18.3 dB, 12.6 dB, 19.4 dB, and 21.1 dB, respectively, and CNRs are −8.5 dB, 0.4 dB, 10.2 dB, 3.2 dB, 11.5 dB, and 16 dB, respectively.
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standard focusing imaging used in [26] provided smaller displacements
between consecutive frames, which is an advantage since displacements
must be smaller than half a wavelength for unbiased estimations with
the APBE, as explained in Section 2.2.2.

In addition, we evaluated the performance of the developed APBE
against LSME. Two of the three LSME implementations (CPWC&
TO+LSMET&I and CPWC+LSMET&I) outperformed the new APBE
(CPWC&TO+APBET&I) with simulations and in vitro experiments.
CPWC+LSMET&I provided better strain estimations than CPWC&
TO+LSMET&I for homogeneous phantom experiments; but comparable
or worse performance for simulations of the heterogeneous vessel or for
the heterogeneous phantom depending on strain values.

5.1. Influence of TO filtering on the quality of CPWC images

From simulations and in vitro results, as mentioned above, the APBE
did not perform better than the LSME. TO filtering may be one of the
reasons for that. Firstly, although TO filtering increases lateral textures
of an image to facilitate lateral strain estimation, the filtering method
used to create TOs is at the expense of losing in lateral resolution.
Considering the point spread function (PSF) of a CPWC image (see
Fig. 7(a)), we used (3) as a mask to multiply this spectrum to produce a
PSF with TOs. This process is also viewed as a convolution of the PSF

with a Gaussian function having two peaks modulated by λx and σx . The
lateral width of the resulting PSF with TOs is expanded due to this
Gaussian function convolution (see Fig. 7(b)). Moreover, TO filtering
elevates the side lobe level despite narrowing the main lobe width.

Secondly, a CPWC image can be viewed as a wide band signal in the
lateral direction from a Fourier spectrum analysis (see Fig. 7(c)). When
the CPWC image is filtered by the band pass TO filter, the CPWC&TO
image becomes a narrow band signal in the lateral direction (see
Fig. 7(d)). The CPWC&TO spectrum is also subdivided from 2 to 4 main
components, and as a consequence the spectral magnitude at given 2-D
frequencies is reduced, which may violate the phase constancy as-
sumption of the APBE, leading to less accurate strain estimations.

Likewise, the increased beam width and reduced spectrum magni-
tude of filtered TO images also violate the intensity constancy as-
sumption of the LSME inducing less accurate estimations (see perfor-
mances of CPWC&TO+LSMET or CPWC&TO+LSMET&I versus
CPWC+LSMET&I for the homogeneous phantom results of Fig. 4).
However, the increased lateral oscillations improve image gradients,
which was beneficial for the LSME as comparable (Fig. 2) and even
better (Fig. 6) performances were obtained when comparing CPWC&
TO+LSMET&I with CPWC+LSMET&I when the tissue structure was
complex and heterogeneous.

Fig. 6. SNRs and CNRs calculated from principal strains estimated with CPWC&TO+APBE, CPWC&TO+APBET, CPWC&TO+APBET&I, CPWC&TO+LSMET,
CPWC&TO+LSMET&I, and CPWC+LSMET&I over a range of applied strains from 0.07% to 3.6%. (a) and (b) SNRs for principal strains. (c) and (d) CNRs for
principal strains. Five realizations were considered.
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5.2. Influence of the affine model on the APBE

The APBE implemented without an affine model and known as the
PBE was shown to be able to track accurately 2D and 3D trajectories
with simulated and in vitro data [28,45,71]. The APBE proposed by
others improved the lateral displacement estimation but provided a
slightly less precise axial displacement measurement than the PBE [26].
One possible reason reported in the latter study [26] is that the affine
model is more complex and is more prone to over-fitting than the
simple PBE model in the presence of noise. Likewise, the same reason
may apply to strain estimations with the APBE in our study, which
included a minimization process to assess all displacement and de-
formation components simultaneously. Although the affine model has a
low bias due to a precise description of the tissue motion, the increasing
model complexity may also bring a high variance in the presence of
noise, as discussed earlier when interpreting the performance of CPWC
&TO images.

5.3. Bias and variance of the two strain estimators

We hypothesize that the LSME providing better performance than
the APBE could be due to the estimation variance. In the supervised
learning field [72], the mean-squared error of a model prediction can
be decomposed into the noise, the bias and the variance in the form:
MSE=noise+ bias2+ variance. The noise term is the inherent noise
that cannot be reduced. The bias term is referred to how far the pre-
diction is from the true value. The variance term is how much the
prediction varies over multiple realizations of the model. Regarding the
LSME versus APBE, the maximum detectable displacement in one di-
rection with the APBE is half the wavelength of the oscillations in that
direction [71]. The estimation bias of the LSME is also related to the

range of displacements. To better clarify this issue, two simple 1-D
versions of APBE (phase-based) and LSME (optical flow-based) methods
were used to estimate displacements between a pair of 1-D sinusoids
under ideal condition (i.e., no noise). The performance for different
displacements is presented in Fig. 8. As seen, the optical flow LSME
method can be viewed as a biased estimator [73], whereas the phase-
based APBE method is able to provide unbiased estimations until the
true displacement becomes less than half a wavelength [29]. When the
true displacement is more than half a wavelength, the phase estimator

Fig. 7. The point spread functions (PSF) and corresponding Fourier spectra of CPWC and CPWC&TO beamforming: (a) The PSF of the CPWC image, (b) the PSF of the
CPWC&TO image, (c) the Fourier spectrum of (a), (d) the Fourier spectrum of (b).

Fig. 8. Performance of the phase-based and optical flow-based estimators to
estimate the displacement between a pair of 1-D sinusoidal signals under ideal
condition (no noise added) for different displacements along x and y axes.
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provides aliased results. As also seen in Fig. 8, when the motion be-
tween consecutive frames is small enough (typically less than 0.2 λ) to
be tractable using CPWC imaging, the bias of the LSME is small. In-
troducing a small bias into an estimator can reduce the estimation
variance leading to an overall lower mean-squared error [74]. There-
fore, we hypothesize that the reduced variance may account for the
better performance of the LSME versus APBE.

Besides abovementioned possible reasons for the poorer perfor-
mance of the APBE with TO beamforming, we also investigated the
impact of heterodyning demodulation to see if this approach, instead of
the frequency domain filtering strategy used to produce lateral oscil-
lations, could improve strain results. Readers are referred to the
Appendix A for more details.

5.4. Clinical value of this work

The second most common death cause is stroke accounting for about
1 of 10 deaths in the world [75]. Stroke is mainly induced by athero-
sclerotic plaque rupture [76]. A prone-to-rupture plaque is usually
composed of a large lipid core covered by a thin fibrous cap [77]. In this
study, a heterogeneous phantom with a soft inclusion was fabricated to
simulate a pathological vulnerable condition. Two of the tested con-
figurations (CPWC&TO+LSMET&I and CPWC+LSMET&I) revealed the
existence of the soft inclusion, as identified by large deformations on
principal minor strain (Fig. 5(h) and (i)) and principal major strain
(Fig. 5(n) and (o)) maps. For the homogeneous phantom (Fig. 3(a)), the
anticipated strain decay was noticed on elastograms (Fig. 3 (h), (i), (n),
(o)). Thus, we can confirm that the proposed incompressibility con-
straint and time-ensemble approach with CPWC and CPWC&TO con-
figurations may help identifying features of vulnerable plaques (soft
inclusion) and the strain decay of normal vessel walls.

5.5. Limitations and perspectives

Lateral estimations (lateral strain and shear) of LSME and APBE
were not as good as axial estimates due to the lower lateral resolution in
ultrasound imaging. Because of the deleterious impact of this fact on
principal strains, we used the incompressibility constraint to avoid
using lateral strain estimates for some tested conditions. Nevertheless,
we considered the lateral shear estimation that likely deteriorated the
performance of both estimators. High resolution imaging approaches
(e.g., minimum variance beamforming [40,78]) may be helpful to

improve the lateral shear (and lateral strain) estimation. This is an
avenue that may deserve to be explored.

In this study, we used the 2-D plane strain assumption for both
LSME and APBE, and consequently the out-of-plane motion was not
considered. This out-of-plane motion likely occurs if one considers non-
homogenous human plaques and that motion may undermine the
speckle or phase coherence in this direction. Fortunately, the models we
presented here can be extended to 3-D. Combined with a 3-D data ac-
quisition transducer, this would allow the LSME and APBE to estimate
the full 3-D strain tensor while alleviating this assumption. In this
study, the out-of-plane motion was also neglected for the in-
compressibility constraint. The isovolumic assumption used in Section
2.2.4 was indeed based on 3-D deformations. This is another aspect that
would need to be further investigated.

6. Conclusion

In this paper, two affine model-based estimators were studied under
the framework of high frame rate imaging. A time-ensemble approach
and an incompressibility constraint were introduced to improve the
performance of the affine phase-based estimator (APBE) for principal
strain measurements. We also evaluated the performance of the APBE
against the Lagrangian speckle model estimator (LSME), which also
considered the time-ensemble strategy, with or without the in-
compressibility constraint. For all tested conditions, using the in-
compressibility constraint outperformed other implementations. In the
simulation study, the LSME gave less principal strain estimation errors
than the developed APBE. For the in vitro study, LSME elastograms
provided higher SNRs for a homogeneous phantom, and higher SNRs
and CNRs than the developed APBE over a wide range of strain values.
In general, the LSME without TO filtering provided better results.
Nonetheless, comparable or better principal strain estimates could be
obtained with the LSME and TO filtering in the case of complex and
heterogeneous tissue structures (with the incompressibility assump-
tion).

Acknowledgments

This work was supported by the Collaborative Health Research
Program of the Natural Sciences and Engineering Research Council of
Canada (CHRP-462240-2014) and the Canadian Institutes of Health
Research (CPG-134748).

Appendix A

A.1. Impact of heterodyning demodulation on strain performance of the APBE

The heterodyne demodulation has been shown recently to increase the lateral frequency and reduce the lateral beamwidth of the TO method
[79,80]. We thus applied this technique to see if it could also improve the performance of the APBE. We decomposed the APBE method to fit two
heterodyning images whose oscillations are orthogonal. Specifically, only one quadrant of the spectrum of one analytic signal of the heterodyning
demodulation was used. The strain components were derived using the affine model as we did in Section 2.2.2. The optimal parameters of TO images
obtained with the heterodyne demodulation were also obtained using successive frames of the simulated carotid image sequence, which are

=λ 0.5 mmx and =σ 0.3 mmx . Strain results are shown in Fig. A1. For these examples only, displacement and strain components without the
incompressibility constraint are shown instead of principal strains to better appreciate the influence of the heterodyne demodulation on each motion
component. The time ensemble approach was used.

As seen in Fig. A1, no improvements are observed for the APBE when using the heterodyne demodulation. Two reasons may account for this.
Firstly, the APBE may not benefit from the double oscillation frequency attributed to the heterodyne demodulation. This may be because the APBE is
different from the phased-based zero crossing method in which a higher phase slope is helpful to locate the peak of the complex correlation function.
The APBE is directly applied to analytic signals, which do not require a higher oscillation frequency to enable a higher phase slope. Secondly, the
APBE was developed in the framework of RF data demodulated in each direction (as for TO images). The heterodyne demodulation decomposes a TO
image into a lateral oscillation image and an axial oscillation image, which correspond to two RF images. For each of them, only two analytical
phases are used instead of four, as it is done for TO filtered images. The APBE has to derive axial and lateral estimations from axial and lateral
demodulated images, respectively. The absence of modulation in one direction has an influence on the accuracy in the other direction (roughly 20%
increase in errors compared with TO images) [28].

Although we found that the heterodyne demodulation did not improve the performance of APBE, it does not contradict conclusions of [80]. Since
the context is different (TO filtering versus TO heterodyne beamforming, linear array versus phased array, affine model-based method versus
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correlation-based method, etc.), the comparison might be misleading because different types of images and estimators were considered. Firstly, in
[80], the conclusion was based on the Cramer-Rao Lower Bound (CRLB) formulation to predict the minimum attainable standard deviation of the
jitter of displacement estimates of an unbiased motion estimator. Three parameters determine the jitter in the CRLB equation, the decorrelation,
frequency content and SNR of beamformed signals. Our affine-based estimators (APBE and LSME) are not correlation-based methods so decorrelation
was not computed. Moreover, the LSME is a biased estimator which requires good image gradient correlation instead of image intensity correlation.
Secondly, in the current study, we derived strains using an affine model and a minimization procedure. It is a nonlinear process that is more complex
than deriving displacements. The conclusions on displacement estimations may thus not be applicable. According to results reported in this section,
we judged inappropriate to also test the LSME estimator with heterodyne demodulated images.

Fig. A1. Ground truth of motion components from finite-element model (first column) and motion components estimated with the APBE on CPWC&TO beamformed
data (second column) and CPWC&TO with heterodyne demodulation data (third column). Note that the incompressibility constraint was not used to better appreciate
the influence of the heterodyne demodulation on each motion component. The strain components were also not combined to obtain principal strains for this example.

H. Li et al. Ultrasonics 91 (2019) 77–91

89



References

[1] R. Nayak, H. Steven, J. Ohayon, N. Carson, V. Dogra, G. Schifitto, M.M. Doyley,
Principal strain vascular elastography: simulation and preliminary clinical evalua-
tion, Ultrasound Med. Biol. 43 (2016) 1–18.

[2] M.M. Doyley, J.C. Bamber, F. Fuechsel, N.L. Bush, A freehand elastographic ima-
ging approach for clinical breast imaging: system development and performance
evaluation, Ultrasound Med. Biol. 27 (2001) 1347–1357.

[3] J. Luo, E.E. Konofagou, A fast normalized cross-correlation calculation method for
motion estimation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57 (2010)
1347–1357.

[4] R.G.P. Lopata, M.M. Nillesen, H.H.G. Hansen, I.H. Gerrits, J.M. Thijssen, C.L. de
Korte, Performance evaluation of methods for two-dimensional displacement and
strain estimation using ultrasound radio frequency data, Ultrasound Med. Biol. 35
(2009) 796–812.

[5] S. Korukonda, M.M. Doyley, Visualizing the radial and circumferential strain dis-
tribution within vessel phantoms using synthetic-aperture ultrasound elastography,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59 (2012) 1639–1653.

[6] M. Larsson, B. Heyde, F. Kremer, L.-Å. Brodin, J. D’hooge, Ultrasound speckle
tracking for radial, longitudinal and circumferential strain estimation of the carotid
artery – an in vitro validation via sonomicrometry using clinical and high-frequency
ultrasound, Ultrasonics 56 (2015) 399–408.

[7] M.A. Lubinski, S.Y. Emelianov, M. O’Donnell, Speckle tracking methods for ultra-
sonic elasticity imaging using short-time correlation, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 46 (1999) 82–96.

[8] H.H.G. Hansen, R.G.P. Lopata, T. Idzenga, C.L. de Korte, Full 2D displacement
vector and strain tensor estimation for superficial tissue using beam-steered ultra-
sound imaging, Phys. Med. Biol. 55 (2010) 3201–3218.

[9] S. Golemati, A. Sassano, M.J. Lever, A.A. Bharath, S. Dhanjil, A.N. Nicolaides,
Carotid artery wall motion estimated from b-mode ultrasound using region tracking
and block matching, Ultrasound Med. Biol. 29 (2003) 387–399.

[10] H. Li, Y. Guo, W.-N. Lee, Systematic performance evaluation of a cross-correlation-
based ultrasound strain imaging method, Ultrasound Med. Biol. 42 (2016)
2436–2456.

[11] K. Kaluzynski, X. Chen, S.Y. Emelianov, A.R. Skovoroda, M. O’Donnell, Strain rate
imaging using two-dimensional speckle tracking, IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 48 (2001) 1111–1123.

[12] X. Chen, M. Zohdy, S.Y. Emelianov, M. O’Donnell, Lateral speckle tracking using
synthetic lateral phase, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 (2004)
540–550.

[13] E.S. Ebbini, Phase-coupled two-dimensional speckle tracking algorithm, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 53 (2006) 972–990.

[14] E. Brusseau, J. Kybic, J.F. Déprez, O. Basset, 2-D locally regularized tissue strain
estimation from radio-frequency ultrasound images: Theoretical developments and
results on experimental data, IEEE Trans. Med. Imag. 27 (2008) 145–160.

[15] H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, G. Hager, Ultrasound
elastography: a dynamic programming approach, IEEE Trans. Med. Imag. 27 (2008)
1373–1377.

[16] V. Behar, D. Adam, P. Lysyansky, Z. Friedman, Improving motion estimation by
accounting for local image distortion, Ultrasonics 43 (2004) 57–65.

[17] S.K. Alam, J. Ophir, Reduction of signal decorrelation from mechanical compression
of tissues by temporal stretching: applications to elastography, Ultrasound Med.
Biol. 23 (1997) 95–105.

[18] H. Chen, H. Shi, T. Varghese, Improvement of elastographic displacement estima-
tion using a two-step cross-correlation method, Ultrasound Med. Biol. 33 (2008)
48–56.

[19] H. Shi, T. Varghese, Two-dimensional multi-level strain estimation for dis-
continuous tissue, Phys. Med. Biol. 52 (2007) 389–401.

[20] S.K. Alam, J. Ophir, E.E. Konofagou, An adaptive strain estimator for elastography,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (1998) 461–472.

[21] R.G.P. Lopata, H. Hansen, M. Nillesen, J. Thijssen, L. Kapusta, C.L. de Korte,
Methodical study on the estimation of strain in shearing and rotating structures
using radio frequency ultrasound based on 1-D and 2-D strain estimation techni-
ques, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (2010) 855–865.

[22] R.L. Maurice, J. Ohayon, Y. Fretigny, M. Bertrand, G. Soulez, G. Cloutier,
Noninvasive vascular elastography: theoretical framework, IEEE Trans. Med. Imag.
23 (2004) 164–180.

[23] K. Liu, P. Zhang, J. Shao, X. Zhu, Y. Zhang, J. Bai, A 2D strain estimator with
numerical optimization method for soft-tissue elastography, Ultrasonics 49 (2009)
723–732.

[24] E. Mercure, G. Cloutier, C. Schmitt, R.L. Maurice, Performance evaluation of dif-
ferent implementations of the Lagrangian speckle model estimator for non-invasive
vascular ultrasound elastography, Med. Phys. 35 (2008) 3116–3126.

[25] X. Pan, J. Gao, S. Tao, K. Liu, J. Bai, J. Luo, A two-step optical flow method for
strain estimation in elastography: simulation and phantom study, Ultrasonics 54
(2014) 990–996.

[26] M. Alessandrini, A. Basarab, L. Boussel, X. Guo, A. Serusclat, D. Friboulet,
D. Kouamé, O. Bernard, H. Liebgott, A new technique for the estimation of cardiac
motion in echocardiography based on transverse oscillations: a preliminary eva-
luation in silico and a feasibility demonstration in vivo, IEEE Trans. Med. Imag. 33
(2014) 1148–1162.

[27] J. Porée, D. Garcia, B. Chayer, J. Ohayon, G. Cloutier, Non-invasive vascular elas-
tography with plane strain incompressibility assumption using ultrafast coherent
compound plane wave imaging, IEEE Trans. Med. Imag. 34 (2015) 2618–2631.

[28] A. Basarab, P. Gueth, H. Liebgott, P. Delachartre, Phase-based block matching ap-
plied to motion estimation with unconventional beamforming strategies, IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 56 (2009) 945–957.

[29] A. Basarab, H. Liebgott, P. Delachartre, Analytic estimation of subsample spatial
shift using the phases of multidimensional analytic signals, IEEE Trans. Image
Process 18 (2009) 440–447.

[30] F. Varray, H. Liebgott, Multi-resolution transverse oscillation in ultrasound imaging
for motion estimation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (2013)
1333–1342.

[31] M.A. Lubinski, S.Y. Emelianov, K.R. Raghavan, A.E. Yagle, A.R. Skovoroda,
M. O’Donnell, Lateral displacement estimation using tissue incompressibility, IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 247–256.

[32] E. Konofagou, J. Ophir, A new elastographic method for estimation and imaging of
lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in
tissues, Ultrasound Med. Biol. 24 (1998) 1183–1199.

[33] U. Techavipoo, Q. Chen, T. Varghese, J.A. Zagzebski, Estimation of displacement
vectors and strain tensors in elastography using angular insonifications, IEEE Trans
Med Imag. 23 (2004) 1479–1489.

[34] R. Min, Q. Chen, H. Shi, Spatial-angular compounding for elastography using beam
steering on linear array transducers, Med. Phys. 33 (2007) 618–626.

[35] H.H.G. Hansen, R.G.P. Lopata, C.L. De Korte, Noninvasive carotid strain imaging
using angular compounding at large beam steered angles: Validation in vessel
phantoms, IEEE Trans. Med. Imag. 28 (2009) 872–880.

[36] H.H.G. Hansen, R.G.P. Lopata, T. Idzenga, C.L. de Korte, An angular compounding
technique using displacement projection for noninvasive ultrasound strain imaging
of vessel cross-sections, Ultrasound Med. Biol. 36 (2010) 1947–1956.

[37] S. Korukonda, M.M. Doyley, Estimating axial and lateral strain using a synthetic
aperture elastographic imaging system, Ultrasound Med. Biol. 37 (2011)
1893–1908.

[38] S. Korukonda, R. Nayak, N. Carson, G. Schifitto, V. Dogra, M.M. Doyley,
Noninvasive vascular elastography using plane-wave and sparse-array imaging,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (2013) 332–342.

[39] H.H.G. Hansen, A.E.C.M. Saris, N.R. Vaka, M.M. Nillesen, C.L. de Korte, Ultrafast
vascular strain compounding using plane wave transmission, J. Biomech. 47 (2014)
815–823.

[40] J. Zhao, Y. Wang, X. Zeng, J. Yu, B.Y.S. Yiu, A.C.H. Yu, Plane wave compounding
based on a joint transmitting-receiving adaptive beamformer, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 62 (2015) 1440–1452.

[41] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, M. Fink, Coherent plane-wave
compounding for very high frame rate ultrasonography and transient elastography,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (2009) 489–506.

[42] M.E. Aderson, Multi-dimensional velocity estimation with ultrasound using spatial
quadrature, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (1998) 852–861.

[43] J.A. Jensen, P. Munk, A new method for estimation of velocity vectors, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 45 (1998) 837–851.

[44] J.A. Jensen, A new estimator for vector velocity estimation, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 48 (2001) 886–894.

[45] S. Salles, A.J.Y. Chee, D. Garcia, A.C.H. Yu, D. Vray, H. Liebgott, 2-D arterial wall
motion imaging using ultrafast ultrasound and transverse oscillations, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 62 (2015) 1047–1058.

[46] S. Salles, D. Garcia, B. Bou-saïd, F. Savary, A. Sérusclat, D. Vray, Plane Wave
Transverse Oscillation (PWTO): an ultrafast transverse oscillation imaging mode
performed in the Fourier domain for 2D motion estimation of the carotid artery, in:
IEEE Int. Symp. Biomed. Imaging, 2014, pp. 1409–1412.

[47] H. Liebgott, A. Basarab, P. Gueth, D. Friboulet, P. Delachartre, Transverse oscilla-
tions for tissue motion estimation, Ultrasonics 50 (2010) 548–555.

[48] Index of/ius-special-issue-2014, Creatis.insa-lyon.fr, 2014.< http://www.creatis.
insa-lyon.fr/ius-special-issue-2014/> .

[49] D.R. Nolan, J.P. Mcgarry, On the compressibility of arterial tissue, Ann. Biomed.
Eng. 44 (2016) 993–1007.

[50] R.A. Baldewsing, J.A. Schaar, F. Mastik, C.W.J. Oomens, A.F.W. van der Steen,
Assessment of vulnerable plaque composition by matching the deformation of a
parametric plaque model to measured plaque deformation, IEEE Trans. Med. Imag.
24 (2005) 514–528.

[51] P. Chaturvedi, M.F. Insana, 2-D companding for noise reduction in strain imaging,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (1998) 179–191.

[52] T. Liang, L. Yung, W. Yu, On feature motion decorrelation in ultrasound speckle
tracking, IEEE Trans. Med. Imag. 32 (2013) 435–448.

[53] U. Techavipoo, Q. Chen, T. Varghese, J.A. Zagzebski, E.L. Madsen, Noise reduction
using spatial-angular compounding for elastography, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 51 (2004) 510–520.

[54] S. Le Floc’h, J. Ohayon, P. Tracqui, G. Finet, A.M. Gharib, R.L. Maurice, G. Cloutier,
R.I. Pettigrew, Vulnerable atherosclerotic plaque elasticity reconstruction based on
a segmentation-driven optimization procedure using strain measurements: theore-
tical framework, IEEE Trans. Med. Imag. 28 (2009) 1126–1137.

[55] T.E. Carew, R.N. Vaishnav, D.J. Patel, Compressibility of the arterial wall, Circ. Res.
23 (1968) 61–68.

[56] X.J. Girerd, C. Acar, J.-J. Mourad, P. Boutouyrie, M.E. Safar, S. Laurentt,
Incompressibility of the human arterial wall: an in vitro ultrasound study, J. Hypert.
10 (1992) S111–S114.

[57] A. Karimi, T. Sera, S. Kudo, Experimental verification of the healthy and athero-
sclerotic coronary arteries incompressibility via Digital Image Correlation, Artery
Res. 16 (2016) 1–7.

[58] J. Fromageau, J.L. Gennisson, C. Schmitt, R.L. Maurice, R. Mongrain, G. Cloutier,
Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound

H. Li et al. Ultrasonics 91 (2019) 77–91

90

http://refhub.elsevier.com/S0041-624X(17)31026-0/h0005
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0005
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0005
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0010
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0010
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0010
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0015
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0015
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0015
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0020
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0020
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0020
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0020
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0025
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0025
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0025
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0030
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0030
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0030
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0030
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0035
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0035
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0035
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0040
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0040
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0040
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0045
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0045
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0045
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0050
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0050
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0050
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0055
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0055
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0055
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0060
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0060
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0060
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0065
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0065
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0070
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0070
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0070
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0075
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0075
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0075
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0080
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0080
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0085
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0085
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0085
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0090
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0090
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0090
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0095
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0095
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0100
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0100
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0105
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0105
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0105
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0105
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0110
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0110
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0110
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0115
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0115
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0115
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0120
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0120
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0120
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0125
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0125
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0125
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0130
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0130
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0130
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0130
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0130
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0135
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0135
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0135
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0140
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0140
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0140
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0145
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0145
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0145
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0150
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0150
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0150
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0155
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0155
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0155
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0160
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0160
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0160
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0165
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0165
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0165
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0170
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0170
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0175
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0175
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0175
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0180
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0180
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0180
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0185
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0185
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0185
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0190
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0190
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0190
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0195
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0195
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0195
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0200
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0200
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0200
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0205
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0205
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0205
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0210
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0210
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0215
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0215
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0220
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0220
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0225
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0225
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0225
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0235
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0235
http://www.creatis.insa-lyon.fr/ius-special-issue-2014/
http://www.creatis.insa-lyon.fr/ius-special-issue-2014/
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0245
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0245
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0250
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0250
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0250
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0250
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0255
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0255
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0260
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0260
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0265
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0265
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0265
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0270
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0270
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0270
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0270
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0275
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0275
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0280
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0280
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0280
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0285
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0285
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0285
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0290
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0290


elastography methods and comparison with gold standard testings, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 54 (2007) 498–508.

[59] C.D. Meinhart, S.T. Wereley, J.G. Santiago, A PIV algorithm for estimating time-
averaged velocity fields, J. Fluids Eng. 122 (2000) 285–289.

[60] P.W. Holland, R.E. Welsch, Robust regression using iteratively reweighted least-
squares, Commun. Stat. Methods 6 (1977) 813–827.

[61] J. Porée, B. Chayer, G. Soulez, J. Ohayon, G. Cloutier, Noninvasive vascular mod-
ulography method for imaging the local elasticity of atherosclerotic plaques: si-
mulation and in vitro vessel phantom study, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 64 (2017) 1805–1817.

[62] A.C. Akyildiz, L. Speelman, F.J.H. Gijsen, Mechanical properties of human athero-
sclerotic intima tissue, J. Biomech. 47 (2014) 773–783.

[63] G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, R.T. Lee, Distribution of cir-
cumferential stress in ruptured and stable atherosclerotic lesions. A structural
analysis with histopathological correlation, Circulation 87 (1993) 1179–1187.

[64] G. Finet, J. Ohayon, G. Rioufol, Biomechanical interaction between cap thickness,
lipid core composition and blood pressure in vulnerable coronary plaque: impact on
stability or instability, Coron. Artery Dis. 15 (2004) 13–20.

[65] A. Bouvier, F. Deleaval, M.M. Doyley, S.K. Yazdani, G. Finet, S. Le Floc’h,
G. Cloutier, R.I. Pettigrew, J. Ohayon, A direct vulnerable atherosclerotic plaque
elasticity reconstruction method based on an original material-finite element for-
mulation: theoretical framework, Phys. Med. Biol. 58 (2013) 8457–8476.

[66] A. Tacheau, S. Le Floc’h, G. Finet, M.M. Doyley, R.I. Pettigrew, G. Cloutier,
J. Ohayon, The imaging modulography technique revisited for high-definition in-
travascular ultrasound: theoretical framework, Ultrasound Med. Biol. 42 (2016)
727–741.

[67] J.A. Jensen, Field: A program for simulating ultrasound systems, Med. Biol. Eng.
Comput. 34 (1996) 351–353.

[68] R.F. Wagner, S.W. Smith, J.M. Sandrik, H. Lopez, Statistics of speckle in ultrasound

B-Scans, IEEE Trans. Sonics Ultrason. 30 (1983) 156–163.
[69] G.T. Mase, G.E. Mase, Continuum Mechanics for Engineers, 1992.
[70] B.M. Shapo, J.R. Crowe, A.R. Skovoroda, M.J. Eberle, N.A. Cohn, M. O’Donnell,

Displacement and strain imaging of coronary arteries with intraluminal ultrasound,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 234–246.

[71] S. Salles, H. Liebgott, D. Garcia, D. Vray, Full 3-D transverse oscillations: a method
for tissue motion estimation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62
(2015) 1473–1485.

[72] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning, Elements
1 (2009) 337–387.

[73] C. Ferm, D. Shulman, Y. Aloimonos, The statistics of optical flow, Comput. Vis.
Image Underst. 82 (2001) 1–32.

[74] B. Byram, S. Member, G.E. Trahey, M. Palmeri, Bayesian speckle tracking. Part II:
biased ultrasound displacement estimation, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 60 (2013) 144–157.

[75] Z. Corbyn, Stroke: a growing global burden, Nature 510 (2014) 5–6.
[76] J. Blacher, B. Pannier, A.P. Guerin, S.J. Marchais, M.E. Safar, G.M. London, Carotid

arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-
stage renal disease, Hypertension 32 (1998) 570–574.

[77] L. Cardoso, S. Weinbaum, Changing views of the biomechanics of vulnerable plaque
rupture: a review, Ann. Biomed. Eng. 42 (2014) 415–431.

[78] J. Capon, High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE 57
(1969) 1408–1418.

[79] N. Bottenus, G.E. Trahey, Evaluation of the transverse oscillation method using the
Cramer-Rao Lower Bound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62
(2015) 1–16.

[80] B. Heyde, N. Bottenus, D. Jan, G.E. Trahey, Evaluation of the transverse oscillation
technique for cardiac phased array imaging: a theoretical study, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 64 (2017) 320–334.

H. Li et al. Ultrasonics 91 (2019) 77–91

91

http://refhub.elsevier.com/S0041-624X(17)31026-0/h0290
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0290
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0295
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0295
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0300
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0300
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0305
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0305
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0305
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0305
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0310
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0310
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0315
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0315
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0315
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0320
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0320
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0320
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0325
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0325
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0325
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0325
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0330
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0330
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0330
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0330
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0335
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0335
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0340
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0340
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0350
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0350
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0350
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0355
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0355
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0355
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0360
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0360
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0365
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0365
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0370
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0370
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0370
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0375
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0380
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0380
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0380
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0385
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0385
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0390
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0390
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0395
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0395
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0395
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0400
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0400
http://refhub.elsevier.com/S0041-624X(17)31026-0/h0400

	Two-dimensional affine model-based estimators for principal strain vascular ultrasound elastography with compound plane wave and transverse oscillation beamforming
	Introduction
	Theory
	Image formation
	Coherent plane wave compounding beamforming
	Filtering-based TO beamforming using CPWC images

	Elastography estimator description
	Optical flow based Lagrangian speckle model estimator
	Affine phase based estimator
	Time-ensemble approach
	Incompressibility constraint for the affine models

	Implementation of elastography estimators and evaluation scheme

	Materials and methods
	Simulation of a heterogeneous image sequence
	Finite element model
	Acoustic models

	In vitro experiment description
	Phantom fabrication
	Experimental setup
	Ultrasound data acquisition

	The choice of TO filtering parameters
	Data analysis
	Principal strain
	Elastogram evaluation


	Results
	Optimal TO filtering parameters
	The heterogeneous vessel simulation study
	In vitro experiments
	The homogeneous vascular phantom study
	The heterogeneous phantom study


	Discussion
	Influence of TO filtering on the quality of CPWC images
	Influence of the affine model on the APBE
	Bias and variance of the two strain estimators
	Clinical value of this work
	Limitations and perspectives

	Conclusion
	Acknowledgments
	mk:H1_38
	Impact of heterodyning demodulation on strain performance of the APBE

	References




