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Abstract--In the present study, a computer processing method was developed to objectively classify disease in the 
lower limb arteries evaluated by noninvasive ultrasonic duplex scanning. This method analyzes Doppler blood flow 
signals, extracts diagnostic features from Doppler spectrograms and classifies the severity of the disease into 
three categories of diameter reduction (0-19%, 20-49% and 50-99%). The features investigated were based on 
frequency features obtained at peak systole, spectral broadening indices and normalized amplitudes of the power 
spectrogram computed in various positive and negative frequency bands. A total of 379 arterial segments studied 
from the aorta to the popliteal artery were classified using a pattern recognition method based on the Bayes model. 
Two classification schemes using a two-node decision rule were tested. Both schemes gave similar results, the first 
one provided an overall accuracy of 83% (Kappa = 0.42) and the second an overall accuracy of 81% (Kappa = 0.35) 
when compared with conventional biplane contrast arteriography. These performances, especially for the 0 to 19% 
lesion category, are better than the one obtained by the technologist (accuracy = 76% and Kappa = 0.33), based on 
visual interpretation of the Doppler spectrograms. To recognize hemodynamically significant stenoses (50-99% 
lesions), the pattern recognition system has a sensitivity and a specificity of 50% and 99%, respectively, using 
classification scheme I. With classification scheme II, the sensitivity and the specificity are 50% and 98%, 
respectively. Visual interpretation of the Doppler spectrograms leads to a sensitivity and a specificity of 50% and 
98%, respectively. These results are the first to be obtained by a pattern recognition system in classifying lower 
limb arterial stenoses. 

Key Words: Ultrasound, Doppler techniques, Atherosclerosis, Peripheral artery disease, Spectral analysis, Fre- 
quency contour estimation, Pattern recognition. 

INTRODUCTION 

The ultrasonic duplex scanner, which combines real- 
time B-mode imaging and pulsed Doppler blood flow 
recording systems, has allowed important progress in 
the detection of arterial disease (Strandness 1985). 
However, assessment of lower limb arterial stenoses 
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The signal processing software package (excluding the pattern 
recognition software) is available. It is written in C language and 
run on a compatible IBM-386 system having at least 1 Mbyte of 
extended memory. A small charge might be incurred to cover the 
cost of the computer diskettes and expedition. 

using duplex scanning has been mainly performed by 
visual interpretation of the pulsed Doppler blood flow 
spectra (Langsfeld et al. 1988; Kohler et al. 1987a; 
Jager et al. 1985; Walton et al. 1984). The results re- 
ported by these groups for detecting greater than 50% 
diameter reducing lesions yielded a sensitivity varying 
between 77% and 87% and a specificity varying be- 
tween 88% and 93%. Although accurate for detecting 
severe stenoses, the approach proposed by these in- 
vestigators showed poor performance (percentage of 
correct classification varying between 35% and 76%) 
in classifying arterial disease in a multiclass decision 
level. The use of a more quantitative and objective 
approach to analyze the Doppler velocity waveforms 
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and to classify the degree of stenosis is thus highly 
desirable. 

The computer analysis of Doppler blood flow 
signals requires efficient and robust algorithms to per- 
form arterial stenosis classification. A critical prob- 
lem with Doppler blood flow digital signal processing 
is to estimate the minimum and maximum frequency 
contours of the spectrograms. This estimation consti- 
tutes a preliminary step because extraction of the dis- 
criminant features is performed only within the area 
delimited by the frequency contours. Using the ensem- 
ble ofdiscriminant features selected, a pattern recogni- 
tion system must then be designed to classify Doppler 
blood flow signals according to the percentage of ste- 
nosis. Such an approach has proved to be very accu- 
rate in the classification of disease at the carotid bifur- 
cation (Langlois et al. 1984; Greene et al. 1982). 

Different computer-based algorithms have been 
proposed to estimate frequency contours of Doppler 
spectrograms. Some of the proposed methods use fre- 
quency bandwidths estimated at levels varying from 
- 3  to - 1 2  dB below the mode of  each spectrum 
(Hutchison and Karpinski 1988; Rittgers et al. 1983; 
Greene et al. 1982). Using cardiac Doppler signals, 
Cloutier et al. (1989) have demonstrated that mini- 
mum and maximum frequency contours allow ex- 
traction of spectral features with better discriminating 
power than those extracted from the frequency band- 
width contours. The general approach to determine 
minimum and maximum frequency contours is to es- 
timate the background noise level and compute a 
threshold level allowing an optimal discrimination be- 
tween signal and noise. Recently, Mo et al. (1988) 
have evaluated the performance of  the following 
methods on a simulated carotid spectrogram: the per- 
centile method, the D'Alessio's threshold crossing 
method, the modified threshold crossing method and 
the hybrid method. Cloutier et al. (1990) improved 
some of these algorithms and evaluated them on clini- 
cal cardiac Doppler signals. However, the main prob- 
lem with these algorithms is the use of a threshold 
level whose value is not adapted to the characteristics 
and amplitude of the Doppler blood flow signals. 
Since the latter greatly vary from one patient to an- 
other and from one sample site to another, the estima- 
tion of the frequency contours is not always optimal. 
To take these variations into account, an iterative ap- 
proach based on a modified percentile method is pre- 
sented in this paper. 

Another difficulty encountered in the quantita- 
tive analysis of Doppler waveforms is the extraction 
of features having a high discriminant value. Before 
the introduction of duplex scanning, features ex- 
tracted from the common femoral artery were used to 

evaluate stenoses of the aortoiliac segment. The spec- 
tral features used in such an approach were based on 
the evaluation of the pulsatility index (Johnston et al. 
1983; Gosling et al. 1971) and the Laplace transform 
coefficients (Skidmore and Woodcock 1980a, 1980b). 
These features have not achieved widespread use or 
acceptance since they are affected by distal stenoses or 
constitute poor predictors of  lower grade stenoses 
(Reddy et al. 1986; Baker et al. 1984; Evans et al. 
1980; Skidmore et al. 1980c). Moreover, both features 
are inappropriate for detecting distal disease in the 
femoropopliteal segment (Baker et al. 1989; Johnston 
et al. 1984). The duplex scanner has the advantage of 
allowing acquisition of Doppler signals at various 
sites from the aorta down to the popliteal artery. This 
was demonstrated by Jager et al. (1985) who defined 
and used some visual criteria based on peak systolic 
velocity, diastolic reverse flow and spectral broaden- 
ing indices to assess the severity of peripheral arterial 
disease. Using duplex scanning and a more quantita- 
tive approach of analysis, it is expected that more reli- 
able and consistent results could be obtained. 

The purpose of this paper is to describe a comput- 
erized method based on spectral analysis and pattern 
recognition of Doppler blood flow signals for objec- 
tive and accurate classification of lower limb arterial 
stenoses. The classifier was designed to categorize arte- 
rial stenoses into three classes: 0 to 19%, 20 to 49% 
and 50 to 99% diameter reducing lesions. All arterial 
segments studied from the aorta down to the popliteal 
artery were classified using the same classifier. Results 
obtained from the evaluation of a total of 379 arterial 
segments are presented. The performance of the pat- 
tern recognition method was compared to the classifi- 
cation of disease obtained by conventional biplane 
contrast angiograms read independently by an experi- 
enced angioradiologist. 

MATERIALS AND METHODS 

Patient selection and data acquisition 
Subjects for this study were recruited among pa- 

tients referred to the Hrtel-Dieu de Montrral Hospi- 
tal for arteriographic examination of the lower limb 
arteries. All patients scheduled for arteriography gave 
informed consent as required by the Ethic Committee 
of Hftel-Dieu de Montrral Hospital. Only patients 
for which the arteriographic examination was per- 
formed within 3 months of the Doppler examination 
were included. Doppler studies were performed with 
an Ultramark 8 Duplex scanner (Advanced Technol- 
ogy Laboratories) modified to allow the recording of 
the two quadrature Doppler signals on a four-channel 
audio tape recorder (TASCAM 22-4) for off-line anal- 
ysis. These signals correspond to the inputs of  the 
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phase shifter whose outputs are the forward and re- 
verse flow channels. The ECG signal was also re- 
corded on a FM-carrier signal and used to detect the 
beginning of each cardiac cycle. Voice comments in- 
dicating the patient's name and the sites analyzed 
were recorded on the fourth channel. 

The arterial segments examined in each limb 
were: the distal aorta, the common and external iliac 
arteries, the common and profunda femoral arteries, 
the superficial femoral artery, and the popliteal artery. 
A mechanically oscillating probe, operating at 5 
MHz, was used for all Doppler recordings. The sam- 
ple volume was placed in the centerstream of the ar- 
tery where flow velocities are maximal. According to 
the manufacturer's specifications, the sample volume 
used for all recordings had a length of 1.5 mm in the 
direction of the axial beam, which is much smaller 
than the diameter of the arterial segments studied. For 
each segment analyzed, Doppler blood flow signals 
were recorded for a period of approximately 20 s. Seg- 
ments were initially probed to assess the presence or 
absence of disease. Representative signals from all 
segments were recorded at midcourse of the segment 
if normal or at the site of most severe disease. The 
latter was identified by the technologist at the site of 
maximal flow disturbances, spectral broadening or in- 
creased Doppler frequencies. In order to standardize 
the recordings, the patients were asked to rest supine 
at least 30 rain in a controlled temperature environ- 
ment (21-23°C). The high-pass filter used to remove 
noise attributable to motion effects was set at 100 Hz. 
Since the duplex scanner can only determine the an- 
gle between the sound beam and the vessel axis and 
since arterial blood flow is not always parallel to the 
axis of the artery, we felt that it was essential to stan- 
dardize the recordings by performing them at a con- 
stant angle between transducer and blood vessel axis 
(Beach et al. 1989; Phillips et al. 1989). For that rea- 
son, we maintained a standard angle as close as possi- 
ble to 60 degrees between the Doppler beam and 
blood vessel axis for all recordings. 

The Doppler signal processing was performed on 
a 16 MHz IBM-PC/386 compatible personal com- 
puter. During tape playback, ECG and Doppler sig- 
nals were digitized with a 12-bit analog-to-digital (A/ 
D) converter at sampling rates of 2 kHz and 20 kHz, 
respectively. Before digitization, Doppler signals were 
low-pass filtered at 9 kHz with eight-order Butter- 
worth filters (-48 dB/octave) to prevent frequency 
aliasing. The cut-off frequency of 9 kHz was always 
greater than the PRF/2 used by the Doppler system, 
where PRF is the Pulse Repetition Frequency. During 
conversion, the use of sample and hold circuits simul- 
taneously switched on assured that the phase relation- 

ship between the quadrature Doppler signals was 
maintained. During Doppler signal acquisition, an al- 
gorithm for QRS detection was used to locate the be- 
ginning of each cardiac cycle and synchronize the 
analysis of the Doppler signals. The mean heart rate 
was also computed and used to reject all beats with an 
interval differing by more than 10% from the mean 
heart rate duration. 

A Hanning window of l0 ms was applied to the 
Doppler signals and the Fast-Fourier Transform 
(FFT) algorithm used to compute a 256-sample 
power spectrum. By sliding the Hanning window over 
a period of 700 ms after the R-wave of the ECG with 
an increment of 5 ms between FFT computations, a 
Doppler spectrogram composed of 140 power spectra 
was produced. Finally, a mean power spectrogram 
was obtained by averaging, in synchronization with 
the R-wave of the ECG, 5 power spectrograms from a 
series of cardiac cycles. A typical mean power spectro- 
gram of a normal patient is presented in Fig. 1. 

M i n i m u m  and m a x im u m  frequency contour estima- 
tion 

The minimum (Fmin) and maximum (Fmax) 
frequency contours of the mean spectrogram were es- 
timated using a percentile method (Mo et al. 1988). 
Based on this method, Fmin and Fmax were defined 
respectively as frequencies where 10% and 90% of the 
integrated Doppler power spectrum was found. Since 
the percentile method is not adaptive to the noise 
level and signal bandwidth, it was applied only to 
spectra containing significant blood flow signal. On 
spectra containing pure noise, Fmin and Fmax were 
both set to the wall filter frequency (100 Hz). To de- 
termine which spectra of the spectrogram contain 
blood flow signal and which contain only pure noise, 
an objective and adaptive algorithm ("signal vs. 
noise" decision) was developed. 

The adaptive algorithm was based on the fact 
that a spectrogram could be treated as an image on 
which a bidirectional threshold could be applied. The 
optimal values of the threshold were obtained by an 
iterative evaluation of the variability of the maximum 
frequency contour. The first step of the algorithm was 
the estimation of the background noise level of each 
spectrum and of the whole spectrogram, noted No and 
Nt, respectively. The mean amplitude of each power 
spectrum noted So was also computed. The value of 
N o was obtained for each positive frequency spectrum 
(forward blood flow) by averaging the amplitude of 
the samples located at PRF/2 and PRF/2 minus one 
sample. For negative frequency spectra (reverse blood 
flow), samples located at -PRF/2  and -PRF/2 plus 
one sample were used. The value of Nt was obtained 
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Fig. 1. Typical mean power spectrogram of a normal patient. The negative frequencies are associated with the 
reverse blood flow while the positive frequencies are associated with the forward blood flow. 

by averaging the amplitude of the samples of all 140 
spectra of the spectrogram located at _+PRF/2 and 
_ (PRF/2 - l ) .  These frequency samples were also 
used to compute the coefficient of variation of the 
statistical distribution of the background noise. This 
statistical descriptor was obtained by dividing the 
standard deviation (a) by the mean value of the back- 
ground noise level of the spectrogram (Nt). 

To assume that a given power spectrum con- 
tained significant Doppler blood flow signal, that 
spectrum had to fulfill one of the two following condi- 
tions: (1) its mean amplitude So had to be greater than 
some multiple of the mean background noise of the 
spectrogram Nt or (2) its background noise No had to 
be greater than some multiple of Art. The first condi- 
tion is associated with the signal-to-noise ratio of the 
power spectrum. The second is used to detect spec- 
trum characterized by frequency aliasing. The occur- 
rence of frequency aliasing means that significant 
Doppler blood flow is present. Defining W~ and W n as 
two threshold parameters, the bidirectional threshold 
algorithm can be expressed as: 
if 

(So > W~N,) 

or if 

(No > W.N,), 

then the spectrum contains blood flow signal; else the 
spectrum is mainly composed of noise. 

In order to objectively determine which values of 
W~ and W n lead to optimal signal detection, the vari- 
ability of the maximum frequency contour of the 

Doppler spectrogram was evaluated with different val- 
ues of Ws and Wn. The optimal values of W~ and Wn 
were obtained when the variability of the maximum 
frequency contour reached a minimum. As demon- 
strated by Cloutier et al. (1990), optimal signal detec- 
tion is obtained when the maximum frequency con- 
tour of the spectrogram shows minimum variability. 
The evaluation of the variability of the maximum fre- 
quency contour was limited to the positive compo- 
nent of the spectrogram since the negative compo- 
nent containing valuable information is found only in 
normal arteries or those with mild and moderate ste- 
noses. Using FFT, an index of variability named 
IVAR (Cloutier et al. 1990) describing the variability 
of the maximum frequency contour was computed 
according to the following eqn: 

E X(i) 
IVAR = 100 × 

E X(j) 
J 

NFFT/4 < i < NFFT/2 

0 < j -< NFFT/2 

(l) 

where X(i) and X(j) denote the amplitudes of the 
FFT coefficients and NFFF, the number of samples 
(after zero-padding) of the maximum frequency con- 
tour, chosen to be equal to 256. In order to eliminate 
the indetermination when frequency contours were 
represented by a constant value, the value of IVAR 
for these specific cases was set to 100. 

The same optimal values of Ws and W, that were 
used for the positive component of the spectrogram 
were also used for the negative one. However, since 
reverse flow, when present, occurs only during dias- 
tole, the application of the "signal vs. noise" decision 
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algorithm was limited to that specific interval. The 
diastolic interval was defined as the interval following 
the peak systole and beginning at the time where the 
maximum positive frequency reaches the wall filter 
value. The end of the diastolic interval coincides with 
the end of the portion of the cardiac cycle analyzed 
(700 ms after the R-wave of the ECG). Before the 
diastolic interval, Fmin and Fmax of the negative 
component of the spectrogram were set to the wall 
filter frequency. 

Feature extraction 
A total of 19 raw diagnostic features were ex- 

tracted from the negative (reverse flow) and positive 
(forward flow) components of  the mean Doppler 
spectrogram of each patient. All features were ex- 
tracted within the spectral envelope delimited by the 
minimum and maximum frequency contours. Since 
some features were related to the amplitude distribu- 
tions, the amplitude of all samples located outside the 
spectral envelope was set to zero. 

A description of all the features extracted from 
the mean spectrograms is given in Table 1. MXFS, 
MEFS, and MNFS are respectively the maximum, 
mean and minimum frequencies at peak systole. 
MXFD is the maximum negative frequency during 
diastole. SEAP and SEAN are, respectively, the spec- 
tral envelope area (Cannon et al. 1982) of the positive 
and negative frequencies. These features (expressed in 
kHz-s) are defined as the area of the positive and nega- 
tive mean spectrograms delimited by the minimum 
and maximum frequency contours. AVGMXF is the 
time-averaged frequency of  the maximum positive 
frequency contour. SBI is the spectral broadening in- 
dex (Kassam et al. 1982) at peak systole. CV is the 
coefficient of variation of the frequency distribution 
at peak systole (Kalman et al. 1985). The l0 following 
features in Table l are associated with the amplitude 
of the power spectrogram within various (positive and 
negative) frequency bands. Since the amplitude of the 
Doppler blood flow signals may be attenuated in dif- 
ferent ways from one patient to another and from one 
site to another, normalized amplitudes of the power 
spectrogram should be considered. The latter were 
computed as follows: 

l T j 

Ais= 1 r F 
- -  ~ Z X ( t , f )  
NWF t=O f=w 

where A o represents the normalized amplitude of the 
power spectrogram within the i to j frequency band, 
X(t, f )  the amplitude of the power spectrogram at 
time t and at frequency f N o and NWF the number of 

Table 1. Description of the diagnostic features. 

Features Description 

Frequency Features: 

MXFS: 

MEFS: 

MNFS: 

MXFD: 

SEAP: 

SEAN: 

AVGMXF: 

SBI: 
CV: 

maximum positive frequency @ peak systole 
(kHz) 

mean positive frequency @ peak systole 
(kHz) 

minumum positive frequency @ peak 
systole (kHz) 

maximum negative frequency @ diastole 
(kHz) 

spectral envelope area of the positive 
frequencies (kHz-s) 

spectral envelope area of the negative 
frequencies (kHz-s) 

time-averaged frequency of the maximum 
positive frequencies (kHz) 

spectral broadening index @ peak systole 
coefficient of variation of the frequency 

distribution @ peak systole 

Amplitude Features: 

A1213: 

A1333: 

A3353: 

A5383: 

A1223: 

A2343: 

A4383: 

B1252: 

BI213: 

B1223: 

normalized amplitude in the 100-1000 Hz 
positive frequency band* 

normalized amplitude in the 1000-3000 Hz 
positive frequency band* 

normalized amplitude in the 3000-5000 Hz 
positive frequency band* 

normalized amplitude in the 5000-8000 Hz 
positive frequency band* 

normalized amplitude in the 100-2000 Hz 
positive frequency band* 

normalized amplitude in the 2000-4000 Hz 
positive frequency band* 

normalized amplitude in the 4000-8000 Hz 
positive frequency band* 

normalized amplitude in the 100-500 Hz 
negative frequency band* 

normalized amplitude in the 100-1000 Hz 
negative frequency band* 

normalized amplitude in the 100-2000 Hz 
negative frequency band* 

* These frequency band values are those before frequency sca- 
ling. 

samples having a nonzero amplitude and included in 
the i to j and in the W to F frequency band, respec- 
tively. Parameter W is the wall filter frequency (100 
Hz) and parameter F is the sampling rate (20 kHz) 
divided by two. Tis the duration of the portion of the 
cardiac cycle analyzed (700 ms). The frequency bands 
considered included the following frequencies: 100, 
500, 1000, 2000, 3000, 4000, 5000 and 8000 Hz. As 
explained in the next section, the frequency bands 
delimited by these frequencies were scaled according 
to the site investigated in order to compensate blood 
flow velocity variations from site to site. 

Frequency band and frequency feature scaling 
It is well known that, in healthy subjects, blood 

flow velocity varies significantly from the aorta to the 
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popliteal artery (Jager et al. 1985). These velocity vari- 
ations require the design of a specific classifier for 
each arterial segment in order to optimize the perfor- 
mance of the pattern recognition system. The disad- 
vantage of this approach, however, is that the total 
population size is subdivided into smaller subgroups 
which will inevitably reduce the reliability of the pat- 
tern recognition system. Until a much larger training 
set is accumulated in each segment, it was decided to 
compensate the velocity variations from site to site by 
using a frequency scaling factor to design a single clas- 
sifier for all the segments investigated. A frequency 
scaling factor was defined for each site and applied to 
all features which were frequency-dependent regard- 
less of the presence of stenoses on the artery investi- 
gated. The frequency scaling factors were defined so 
that, at each site, the mean value of the maximal fre- 
quency at peak systole for all normal (0% diameter 
reduction) arteries became identical. 

The following procedure was used to compute 
the different values of the frequency scaling factor. In 
a preliminary step, the maximum frequency at peak 
systole MXFS of each normal artery was determined 
from the maximum frequency contours. For each site 
number "i" described in Table 2, a mean maximum 
frequency at peak systole MMXFS[i] was computed 
by averaging the corresponding MXFS values of all 
normal arteries. The MMXFS[i] values were then 
used to calculate a frequency scaling coefficient 
FSC[i] according to the following eqn: 

FSC[i] = MMXFS[S]/MMXFS[i] (3) 

where MMXFS[S] is the smallest value among all the 
MMXFS[i] values. This means that the FSC[S] is 
equal to 1 since the MMXFS[S] was arbitrarily cho- 
sen as reference to define the FSC[i] values. All fre- 
quency features of Table l, except SBI and CV which 
are frequency ratio, were scaled by multiplying them 
by their corresponding frequency scaling factors. The 
frequency bands within which the normalized ampli- 

Table 2. Mean maximum frequency at peak systole 
(MMXFS[i]) of 273 normal segments and frequency 

scaling coefficients (FSC[i]) used for 
frequency scaling of features. 

Arterial segment i N MMXFS[i] (kHz) FSC[i] 

Aorta 1 25 1419 1.00 
Common iliac 2 34 2192 0.65 
External iliac 3 40 2246 0.63 
Common femoral 4 51 3119 0.45 
Profunda femoral 5 49 2358 0.60 
Superficial femoral 6 23 2486 0.57 
Popliteal 7 50 1546 0.92 

Ist node 

2nd node 

Duplex study 
& 

Pattern recognition system 

N=288 ] N=91 

N=55 N=36 

0% - 19% 20% - 49% 50% - 99% 

Fig. 2. Classification scheme I. At the first node, the algo- 
rithm separated normal and mildly diseased vessels (0-19%) 
from those with moderate and severe disease (20-99%) and, 
at the second node, it separated moderate (20-49%) from 

severe (50%-99%) stenoses. 

tude features were computed, as listed in Table l, 
were also scaled. 

Classifier design and evaluation 
The computerized classification of arterial steno- 

ses into two or more classes can be achieved by using a 
computer-based pattern recognition approach. 
Various techniques for designing and evaluating a 
pattern recognition system have been described in the 
literature (Jain 1987; Tou and Gonzalez 1974; Tous- 
saint 1974). A classifier using a three-class supervised 
learning algorithm based on the Bayes' rule was devel- 
oped for the present study. A similar classifier has al- 
ready been used in our laboratory for the classifica- 
tion of bioprosthetic heart valve degeneration (Du- 
rand et al. 1990). The Bayes classifier is one of the 
most popular parametric approaches and also an opti- 
mal one when the probability density function of the 
patterns (ensemble of features) is known and belongs 
to a parametric family. In the present study, we as- 
sumed that the probability density function of the 
patterns was Gaussian. 

The pattern recognition system was designed to 
classify stenoses of the lower limb arteries into three 
categories: 0 to 19% diameter reduction, 20 to 49% 
diameter reduction and 50 to 99% diameter reduc- 
tion. Two classification schemes using a two-node de- 
cision rule were tested as shown in Figs. 2 and 3. The 
first scheme was designed to separate, at the first node, 
normal and mildly diseased vessels (0-19%) from 
those with moderate and severe disease (20-99%), 
and, at a second node, to separate moderate (20-49%) 
from severe (50-99%) stenoses. The second scheme 
was designed to separate, at the first node, nonhemo- 
dynamically significant (0-49%) from hemodynami- 
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ist node 

2nd node 
N=288 

Duplex study 
& 

Pattern recognition system 

N:343 l N=36 

N=55 

0% - 19% 20% - 49Z 50% - 99X 

Fig. 3. Classification scheme II. At the first node, the algo- 
rithm separated nonhemodynamically significant (0-49%) 
from hemodynamically significant (50-99%) stenoses and, 
at the second node, it separated normal and mildly diseased 
vessels (0-19%) from those with moderate disease (20- 

49%). 

cally significant (50-99%) stenoses and, at the second 
node, normal and mildly diseased vessels (0-19%) 
from those with moderate disease (20-49%). 

All features described in Table 1 were considered 
to have potential discriminant power. However, only 
subsets of this ensemble of features were tested in 
order to maintain a ratio of the sample size per class to 
the feature size (N/L) greater than 5. This minimum 
ratio has been recommended in the past to minimize 
the risk of overestimating the real performance of the 
classifier (Foley 1972; Trunk 1979; Kalayeh and 
Landgrebe 1983; Jain 1987). The approach used in 
the present study to determine which feature subset 
gave the best results was to test, at each node, all possi- 
ble feature subsets of size p varying between one and 
N/5, where N was the smallest training sample size in 
a class for a specific node. The algorithm used to de- 
sign the pattern recognition system ran on a SUN-4 
computer. 

Conventional biplane contrast angiographic stud- 
ies, used as a gold standard reference, were performed 
on all patients to evaluate the performance of the clas- 
sifiers. Each angiographic film was read by an experi- 
enced angioradiologist, and the degree of maximum 
arterial stenosis in each separate segment was assessed 
by caliper measurements of the arteriograms. Neither 
the angioradiologist nor the technologist performing 
the noninvasive studies were aware of each other's 
results. 

The performance of the classifier to discriminate 
between the predefined categories of disease was evalu- 
ated with the leave-one-out method (Toussaint 1974). 
In this iterative method, the training set is composed 
of the complete population minus one sample while 
the test set is formed by the excluded sample. At each 

iteration, a new sample is used to form the test set. 
When each sample has been classified, the perfor- 
mance of the classifier is evaluated by expressing, in 
percentage, the number of correct classifications 
(CC). Sensitivity (SE), specificity (SP), positive pre- 
dictive value (PPV) and negative predictive value 
(NPV) were also computed (Feinstein 1977). Al- 
though it requires a larger amount of computation 
time, the leave-one-out method was used because it is 
characterized by a small bias (Toussaint 1974). Fi- 
nally, to take into account the fact that the disease 
distribution was not homogeneous, we computed the 
Kappa statistic, a chance-corrected measure of agree- 
ment between two observations (Cohen 1960). 

RESULTS 

In this study, 37 patients with a mean age of 58 
_+ 15 years (range of 21 to 79 years) were evaluated by 
ultrasonic duplex scanning and arteriography. This 
population provided a total of 481 lower limb arterial 
segments available for study. A total of 102 segments 
were not included in the computer analysis for the 
following reasons: (1) 10 segments could not be stud- 
ied by angiography, (2) 6 segments (1 side) could not 
be used due to prior bypass graft surgery, (3) 11 seg- 
ments could not be digitized because of electronic fail- 
ure of the ECG recording system, (4) 6 segments were 
not analyzed because of cardiac arrythmias, (5) 27 
segments were not adequately recorded by the technol- 
ogist, (6) 16 (primitive or external) iliac segments were 
missing because initially the protocol for data acquisi- 
tion included only one recording for this segment, 
and (7) 24 segments were occluded (no Doppler sig- 
nals) according to the technologist. The occlusions 
diagnosed in 22 segments by arteriography were recog- 
nized by the noninvasive technologist in 95% (21/22) 
of the cases and only 3 of the 382 patent segments 
(0.8%) were wrongly classified as occlusions (Table 3). 

Among the 379 segments available for the com- 
puter analysis, 288 (76%) presented a 0 to 19% diame- 

Table 3. Comparison of angiography to duplex scanning 
(visual interpretation) in detecting arterial occlusions. 

Duplex classification 

0%-99% 100% Total 

0%-99% 379 3 382 
~ 100% 1 21 22 

= Tota l  380 24 404 < 

Accuracy  = 99%; sens i t iv i ty  = 95%; specifici ty = 99%; pos i t ive  
pred ic t ive  value  = 88%; negat ive  pred ic t ive  value  = 100%. 
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ter reduction (51 were from young presumed normal 
volunteers which were not subjected to arteriography, 
mean age = 25), 55 (15%) segments had a 20 to 49% 
lesion, and 36 (9%) had a 50 to 99% lesion. Among the 
latter, 23 are associated with the presence of severe 
disease (50-100%) in other adjacent (proximal and/or 
distal) segments. 

Table 2 shows the mean maximum frequency at 
peak systole for each group of normal arteries as de- 
termined from the maximum frequency contours. 
The frequency scaling coefficient for each site is also 
presented. As shown in Table 2, the aorta has a fre- 
quency scaling coefficient of I while the common fem- 
oral has a FSC of only 0.45 since the greatest velocities 
are found in this site. This means that frequency-de- 
pendent features and frequency bands of amplitude 
features extracted from the aorta were unscaled while 
those extracted from the common femoral were 
scaled by a factor of 0.45. 

For the 379 arterial segments included in this 
study, the mean value of the coefficient of variation of 
the statistical distribution of the background noise 
was 2.65 + 1.55 (range of 0.46 to 8.86). This large 
mean value indicates that the amplitude of the sam- 
ples located close to _+PRF/2 varies greatly within a 
given spectrogram. Moreover, the coefficient of varia- 
tion (CV) also greatly varies from one spectrogram to 
another, as indicated by the large standard deviation 
of 1.55. According to the definition of CV described 
earlier, this statistical parameter represents a normal- 
ized measure of the spread of the distribution of the 
amplitude of the background noise No around its 
mean value Nr Since the CV has a large mean value 
(2.65), this means that the value of the standard devia- 
tion of the No values is greater than Nt. As a result, the 
shape of  the distribution of the No values around N t 

has an asymmetric tail extending out towards larger 
No values. This could be explained in some situations 
by the occurrence of frequency aliasing since, in these 
cases, frequency samples located at PRF/2 are asso- 
ciated with blood flow. 

These statistical considerations were used to set 
the boundaries of the IV, threshold, which detected 
spectra characterized by frequency aliasing. It was de- 
cided that if the N O value of a spectrum satisfied the 
following eqn: 

N ° > C V +  1, (4) 
Nt 

then it could contain significant Doppler blood flow 
components. In order to cover the wide range of CV 
+ l observed in this analysis (1.46-9.86) and in fur- 
ther analysis, the minimum and maximum values of 

Wn were set respectively to 1.5 and 12. The boundary 
values of the W s threshold were set using the signal-to- 
noise ratio expected with commercial Doppler sys- 
tems (range of about 10 to 23 dB or 10 to 200 in linear 
scale). The visual inspection of the frequency con- 
tours of the spectrograms has shown that five values 
of W, (1.5, 3, 6, 9 and 12) and five values of Ws (10, 
20, 40, 100 and 200) were necessary to cover the dif- 
ferent Doppler signal characteristics. 

To determine which bidirectional threshold val- 
ues lead to optimal signal detection, IVAR of the 
maximum frequency contour of 379 Doppler spec- 
trograms was computed for each combination of Wn 
and W~. For each combination, a mean IVAR was 
also computed. With this global approach, it was 
found that no specific values of the bidirectional 
threshold could significantly minimize the mean 
IVAR as shown in Table 4 (left columns). Moreover, 
the variability of the IVAR values was in some cases 
quite large. The analysis of these results suggested that 
the use of an individual approach could provide a 

Table 4. The left part of the table showed, for each 
combination of Ws and Wn, the mean value of the index 
of variability (IVAR) of the maximum positive frequency 
contour of the 379 spectrograms. The mean optical value 
of the index of variability ( I V A R o v t )  obtained using the 
iterative procedure and its distribution according to 14~ 

a n d  • are  p r e s e n t e d  in  t h e  las t  t w o  c o l u m n s .  

W, IVAR -+ SD N IVARo~ -+ SD N 

10 

20 

40 

100 

200 

1.5 
3 
6 
9 

12 

1.5 
3 
6 
9 

12 

1.5 
3 
6 
9 

12 

1.5 
3 
6 
9 

12 

1.5 
3 
6 
9 

12 

w, 

18.8 
15.8 
15.6 
15.8 
16.0 

18.6 
14.3 
14.1 
14.5 
14.9 

19.3 
14.7 
14.6 
15.2 
15.7 

20.2 
15.9 
16.2 
17.4 
18.3 

21.1 
17.6 
18.3 
19.8 
21.2 

+ 12.1 379 
+ 8.7 379 
+ 8.4 379 
+ 9.5 379 
+ 9.8 379 

+ 12.2 379 
+ 8.1 379 
+ 8.0 379 

11.2 _+ 4.2 103 
14.0 _+ 6.8 5 

- -  0 
- -  0 
- -  0 

9.5 _+ 4.3 45 
11.4 - 5.4 13 
20.2 _+ 2.5 2 

- -  0 
- -  0 

9.8 + 3.1 40 
10.8 + 4.1 17 
14.1 _+ 1.5 3 
1 1 . 2 + 0  1 

- -  0 

9.6 -+ 2.8 44 
10.1 + 4.1 24 
7.8 --- 1.6 4 

18.1 - 8.7 2 
- -  0 

9.8 _+ 2.4 39 
9.8 + 3.3 31 

14.5 + 1.4 4 
6.8-+0 1 

33.8 -+ 0 1 

___ 10.4 379 
_+ 11.4 379 

_+ 12.1 379 
_+ 8.6 379 
+ 8.9 379 
___ 11.7 379 
_+ 12.9 379 

+ 12.2 379 
_+ 9.9 379 
_ 11.2 379 
__. 14.9 379 
+ 16.8 379 

+ 12.1 379 
_+ 11.5 379 
_+ 13.9 379 
_ 17.0 379 
_+ 19.9 379 

T h e  mean  value o f  IVARop t = 10.5 ___ 4.1 for the 379 segments.  
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better estimation of  the frequency contour  of  each 
spectrogram. This meant  that, for each spectrogram, 
an iterative procedure had to be used to determine 
values of  W, and W s which minimized IVAR. The 
min imum value of  IVAR was named IVARopt. For 
the 379 arterial segments included in this study, the 
mean value of  IVARopt was 10.5 +_ 4.1 (range of  4.6 to 
33.8) which is significantly less than the mean IVAR 
values obtained with the global approach (min imum 
value of  14.1 + 8.0 for We = 20 and W, = 6). The 
value of  the mean IVARop, and its distribution ac- 
cording to W, and Ws are presented in Table 4 (right 
columns). If IVARom was obtained with more than 
one combina t ion  of  We and Wn, the one with the 
smallest Ws and W~ was chosen. Influences of  the bidi- 
rectional threshold values on the max imum positive 
frequency contours are presented in Fig. 4. To illus- 
trate the result obtained using the iterative bidirec- 
tional threshold algorithm, the min imum and maxi- 
m um  frequency contours of  both the positive and neg- 
ative componen t s  of  the spectrogram of  Fig. 1 are 
presented in Fig. 5. 

The best results obtained by the pattern recogni- 
tion system with the classification schemes I and II are 
shown in Tables 5 and 6, respectively. The most dis- 
criminant features used at each decision node by the 
pattern recognition system are also identified. No fea- 
ture size greater than 7 was tested either to respect a 
sample size to feature size ratio greater than 5 or be- 
cause it would have required a too large amount  of  
computat ion time to test all possible feature subsets of  
size less than N/5 (where N is the smallest sample size 
in a class). Moreover, we observed that the perfor- 
mance of  the classifier remains almost stable when the 
feature size increases from 4 to 7. In order to compare 
the results of  the pattern recognition approach, the 
performance obtained by visual interpretation of  the 
Doppler waveforms was tabulated and presented in 
Table 7. An accuracy of  76% was obtained which re- 
sults in a Kappa value of  0.33 between the technolo- 
gist and the angioradiologist. The criteria used to per- 
form visual classification of  the Doppler waveforms 
were those already defined by Jager et al. (1985). 

The overall accuracy of  the pattern recognition 
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Fig. 4. Four examples showing the influences of the W, and W s threshold levels on the determination of maxi- 
mum positive frequency contour. (a) Maximum positive frequency contour obtained using optimal values of IV, 
and W n (IVAR = 7.35; W e = 20; IV, = 3), (b) frequency contour obtained using too small a value of IV. (IVAR 
= 38.0; W s = 20; W, = 1.5), (c) frequency contour obtained using too small a value of W~ (IVAR = 18.5; W e = 10; 
W, = 3) and (d) frequency contour obtained using too large a value of W, and of IV, (IVAR = 7.5; W~ = 200; IV, 

= 6). 
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Fig. S. Minimum and maximum frequency contours of 
both the positive and negative components of the spectro- 
gram of Fig. 1 obtained by using optimal values of W, and 

Wn. 

using the classification scheme I was 83% (313/379), 
the Kappa value being 0.42. Thus, the agreement be- 
tween the pattern recognition system and angiogra- 
phy was 83% (314/379) for the first decision node and 
91% (31/34) for the second decision node. Of the 288 
segments in the 0-19% class, 284 (99%) were correctly 
classified. Of the 55 segments in the 20-49% class, 
only 11 (20%) were correctly classified. Of the 36 seg- 
ments in the 50-99% class, 18 (50%) were correctly 
classified. 

With the classification scheme II, the overall ac- 
curacy of the pattern recognition was 81% (306/379), 
the Kappa value being 0.35. The agreement between 
the pattern recognition system and angiography was 
93% (354/379) for the first decision node and 81% 
(288/354) for the second decision node. Of the 379 
segments in the 0-19% class, 283 (98%) were correctly 
classified. Of the 55 segments in the 20-49% class, 
only 5 (9%) were correctly classified. Of the 36 seg- 
ments in the 50-99% class, 18 (50%) were correctly 
classified. 

Comparison of Tables 5, 6 and 7 shows that the 
pattern recognition method is much better than the 
technologist's approach to detect normal and mildly 
diseased arteries. 

DISCUSSION 

Data acquisition and analysis 
It is well recognized that the acquisition of opti- 

mal Doppler blood flow signals is a crucial step prior 
to diagnostic feature extraction and waveform classifi- 
cation. For example, Baker et al. (1989) have reported 
that the performance of the Laplace transform analy- 

Table 5. Compar i son  o fang iography  to pat tern recognit ion 
of  Doppler  blood flow in detecting arterial disease using 

classification scheme I. 

Pattern recognition classification 

0%- 19% 20%-49% 50%-99% Total 

0%-19% 284 2 2 288 
20%-49% 44 I t  0 55 

o 50%-99% 17 1 lg 36 

< Total 345 14 20 379 

Accuracy = 83%; Kappa = 0.42. 
Most discriminant features at the first node: MEFS A 1323 A3343 

FMXD B1252. 
Most discriminant features at the second node: SBI A1252 

A3343 B1252. 

sis was very sensitive to the quality of recorded sig- 
nals. Interobserver and intraobserver variability in the 
measurement of Doppler blood flow signal features 
has also been reported by Kohler et al. (1987b). For 
these reasons, a standard examination technique was 
used for all patients in order to obtain reliable 
Doppler signals for disease classification. For in- 
stance, care was taken to place the sample volume in 
the centerstream of the artery, as indicated on the B- 
mode image. However, since patients were not asked 
to fast before examination, abdominal gas was some- 
times the cause of interference which prevented opti- 
mal recording of characteristic Doppler signals of 
some segments. All examinations were finally per- 
formed at a fixed angle approaching to 60 degrees 
(58.9 _+ 3.6 degrees) between the Doppler beam and 
the vessel axis. Even though some arteries were better 
visualized using a slightly different angle, no angle 
adjustment was applied on frequency features to com- 
pensate for these variations. The reason is that angle 
adjustment is appropriated only when blood flow is 
parallel to the vessel axis (Beach et al. 1989). When 

Table 6. Comparison of angiography to pattern recognition 
of Doppler blood flow in detecting arterial disease using 

classification scheme II. 

Pattern recognition classification 

0%- 19% 20%-49% 50%-99% Total 

-= 0%-19% 283 4 1 288 
20%-49% 44 5 6 55 
50%-99% 18 0 18 36 

< Total 345 9 25 379 

Accuracy = 81%; Kappa = 0.35. 
Most discriminant features at the first node: AVGMXF A2333 

A3343 SEAN B1252. 
Most diseriminant features at the second node: MEFS B1252. 
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Table 7. Comparison of angiography to duplex scanning 
(visual interpretation) in detecting arterial disease. 

Duplex classification 

0%- 19% 20%-49% 50%-99% Total 

" 0%-19% 265 21 2 288 e~ 

E 20%-49% 43 7 5 55 
e ~  

50%-99% 13 5 18 36 
e-  

< Total 321 33 25 379 

Accuracy = 76%; Kappa = 0.33. 

tained using a predetermined bidirectional threshold 
level. 

Although our approach based on the iterative 
evaluation of the variability of the frequency contour 
of each spectrogram under different threshold values 
was tested only with the percentile method, we believe 
that it would also significantly improve the effective- 
ness of the modified threshold method and the hybrid 
method (Cloutier et al. 1990; Mo et al. 1988). Indeed, 
the threshold value used in these two methods could 
be optimally determined according to the signal char- 
acteristics by the iterative approach proposed. 

this latter is not parallel to the vessel axis, angle ad- 
justment could lead to significant errors in the estima- 
tion of the blood flow velocity. 

The number of heartbeats suitable for the spec- 
tral averaging still remains an empirical choice. Since 
no studies to date have defined the best suited number 
of cardiac cycles required to significantly reduce spec- 
trogram variability, we considered that spectrogram 
averaging using five cardiac cycles was an acceptable 
choice. 

To obviate the major limitation of the percentile 
method (as noted by Mo et al. 1988) in the estimation 
of the frequency contours, a bidirectional threshold 
algorithm was developed. This algorithm allowed the 
determination of spectra of the spectrogram contain- 
ing blood flow signal and of those containing only 
pure noise. The algorithm was based on the estima- 
tion of the background noise level by using the ampli- 
tude of the samples located close to +_PRF/2. A diffi- 
culty was to determine the values of the bidirectional 
threshold because the amplitude of the samples close 
to +PRF/2 showed a large variability (mean value of 
the coefficient of variation = 2.65 + 1.55). Compared 
to the same statistical parameter computed by Clou- 
tier et al. (1990) for cardiac blood flow signals, our 
mean value for the coefficient of variation was greater 
by a factor of about three. We initially attempted to 
explain this variability by the presence of frequency 
aliasing, but visual inspection of the spectrograms re- 
vealed that very few of them disclosed this feature. 
The large variability of the amplitude of the samples 
close to +PRF/2 prevented the use of a frequency 
contour estimation algorithm based on a fixed thresh- 
old level because this could lead to erratic frequency 
contours. The computation of the frequency contour 
variability under different bidirectional threshold val- 
ues allowed the determination of the frequency con- 
tours of almost all spectrograms with accuracy. This 
was demonstrated by the fact that the variability of 
the frequency contour obtained using such an itera- 
rive procedure was much less than the variability ob- 

Pattern recognition 
No results obtained by a pattern recognition sys- 

tem to classify lower limb arterial stenoses have been 
published so far. The only instance in which a pattern 
recognition approach has been used in vascular dis- 
ease classification was for the evaluation of carotid 
artery stenoses (Langlois et al. 1984). The results of 
Langlois et al. showed an overall accuracy of 83% 
(Kappa = 0.77) for the classification of 170 carotid 
lesions into four categories of disease. By using two 
different classification schemes to classify disease of 
379 lower limb arterial segments into three classes in- 
stead of four, we obtained an overall accuracy of 83% 
(Kappa = 0.42) with classification scheme I and 81% 
(Kappa = 0.35) with classification scheme II. For the 
379 segments, visual interpretation showed an accu- 
racy of 76% (Kappa = 0.33). These results indicated 
that the pattern recognition approach allows a better 
discrimination than visual interpretation, especially 
for the 0 to 19% lesion and also for the 20-49% lesion 
when using classification scheme I. 

The need to differentiate hemodynamically sig- 
nificant (50-99%) from nonhemodynamically signifi- 
cant (0-49%) stenosis is clinically obvious. The perfor- 
mance of the classifier to make this distinction is dis- 
appointing and no better than the one obtained by 
visual interpretation. The pattern recognition system 
using classification scheme I yields a sensitivity and a 
specificity of 50% and 99%, respectively. With classifi- 
cation scheme II, the sensitivity and the specificity are 
50% and 98%, respectively. The 18 diseased (50-99%) 
segments that were misclassified using classification 
scheme I were also misclassified using scheme II. Our 
results were greatly affected by multisegmental dis- 
ease. Indeed, among the 23 diseased segments asso- 
ciated to the presence of 50-100% diameter reduction 
lesions in other adjacent (proximal and/or distal) seg- 
ments, misclassification occurred in 15 segments. 
Among the 13 diseased segments associated to uniseg- 
mental disease, misclassification occurred in only 3 
segments. This finding underlines the fact that con- 
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sidering segmental disease independently of lesions in 
other segments constitutes a limitation of our pattern 
recognition system to study lower limb arteries. With 
increase in the representation of moderate and severe 
lesions, it will be possible to design a classifier that will 
take into account neighboring lesions and thus obvi- 
ate these problems. 

We also think that the poor sensitivity of the pat- 
tern recognition system to detect moderate and severe 
stenoses can be explained by the skewness of the dis- 
tribution of disease towards normal segments (273 of 
379 segments). This nonhomogeneous distribution 
found in our population causes the classifier to under- 
estimate the extent of disease, as indicated by the very 
high specificity of the classifier. Skewness of the distri- 
bution of disease should foster us to use classification 
scheme I where normal and minimal lesions are first 
separated from moderate and severe lesions (X20%). 
The second node decision will thus be more signifi- 
cant. It should also be mentioned that the results pre- 
sented in this study were those obtained by using the 
percentage of correct classification as the criterion to 
decide which feature subset leads to the best perfor- 
mance of the classifier. No receiver operating charac- 
teristic (ROC) curves were generated from the classi- 
fier to obtain a better compromise between sensitivity 
and specificity. 

Finally, when comparing the agreement between 
Doppler waveform classification and angiography, 
one should be aware of the limitations ofangiography 
as a "gold standard reference" (Thiele and Strandness 
1983). Although we anticipated a better correlation 
between pulsed Doppler and angiography, it remains 
that perfect agreement should not be expected since 
arteriography provides anatomic rather than hemody- 
namic information. Furthermore, intraobserver and 
interobserver variability exists in the reading of anglo- 
grams even when broader classifications of disease are 
used. For instance, when classifying the degree of 
lower limb arterial disease into five categories, it has 
been reported (Jager et al. 1985) that the agreement 
between two angioradiologists reading independently 
the same film is only 70% (Kappa = 0.63). 

CONCLUSION 

A new algorithm to estimate the frequency con- 
tours of Doppler spectrograms of blood flow in the 
lower limb arteries is presented. The algorithm is 
based on a percentile method improved by the use of 
a bidirectional threshold whose optimal values were 
determined by an iterative evaluation of the variabil- 
ity of the positive frequency contour. The advantage 
of this algorithm resides in its high degree of adaptiv- 

ity to the variability of the Doppler signals over a car- 
diac cycle, thus allowing estimation of frequencycon- 
tours with reliability. 

A Bayes classifier was developed to classify lower 
limb arterial stenoses into three categories of disease. 
An important characteristic is that the same classifier 
was used to evaluate the different segments in 379 
arteries, starting from the aorta down to the popliteal 
artery. A frequency scaling procedure was performed 
to take into account differences in blood flow veloci- 
ties observed between sites. The overall performance 
of our pattern recognition approach is comparable to 
the one obtained by Langlois et al. (1984) for the eval- 
uation of carotid artery stenoses. Although the speci- 
ficity of our classifier for lower limb disease is very 
high, its sensitivity needs to be improved. To obtain a 
better compromise between sensitivity and specific- 
ity, it would be necessary to generate receiver operat- 
ing characteristic (ROC) curves from the classifier. In- 
deed, the results presented in this study were obtained 
using the percentage of correct classification as the 
criterion to decide which feature subset leads to the 
best performance of the classifier, and no compro- 
mise between sensitivity and specificity was searched 
for. Another improvement for the future would be the 
integration into the classifier of information related to 
the multilevel disease cases. Compared to the carotid 
artery, the characterization of blood flow patterns in 
lower limb arteries is more complex, which will inevi- 
tably lead to the design of a specific classifier for each 
site. Such a realization will be possible as our popula- 
tion size increases (especially the 50-99% lesion). 
New areas of investigation will also be directed to- 
wards the evaluation of a classifier based on distance 
measurement (like nearest neighbor method) instead 
of on probability estimation (like the Bayes rule). We 
finally expect that the use of a color-flow duplex imag- 
ing in a near future will allow us to obtain Doppler 
signals with more reliability and also to reduce exami- 
nation time. 
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