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1 Introduction 
CONSIDERABLE RESEARCH efforts have been devoted in 
recent years to find in the phonocardiogram (PCG) diag- 
nostic parameters which could reveal abnormal func- 
tioning aspects of implanted prosthetic heart valves. 
Certain spectral and temporal parameters have been 
shown to be potentially useful by STEIN et al. (1980; 1981; 
1984), Joo et al. (1983), JOHNSON et al. (1983), BEYAR et al. 
(1984) and DURAND et al. (1988). However, these param- 
eters are highly variable, not only because the PCG differs 
morphologically from patient to patient, but also because 
the PCG analysis criteria can vary from physician to phys- 
ician. Reliable automatic detection and identification of 
cardiac sounds and murmurs would certainly help to 
provide a more objective analysis and reduce this variabil- 
ity. In addition, automatic analysis by a digital computer 
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could be faster and less costly than the analysis by the 
physician. 

In this paper, we propose an iterative automatic detec- 
tion algorithm for this purpose. This algorithm uses infor- 
mation on the PCG envelopes and background noise, as 
well as a priori knowledge of spectral and temporal char- 
acteristics of the cardiac sounds, clicks and murmurs. 
Special attention has been given to detecting the aortic 
component A2 of the second heart sound. 

2 Automat ic  detect ion of sounds, clicks and 
murmurs 
The phonocardiogram is subdivided into five intervals 

associated with the following acoustic events: the first 
heart sound S1, aortic opening click AOC, systolic 
murmur SM, second heart sound $2 and diastolic murmur 
DM. These intervals, as described in Table 1, are selected 
from bibliographic information to reduce the complexity 
of the problem (ALTMAN and DITTMER, 1971). 

The envelope of the PCG for each cardiac cycle is esti- 
mated by the following two methods: 

(a) Hilbert transform (OPPENHEIM and SCHAFER, 1975): the 
negative frequency terms of the discrete Fourier trans- 
form of each digitised PCG cycle are set to zero, and 
the remaining terms, except the DC value and the 
highest frequency term, are multiplied by 2. The 
resulting data is bandpassed from 20 to 500 Hz and the 
inverse discrete Fourier transform is computed. The 
magnitude of the resulting function so obtained is used 
as an estimate of the envelope of the PCG. 

(b) Ideal rectification: The absolute value of each PCG 
cycle is smoothed by a low-pass filter with the follow- 
ing weighting function ( - 3 d B  frequency about 
250 Hz). 

1/3 for n = 0 

2/9 f o r n = l , - 1  
h ( n )  = / 1 / 9  for  n = 2, - 2  (1) 

L0 otherwise 

Table 1 Location of cardiac sound and murmur inter- 
vals (time t = 0 at the R-wave of the ECG) 

Interval Beginning, ms End, ms 

S1 -25 75 
AOC 75 125 
SM 125 300 
$2 300 480 

DM 480 25 ms before the next 
peak of the QRS 

For both methods, the envelopes of 14-22 cycles are aver- 
aged to produce a characteristic PCG envelope for each 
patient. Fig. 1 shows an example of such an envelope esti- 
mated by using the Hilbert transform method. Note the 
high correlation of the peaks of the envelope with the 
acoustic events. 

In our algorithm, we associate the significant peaks of 
the envelope with the acoustic events. Thus, these peaks 
are the desired signal, and the points outside the yet-to-be- 
defined boundaries of these peaks are due to noise. As a 
first step to find the significant peaks, a pre-specified limit- 
ing number (four in our experiments) of the highest peaks 
of the smoothed characteristic envelope are identified ini- 
tially in each of the intervals described in Table 1. The 
peaks are then validated iteratively by using the adaptive 
threshold 

Ti = X i  + CSl (2) 
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where C is a constant and X~ and S~ are, respectively, the 
mean and the standard deviation of the magnitude of the 
envelope outside the boundaries of the detected peaks in 
each interval under consideration in the ith iteration. In 
the first iteration, the boundaries of a peak are defined by 
the first minimum on each side of the peak. In all sub- 
sequent iterations they are given by the points of the 
envelope which equal the mean value X~. In each iteration, 
all peaks above the threshold are accepted; but when a 
peak becomes lower than X~, it will be considered as noise 
in the computation of a new threshold for the next iter- 
ation. The iterative process continues until the variation of 
the threshold from one iteration to the next becomes negli- 
gible (e.g. less than 4 per cent). The remaining peaks in 
each of the intervals described in Table 1 are assumed to 
indicate the position of the corresponding acoustic event, 

' and the duration of the event is bounded by the two outer- 
most boundary points of the peaks in the interval. 
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Fig. 1 Envelope of the PCG of a patient produced by using the 
Hilbert transform method ( T is the threshold value of the 
final iteration) 

The choice of the value for the parameter C depends on 
the variance of the noise in the envelope. By the Cheby- 
shev inequality (MAISEL, 1971), the probability of noisy 
data above the mean Xi is less than 1/C 2. For our experi- 
ments, the value of C was determined empirically by using 
data from a control population (CP) of 15 patients. 

The iterative process can be shown to converge heuristi- 
cally. From eqn. 2, we have 

T~+ 1 - -  T~ = X,+ ~ - -  X ,  + C(S,+~ - S,) (3) 

Convergence will be assured if both I Xi  + 1 - Xi I and I Si + 
- S~I approach zero as i increases. In every iteration, if a 

boundary point of a peak is below X~, its new position will 
be closer to the maximum of the peak, thus increasing the 
number of points outside the boundaries. Therefore, with 
an appropriate value of C, Xi and S~ will approach their 
expected values as i increases such that both IX~+~ -X~[  
and I S i + ~ -  S~I approach zero. In our experiments the 
convergence is very rapid, in four or less iterations for all 
cases. 

3 Automat ic  detect ion of the aortic component  
of the second heart  sound 
As our experimental results will show later, our algo- 

rithm consistently provides a good estimate of the position 
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and duration of $2. We take advantage of this to include 
in the algorithm the automatic detection of the aortic com- 
ponent A2. Because the splitting between A2 and the pul- 
monary component P2 of $2 varies with respiration 
(SHAVER et  al., 1985) and because the dominant frequencies 
of A2 and P2 are generally different, these observations are 
used to determine the precise position and duration of the 
A2 component. The following assumptions are made: 

(a) Because the recordings were made in the aortic posi- 
tion, it is very likely that the largest amplitude com- 
ponent of $2 is the aortic closing sound. 

(b) If the splitting is normal, A2 is the first event of $2. 
(c) The duration of A2 is at least 16ms. 
(d) There is a strong correlation of A2 among the consecu- 

tive cardiac cycles of a given patient. 
(e) The data analysed does not contain PCGs from 

patients with paradoxical splitting of $2 (i.e. with P2 
preceeding A2). 

The first step of the algorithm is to compute a coherent 
ensemble average of the A2 components. Coherence is 
established by aligning the maxima of the correlation func- 
tions between a reference template and a number of suc- 
cessive cycles of PCG. The reference template is a segment 
of data where the A2 component of a typical cycle is 
expected to lie, i.e. starting 4 ms before the first peak of the 
$2 envelope and ending 12ms after it. The ensemble 
average is computed for PCG segments of 150ms dura- 
tion, each beginning at 75 ms before the maximum of the 
correlation functions. 

To separate A2 from the P2 component, the ensemble 
average is weighted by the two 40ms windows shown in 
Fig. 2: one to the right of the maximum point of correla- 
tion (right-side window) and the other to the left (left-side 
window). The lengths of the windows are chosen to allow 
for the jitter and the variability in the duration of $2. Each 
window is an asymmetric sine-cosine window having a 
20 ms decay on one side and 2 ms decay on the other side 
to reduce both the unwanted data outside $2 and the alia- 
sing spectra due to truncation in separating A2 and P2. 
The crossover point between the two windows is posi- 
tioned at the maximum point of correlation. The Fourier 
spectra of the weighted components are then used to deter- 
mine the dominant frequencies of A2 and P2. The domin- 
ant frequency of $2 weighted by the left-side window is 
associated with A2, while that of the right-side window is 
associated with P2 (Fig. 3). 

In addition, the algorithm incorporates the following 
criteria: if the energy of A2 is more than 20 times the 
energy of P2, then P2 is considered negligible. If the differ- 
ence between the dominant frequencies of A2 and P2 is 
greater or equal to 30 Hz, P2 is considered detectable. If 
not, P2 is assumed negligible and $2 consists only of A2. 
This difference of 30 Hz is within the frequency resolution 
of the windowed spectra. More importantly, we were able 
to obtain an estimate of the upper bound for this fre- 
quency difference from an analysis performed on a popu- 
lation of 14 patients with Ionescu-Shiley bioprostheses 
implanted in the aortic position. For  each patient, P2 was 
manually extracted and the mean dominant frequency F 1 
of the 14 patients was found to be 62 Hz. Using the same 
technique with a Hanning window and the same patient 
database, BRAIS et al. (1986) showed that F 1 of A2 is 
!16Hz. Thus, an average difference of 54Hz can be 
observed between F1 of A2 and F~ of P2. Because these 
are average values, we have concluded that a threshold of 
30Hz would ensure the separability of most of F~ of A2 
from F t of P2. 
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When the two dominant frequencies associated with A2 
and P2 are ascertained, the crossover point F c in Fig. 3 
between the two spectra will be determined. Then, the fre- 
quency bond of the ensemble average above F c is used to 
compute an estimate of A2. The position and duration of 
A2 are determined by the portion of the envelope of this 
estimate above a threshold level. Fig. 4 shows an example 
of the envelope of A2 and the corresponding coherent 
average. 

4 Mater ia ls  and methods 

4.1 Patient population and data recording 

A group of 30 patients with normally functioning 
Ionescu-Shiley bioprostheses implanted in the aortic posi- 
tion for 31 _+ 17 months was studied. The mean valve size 
was 23 + 2mm with a range 19-25mm. For  each patient, 
the ECG and the PCG were recorded simultaneously with 
an FM multichannel recorder (Racal Store 4). A contact 
microphone was placed in the second right intercostal 
space to record the PCG. Each patient was maintained in 
the supine position in a quiet environment. The micro- 
phone used was the HP 21050A, which has a flat frequency 

20 18 18 20 t ime,  ms 14 ~,,- ~121. -q= J 

. . . . . . . . . .  \ asymmet r i c  
"\ sine - cosine 

w indows  

~,. 

,..,~ location of max imum 

- i  

Fig. 2 Asymmetric sine-cosine weighting windows used in the 
calculation of the spectrum of A2 :solid line: and that of 
P2 /dash-dot line:. The amplitudes of both windows are 
unity 

F1 (P2) Fc ~-. (A2) 
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Fig. 3 Illustrating the frequency of minimum absolute difference 
(F c) found between the spectra of A2 and P2 

envetope of A2 

. . . . . . . . . . . . . . . . . . . . . .  

g e a r  $2 
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Fig .  4 Envelope of A2 and coherent average of $2 
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response ( - 3  dB) from 0.2Hz to 2000Hz. Before record- 
ing, each PCG was filtered by a third-order high-pass filter 
(18dB per octave) with a cutoff frequency of 100Hz to 
emphasise the spectral content of the high-frequency 
sounds and murmurs. 

For  analysis by our proposed algorithm, the ECG and 
PCG were digitised by a 12-bit A/D convertor at a sam- 
piing rate of 500 Hz and 2500 Hz, respectively. Each PCG 
was low-pass filtered by an eighth-order filter ( - 4 8  dB per 
octave) with a cutoff frequency of 900 Hz to prevent alia- 
sing. 

4.2 Methods  for  evaluation 
4.2.1 Sounds, clicks and murmurs: The performance of the 
automatic algorithm was evaluated for the detection of 
sounds, clicks, and murmurs by comparing its result with 
the decision of a specialist on the presence or absence of 
S1, AOC, SM, $2 and DM in the phonocardiogram. The 
specialist had no prior knowledge of the results from the 
automatic analysis, and his decision was based solely on 
the visual analysis of five PCG cycles of each patient. No 
comparison was made with auditory detection 
(auscultation). 

The threshold parameter C of the automatic algorithm 
was set empirically by using the PCGs of 15 of the patients 
(control population). Different values of C were used in the 
algorithm to detect acoustic event in the PCGs of the 
control population. From these results the 'optimal' value 
Co of the parameter C, which yields the 'best' agreement 
with the specialist, was then used in the algorithm to 
analyse the data from the remaining 15 patients (test 
population). 

For  a quantitative indication of the degree of agreement 
between the visual and the automatic methods, we used 
the Kappa statistic, which was proposed by Cohen as a 
measure of agreement for categorical data allowing correc- 
tion for chance agreement (COHEN, 1960; 1968). The 
Kappa statistic is computed by: 

K = (Po - Pc)/( 1 - Pc) (4) 

where Po is the observed agreement and Pc is the agree- 
ment that would occur based on chance alone. The 
observed agreement is given by the proportion of cases in 
which the specialist and the algorithm agree. Chance 
agreement is given as the sum of the product of the mar- 
ginal agreement and disagreement between the specialist 
and the algorithm. The quantity (1 - Pc) is a measure of 
the degree of agreement attainable over and above what 
would be predicted by chance alone. The degree of agree- 
ment attained in excess of chance is (Po - Pc). 

The assumptions underlying eqn. 4 are: 

(a) The PCGs are independent from one patient to 
another. 

(b) The categories of the nominal scale are independent, 
mutually exclusive and exhaustive. 

(c) The raters operate independently. 

According to eqn. 4, the Kappa statistic K is zero when 
the observed agreement Po equals the chance agreement 
Pc. A perfect agreement (i.e. when Po = 1 and P~ = 0) 
gives a maximum value of + 1, whereas less than chance 
agreement l eads to  negative values. One limitation of the 
Kappa statistic arises when both raters place all their 
samples in the same category. In this case Pc and Po are 
both equal to 1, and, according to eqn. 4, the value of K is 
indeterminate. When this case occurs, we assume that a 
perfect agreement was obtained even if K cannot be calcu- 
lated. 

4.2.2 A2 and related parameters: The performance of the 
automatic algorithm for detecting the aortic component 
A2 of the second heart sound $2 was compared with that 
of two specialists who used a computer-based interactive 
procedure developed by our group (DURAND et al., 1986; 
BRAIS et al., 1986; CLOUTIER et al., 1987a). The comparison 
was made by means of a t-test for matched pairs applied to 
four parameters extracted from the A2 components 
detected by each specialist and the algorithm. The param- 
eters were the duration of A2 (DA2), the dominant fre- 
quency F1, the second dominant frequency F 2 and the 
- 3 0  dB bandwidth of the spectrum BW30. The objective 
was to demonstrate whether the variability between the 
parameters extracted by the automatic method and by 
each specialist would be smaller than that observed 
between the two specialists. 

The parameter F t was used as a diagnostic tool by 
STEIN et al. (1981 ; 1984). FOALE et al. (1983) and Joo et al. 
(1983) also proposed the utilisation of F1 and F 2 extracted 
from the spectra of parametric algorithms. In a recent 
study, CLOUTIER et al. (1987b) evaluated the accuracy of 
F1, F 2 and BW30 extracted from the spectra computed by 
using eight different algorithms. The best results were 
obtained by using the fast Fourier transform with rec- 
tangular window to estimate F1 and the pole-zero 
Steiglitz-McBride method to evaluate F 2 and BW30. In 
the present study, these spectral techniques were used to 
estimate the A2 spectrum and to extract the three spectral 
diagnostic parameters. 

5 Resu l t s  
Table 2 summarises the results obtained for the auto- 

matic detection of sounds, clicks and murmurs by using 
envelopes determined with the Hilbert transform (a) and 
with the ideal rectification method (b). For  each acoustic 
event, the observed agreement Po between the algorithm 
and a specialist, and the corresponding Kappa statistic K 
are listed for different values of the threshold parameter C. 

The Kappa statistic K is positive in all cases for S1, 
implying an agreement greater than chance. The best 
agreement was obtained when C = 1.0 using envelopes 
estimated by the ideal rectification method (i.e. Po = 0.867 
and K = 0.668 for the control population and Po = 0.733 
and K = 0.499 for the test population). 

The automatic algorithm yielded an inferior agreement 
for the detection of AOC (K ~< 0.411). The results show 
substantial variations in K for the control population 
when C was varied between 1.0 and 4.0. In any case, the 
best results were obtained by using envelopes from the 
Hilbert transform method with C = 2.0 (i.e. P0 = 0.773 
and K = 0-411 for the control population and Po = 0-733 
and K = 0.00 for the test population). 

For  the detection of SM, the algorithm generally pro- 
duced better results by using envelopes from the ideal rec- 
tification method. Although the best value of K is low for 
the control population (i.e. C = 3.0, K = 0"286, Po--- 
0.600), it is greater than chance. The good agreement 
found for the test population with C = 3.0 (i.e. K = 0.594 
and Po = 0-800) emphasises the strength of the method for 
this particular component. 

For  the automatic  detection of $2, the agreement 
between the visual method and the algorithm was perfect 
when C was varied from 1.0 to 4.0. As noted in the pre- 
vious section, because all samples were placed in the same 
category, Pc and P0 were equal to 1 and K was indetermi- 
nate. 

For  the detection of DM, the algorithm yielded the best 
results by using envelopes obtained from the Hilbert trans- 
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Table 2 Agreement between the algorithm and a specialist for the detection of $1, AOC, SM, $2, and DM 

(a) Envelopes estimated by using the Hilbert transform 

$1 AOC SM $2 DM 

C Po K Po K Po K Po K Po K Data 

1'0 0 " 8 6 7  0 " 5 8 4  0"733 0"375 0"667 0"075 1-00 * 0"733 -0'113 
2"0 0'733 0 " 4 4 4  0"733 0"411 0-600 0"00 1"00 * 0"867 0"446 
2"5 0'733 0 " 4 4 4  0-733 0'411 0'600 0"00 1"00 * 0"867 -0"073 
3"0 0 " 7 3 3  0 " 4 4 4  0"667 0'287 0"600 0"00 1"00 * 0'933 0"00 
4'0 0 " 6 0 0  0 " 2 8 6  0'533 0"053 0'467 0-048 1'00 * 0"933 0"00 

CP 

Co 0 " 6 6 7  0"391 0'733 0"00 0.733 0.375 1'00 * 0"933 0.00 TP 

(b) Envelopes estimated by using ideal rectification 

C Po K Po K Po K Po K Po K Data 

1'0 0 " 8 6 7  0 " 6 6 8  0'667 0'194 0.667 0.075 1'00 * 0"800 -0-099 
2'0 0'600 0'286 0"733 0"411 0'600 0.167 1-00 * 0"876 -0'073 
2'5 0'600 0 " 2 8 6  0"667 0"325 0'600 0.167 1-00 * 0"933 0.00 
3.0 0 " 6 0 0  0 " 2 8 6  0"600 0"211 0"600 0"286 1"00 * 0"933 0"00 
4"0 0'467 0 " 1 6 7  0"667 0"391 0"333 0"074 1"00 * 0"933 0"00 

CP 

Co 0 " 7 3 3  0 " 4 9 9  0 " 6 3 6  -0 '106 0 " 8 0 0  0"594 1'00 * 1"00 * TP 

C is a threshold parameter; Po is the observed agreement between the algorithm and the specialist; and K is the 
corresponding Kappa statistic. (*) denotes an indeterminate value of K due to a perfect agreement between the 
algorithm and the specialist. C O is the value of C tested, which yields the highest value (in bold type) of K for the 
control population (CP) of 15 patients. TP is the test population (15 patients). 

form method with C = 2.0 for the control population: 
However, it produced a perfect agreement with C = 3.0 for 
the test population when the envelopes were estimated 
with the ideal rectification method. It should be pointed 
out that Pc was high in the control population such that in 
spite of the high Po (0.933), K was low (0.00). 

It is interesting to note that lower values of C tend to 
produce better results for detecting events that generally 
present low intensity in recordings at the aortic position 
(S1, AOC and DM). However, for events presenting higher 
intensity, such as SM and $2, higher values of C seem 
better. 

Table 3 shows the results of comparing the estimates of 
the spectral and temporal  parameters of the aortic com- 
ponent  A2 obtained by the algorithm and two  specialists. 
For  each parameter  the value of C shown in the table is 
the best of four values (1.0, 1.5, 2.0 and 2.5) used in our 
study. Pax denotes the probabili ty for rejecting the hypoth- 
esis that the mean values of the parameter  estimated by 
the algorithm and by specialist 1 are equal. P,2 and P12 
are similarly defined, where the subscript a refers to the 
algorithm and subscripts 1 and 2 refer to the specialists. 
The probabilities are calculated with the Student t- 
statistics with a 95 per cent confidence interval and 14 

Table 3 Probabilities relating the estimates of A2 parameters 

Parameter C P, 1 Pa2 P 12 Data 

F x 1.5 0-419 0.692 0-422 
F 2 1.5 0.727 0-293 0.775 

BW30 2.0 0.161 0.466 0.704 CP 
DA2 2.0 0.195 0-062 0.308 

F 1 1"5 0"174 0"805 0"920 
g 2 1.5 0'907 0"081 0.932 

BW30 2.0 0-419 0'144 0-474 TP 
DA2 2"0 0-301 0-757 0"949 

P,1 denotes the probability for rejecting the hypothesis that the 
mean values of the parameter estimated by the algorithm and by 
specialist 1 are equal. P,2 and PIz are similarly defined, where 
the subscript a refers to the algorithm and subscripts 1 and 2 
refer to the specialists. Fa, F2, BW30 and DA2 represent, respec- 
tively, the dominant frequency, the second dominant frequency, 
the - 30 dB bandwidth and the duration of A2. CP is the control 
population (15 patients), TP is the test population (15 patients). 
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degrees of freedom. The results show that in all cases 
except one (F 1 in the control population) the agreement 
between the algorithm and each specialist is higher than 
the agreement between the two specialists. 

6 Discussion and conclusions 
Our algorithm is one among many for automatic detec- 

tion of events in the PCG. Its basic features are as follows: 

(a) It emulates a visual analysis method. 
(b) The threshold is iteratively adjusted according to the 

level of noise and 'insignificant' data in the PCG. 
(c) It can provide automatically an estimate of the dura- 

tion of cardiac events and murmurs.  
(d) It uses only the QRS position of the E C G  as reference 

for timing the P C G  cycles. 
(e) It is flexible enough so that spectral information may 

be added for specific applications such as the detection 
of A2 and the estimation of related parameters. 

The results of evaluation show that the algorithm using 
the ideal rectification method to compute the envelopes 
performs very well for the automatic detection of $2 and 
can be acceptable for the detection of S1, SM and DM. In 
addition, the automatic detection and identification of A2 
was excellent. Indeed, the agreement between most param- 
eters extracted automatically from A2 and those extracted 
after the manual  selection of A2 by t h e  specialists was 
better than the agreement obtained between the two 
specialists. 

We have also tested the influence of the method used to 
estimate the envelope of the P C G  (ideal rectification and 
Hilbert transform m e t h o d s ) o n  the performance of the 
algorithm. Although in some cases (AOC, $2 and DM) 
comparable results were obtained with either method, the 
algorithm using envelopes estimated by the ideal rectifica- 
tion method seemed to be superior in all other cases. Fur- 
thermore, envelope estimation with the ideal rectification 
method is much faster than with the Hilbert transform 
method. 

In previous works, automatic detection of cardiac 
sounds and murmurs  were compared with that made by a 
specialist using only the observed agreement parameter  
Po. In this paper, we used a more constraining statistic 
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which takes into account the proport ion of agreement due 
to chance. 

Although often used (LANGLOIS et al., 1984; KORAN, 
1975; FLEISS, 1971; LIGHT, 1971), the Kappa  statistic can 
be a very severe measurement of agreement. This severity 
arises if Pc is calculated when the frequency distribution of 
the ratings is very skewed. For  instance, if both raters 
accepted 90 per cent of $2 in a population, Pc would be 
equal to 0-82. If  the observed agreement were equal to 90 
per cent, then K would be 0.444. However, if the observed 
agreement is increased to 95 per cent, then K would 
increase to 0.722. The important  point to note is that posi- 
tive values of K imply agreement in excess of what can be 
obtained by chance. 

According to COnEy (1960), the statistical significance of 
the Kappa  statistic is a function of the standard error, 
which can be approximated by: 

aK = [Po(1 -- Po)/N(1 -- Pc)2] ~ (5) 

For  a normal distribution, COHEN (1960) suggests that the 
95 per cent confidence limits L can be set by 

L = K + 1"96aK (6) 

If we can assume a normal approximation to the sam- 
pling distribution of K, we may obtain an insight into the 
statistical significance of the results. As an example, we 
consider the cases where the best value of K was obtained 
for the detection of S1 and AOC with envelopes deter- 
mined by the ideal rectification method. For  S1, the con- 
fidence intervals for K are (0.239, 1.00) for the control 
population with a K = 0.219 and (0-080, 0-918) for the test 
population with a K = 0-214 when C = 1.0. This indicates 
that the detection of S1 was made in excess of chance with 
a greater than 95 per cent confidence limit. For AOC, the 
confidence intervals for K are ( -0 .083 ,  0.905) for the 
control population when a K = 0.252 and ( -0-847,  0.635) 
for the test population with aK = 0"378 when C = 2"0. 
Thus, negative K a p p a  statistics may be generated and no 
clear conclusion can be drawn in this case. 

In conclusion, we believe that our algorithm is particu- 
larly effective for the detection and identification of the 
second heart sound $2 and the aortic component  A2 of $2 
in patients with Ionescu-Shiley aortic valve bioprosthesis. 
The algorithm could be easily modified to detect paradoxi- 
cal splitting of $2 by using the following criterion when 
comparing the dominant frequencies of the two asym- 
metric sine-cosine windows: if the dominant  frequency of 
the right-side window is higher than that of the left-side 
window, paradoxical splitting of $2 is present; if not, 
normal splitting is assumed. When paradoxical splitting is 
present, the left-side window is associated with P2 and the 
right-side window with A2. When normal splitting is 
present, the left-side window is associated with A2 and the 
right-side window with P2. 

The algorithm can also be useful for the detection of the 
first heart sound, the systolic murmur  SM and the diastolic 
murmur  DM. To improve the performance of the algo- 
rithm, especially for the detection of the opening click 
AOC, SM, and DM, further clinical and physiological data 
will be needed. Information on the nature, morphology, 
timing and frequency content of these three components 
will be required, so that a detector based on a threshold 
could be enhanced, as done here for A2. These three latter 
components are of great interest for the detection of 
sounds and murmurs  from patients with Ionescu-Shiley 
bioprostheses implanted in the aortic position. However, 
information contained in S1 is generally ignored when 
recorded at the aortic area, except for timing purposes or 
for computing intensity ratios between S 1 and $2. 
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