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SMME 

SMEZ 

WN 

Steiglitz-McBride method with maximum 
entropy (pole-zero modelling) 
Steiglitz-McBride method with extrapolation to 
zero (pole-zero modelling) 
Welch's method with Hanning window 

1 I n t r o d u c t i o n  
IT IS NOW WIDELY accepted that spectral analysis of the 
closing sounds produced by bioprosthetic heart valves can 
provide useful indications of degenerative changes which 
can lead to dysfunction of the valve. For instance, recent 
studies have clearly demonstrated that the two dominant 
peaks of an aortic closing sound's spectrum shift towards 
the higher frequencies as a result of valve tissue calcifica- 
tion, fibrosis and stiffening (STEIN et al., 1980; 1984 for F 1 ; 
FOALE et al., 1983; Joo et al., 1983 for F 1 and F2). As a 
clinical technique for periodically monitoring patients with 
prosthetic valves, spectral analysis of valve sounds is par- 
ticularly attractive since it is noninvasive, atraumatic and 
potentially very sensitive. 

Several methods have been investigated for obtaining 
the spectral characteristics of bioprosthetic valve sounds. 
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Some methods are based on the fast Fourier transform 
(FFT), whereas others use more recent parametric methods 
of system identification. Both approaches have been 
applied in clinical studies and have given interesting 
results. However, because of the occurrence of other 
cardiac vibrations during the closure of the aortic valve, 
only a portion of the closing sound is available for analysis 
(CLoUTIER et al., 1987b). It has thus been suggested by 
FOALE et al. (1983) and Joo et al. (1983) that FFT-based 
methods do not provide sufficient frequency resolution to 
completely characterise the spectrum of bioprosthetic 
aortic closing sounds. High-resolution maximum entropy 
methods have been proposed to overcome this difficulty. 

In addition to the relatively low resolution of FFT- 
based methods, due to the short duration of aortic closing 
sounds, DURAND et al. (1986) have shown that changes in 
background noise and signal duration can also affect the 
accuracy of spectra. In their study, the performance of 
various spectral estimation techniques was tested by 
decreasing the duration of the aortic closing sounds by 5 
per cent arid adding 5 per cent of random noise. These 
tests gave interesting results but could not provide a com- 
parison of the spectra obtained with a given technique to a 
'gold standard'. In addition, no attempt was made to find 
an optimal number of poles and zeros for the parametric 
methods; so the comparison may have been slightly 
biased. 

In the present study, the accuracy of different spectral 
estimation techniques was determined by varying the 
duration and S/N ratio of simulated bioprosthetic aortic 
heart valve closure sounds (A2). Because the spectrum of 
the synthesised sounds can be accurately determined by 
analytical means, a reliable 'standard' for comparing the 
various methods is available. The accuracy of three spec- 
tral parameters has been evaluated: the frequency of the 
most dominant spectral peak F1, the frequency of the 
second dominant spectral peak f 2 and the bandwidth 
BW3o at --30 dB of the spectrum. This last parameter was 
added to estimate the frequency content of the signal. The 
diagnostic potential of BW3o has not been evaluated for 
bioprosthetic valves but has been used by KAGAWA et al. 
(1980) to detect the state of metallic prosthetic valves. It 
will be shown that FFTR is the best method to extract F~ 
whereas SMME dominates for F 2 and BW3o. 

2 Methods  
The electrocardiogram and phonocardiogram of 15 

patients with aortic Ionescu-Shiley pericardial xenografts 
implanted for less than 5 years were recorded three times 
over a period of 3 years. For each recording, a coherent 
detection algorithm was used to extract 20 aortic closing 
sounds and compute an averaged sound as described by 
CLOUTIER et al. (1987b). From the averaged A 2 com-  
ponen t s  obtained from the first recording of each patient, 
15 simulated aortic closing sounds were generated 
(CLOUTIER et al., 1987b). 

Eight algorithms of spectral estimation based either on 
the fast Fourier transform or parametric analysis were 
used to extract the three previously described parameters. 
With FFT-based techniques, the power spectra of the 
aortic closing sounds s(n) was evaluated by 

~ 1  s(n)co(n) e - jw"  2 Ss~(e jw) = (1) 
n = 0  

where co(n) represents the temporal window. Three types of 
windows: rectangular, Hanning and Hamming, as 
described by OPPENHEIM and SCHAFER (1975), were tested. 
A sine-cosine window has also been tried. This window is 

defined as follows (YOGANATHAN et al., 1976): the first 10 
per cent of co(n) are described by the sine function sin W 
for W ranging between 0 and 90 ~ and the last 10 per cent 
of co(n) by the cosine function cos W with W ranging also 
between 0 and 90 ~ All other samples of this window are 
set to 1. Four parametric spectral techniques: APA, APC, 
SMME and SMEZ, described by MAKHOUL (1975), and 
STEIGLITZ and MCBRIDE (1965), were finally tested. The 
number of poles and zeros used in the present study for 
parametric spectral techniques was based on the results of 
CLOUTIER et al. (1987a). 

2.1 Accuracy of  the spectral parameters 
The accuracy of each algorithm was obtained by com- 

puting the absolute error between the parameters 
extracted from the reference spectrum of the simulated 
sounds and those extracted from each estimated spectrum, 
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Accuracy of F 1 , F 2 and BW30 obtained by computing the 
absolute error between the parameter of the reference spec- 
trum (solid line) and those of the estimated spectrum 
(broken line) 
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Fig. 1 

as shown in Fig. 1. The power spectrum of the simulated 
sounds ~(n), which consist of a series of exponentially 
decaying sinusoids (CLoUTIER et al., 1987b), was computed 
analytically by 

e 2jW sin ((k(i)) I 2 
+ e(( - 1/rti))+jw) sin (co(i) - ~b(i)) 

Sss(eJW)= i=1  ~ A ( i ) e - - ~ ~ i ) ~ j ~ ' ~ 0 7 ( ~  [ (2) 

q- e- 2/T(i) I 

where R = number of decaying sinusoids 
A(i) --- amplitude of the ith sinusoid 
T(/) = decay time constant of the ith sinusoid, s 
co(i) = frequency of the ith sinusoid, rad s- 1 
~b(i) = phase of the ith sinusoid, rad. 

For each parameter, the mean absolute error averaged 
over 15 simulated spectra was used as a measure of the 
accuracy of a given algorithm. The effect of truncating the 
simulated sounds by 2 per cent, 8 per cent and 15 per cent 
of their total energy and adding - 5 0  dB, - 4 0  dB and 
- 3 0  dB of random noise was investigated in this analysis. 

Different constraints were imposed in the search of the 
spectral parameters. First, spectral peak extraction was 
limited to frequencies between 20 and 500 Hz. Secondly, a 
peak detection algorithm was used to differentiate an 
inflection segment from a true peak. For this purpose, a 
programmable window was centred over a potential peak 
which was accepted as such only if two samples (4.9 Hz) 
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before and after it were of lower intensity. Thirdly, to 
prevent noise from appearing as the second dominant 
peak F 2 , all peaks with an intensity - 4 0  dB lower than 
that of F~ were rejected. This - 4 0  dB threshold was 
chosen because it corresponds to the average S/N ratio of 
the mean A 2 component of the second heart sound, 
obtained by coherent detection as estimated by CLOUTmR 
et al. (1987b). Finally, estimation of BW3o was confined to 
the frequencies between F~ and 600 Hz. 

2.2 Sensitivity of  the spectral analysis techniques to 
signal truncation and random noise 

To evaluate the sensitivity of each method of spectral 
analysis, error spectra were computed by subtracting the 
spectra obtained from the truncated and noise- 
contaminated signals from the reference spectra of the 
simulated sounds. Mean absolute error spectra were then 
computed and averaged over all patients for each spectral 
technique. 

2.3 Variability of the spectral parameters 

A last study was performed to assess the variability of 
E l ,  F 2 and BW3o extracted from the three recordings that 
were made for each patient. For  each method of spectral 
analysis, mean and standard deviation (SD) values of the 
frequency parameters obtained from the three recordings 
of each patient were computed and averaged for the group 
of 15 patients. The resulting average SD values were taken 
as a measure of the variability of the spectral parameters. 

3 R e s u l t s  
The durations of the simulated sounds after truncation 

by 2 per cent, 8 per cent and 15 per cent of their total 
energy were 28 _+ 5 ms, 18 _+ 4 ms and 16 _+ 4 ms, respec- 
tively. As a qualitative result, Fig. 2 shows a comparison of 
a reference spectrum and the corresponding spectra 
obtained with the eight algorithms, for 8 per cent trunca- 
tion and - 4 0  dB of random noise. As shown on the left 
panel, the F F TR  and FFTS algorithms have similar spec- 

tral profiles. They are characterised by a large main lobe 
and many low-amplitude peaks in the high-frequency 
portion. F F T N  and F F T M  also display similar spectral 
profiles with an even smoother main lobe and many high- 
frequency peaks of lower amplitude. 

As shown on the right panel of Fig. 2, APA modelling is 
not suitable for estimating more than one spectral peak. 
Generally, this algorithm only models the dominant har- 
monic content of the signal. The overall spectral profile 
provided by the APC algorithm is similar to that of 
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Fig. 3 Mean values and absolute errors of F 1 in Hz, for eight 
algorithms of spectral estimation and the reference F 1 
(horizontal line), following the truncation of the aortic 
sounds and addition of random noise. The shaded zone 
represents the standard deviation of F 1 obtained from 15 
reference spectra 
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SMME. Both algorithms are maximum entropy tech- 
niques and produce suspicious spectral peaks and peaks 
with unstable amplitude, as reported by DURAND et al. 
(1986) for the SMME algorithm. On the other hand, 
SMME gives good results when estimating the morphol- 
ogy of the reference spectrum above 200 Hz. Finally, 
SMEZ gives a large main lobe and a few low-amplitude 
peaks in the high-frequency range. 

Figs. 3, 4 and 5 summarise the results of this study. Each 
figure reports the values of one parameter (F t ,  F2 or 
BW3o) averaged over the 15 patients for all spectral estima- 
tion algorithms, under different conditions of signal trun- 
cation and noise contamination. The averaged 'gold 
standard' value of the parameter is represented by the 
horizontal line and the absolute differences between that 
parameter and the 'gold standard', by the deviation mea- 
surement. In addition, the SD value of the reference 
parameter (shaded zone) was added as a complementary 
information. Generally, the accuracy of the parameters 
decreases as the truncation level increases. On the other 
hand, the addition of random noise does not seem to have 
a drastic effect on the accuracy of F~, F 2 and BW3o. Figs. 
3, 4 and 5 show that F 1 is generally overestimated for a 
truncation level of 8 per cent and 15 per cent and under- 
estimated for a truncation level of 2 per cent. However, 
APA modelling underestimates F~ for all truncation levels 
and S/N ratios. All algorithms overestimate F 2 for all 
truncation levels and S/N ratios. Finally, both over- and 
underestimation of BW3o is observed for different pertur- 
bation conditions. 

FFTR and FFTS algorithms are good at estimating F~ 
and poor at estimating F 2. Moreover, because of the 
erratic behaviour of the spectrum in the high frequency 
range, especially at high truncation levels, they are not 
suitable for estimating BW3o. Generally, F F T N  and 
F F TM spectra give lower accuracies for F~ and F 2 
because of the poor resolution that results from using the 
Hanning and Hamming windows. On the other hand, they 
are good at estimating BW3o. 

All-pole modelling with autocorrelation method (16 
poles) is of limited use because this algorithm only esti- 
mates the main harmonic component of the signal. It is a 
good method for estimating F~ but it fails for F 2 and 
BW3o. APC (16 poles) and SMME (14 poles and 14 zeros) 
give similar results. Compared with other techniques, they 
are not suitable for estimating F~ and good in estimating 
F 2 and BWao. The best accuracy for estimating F 1 is 
obtained with the SMEZ method (14 poles and 14 zeros), 
but it gives bad results for F 2 . It is better than FFTR, 
FFTS and APA, and worse than the other methods, in 
estimating B W3o . 

Mean values and absolute errors of BW3o in Hz, for eight 
algorithms of spectral estimation and the reference BW3o 
(horizontal line), following the truncation of the aortic 
sounds and addition of random noise. The shaded zone 
represents the standard deviation of BW3o obtained from 
15 reference spectra 

3.1 Best spectral techniques for  estimating F 1 , F 2 and 
BW3o 

Because of the computation time required by the SMEZ 
algorithm, F F TR is to be preferred in estimating F 1 . For 
the normal truncation level and S/N ratio of the aortic 
mean closing sounds (8 per cent and 40 dB), as estimated 
by CLOUTIER et al. (1987b), the FFTR algorithm slightly 
overestimates F 1 (120 Hz compared with the real value of 
116 Hz of the reference spectra). The accuracy of this algo- 
rithm, as may be seen from Fig. 3, is about 10 Hz. 

Two methods could be used to extract F2:  APC and 
SMME. All-pole modelling with covariance method is 
faster than SMME because the latter involves an iterative 
procedure. However, SMME produces more consistent 
results. As shown in Fig. 4, a mean absolute error of 81 Hz 
has been obtained with APC for a truncation level of 2 per 
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cent and an S/N ratio of 30 dB. The SMME method is to 
be preferred for estimating F2 but APC could be used if 
computation time is important. For  a truncation level of 8 
per cent and an S/N ratio of 40 dB, SMME overestimates 
F 2 (143 Hz compared with 121 Hz) and has an accuracy of 
about 50 Hz. 

FFTN,  FFTM,  APC and SMME are adequate for esti- 
mating BW3o. F F T N  and F F T M  give consistent results 
and the accuracy decreases with increasing truncation level 
and S/N ratio. APC also gives interesting results especially 
for a truncation level of 15 per cent and S/N ratios of 50 
dB or 30 dB. For  a truncation level greater than 2 per cent, 
the SMME algorithm provides the best results. SMME 
has been chosen to extract BW3o except for a truncation 
level of 2 per cent where F F T M  is preferred. SMME is 
characterised by an overestimation of 13 Hz and by an 
accuracy of 27 Hz for a truncation level of 8 per cent and 
an S/N ratio of 40 dB. 

3.2 Best  spectral techniques for  estimating the frequency 
distribution 

Inspection of the mean absolute errors for the 15 
patients suggests subdividing the spectra into three fre- 
quency ranges. Mean spectra were thus computed for 
bandwidths of 20-200 Hz, 200-500 Hz and 500-1000 Hz, 
to better characterise the effect of truncation and random 
noise On the lower, middle and higher frequencies. 

Table 1 Mean absolute error in dB evaluated in three frequency 
ranoes ((a) 20-200 Hz, (b) 200-500 Hz and (c) 500-1000 Hz) 
followin9 a truncation level of 8 per cent and SIN ratios of 40 and 
30 dB 

Mean absolute error in dB 

S/N = 40 dB S/N = 30 dB 

Algorithm a b c a b 

perturbation is evident for all algorithms in the high- 
frequency range. 

FFTR 2-6 11.7 20-4 2.6 11.8 21-0 
FFTS 3.1 10-9 13.2 3.1 10.8 15-9 
FFTN 5.6 10.2 9-0 5.6 9.4 13-8 
FFTM 5.2 9-3 9-6 5.3 9.6 14.1 
APA 3.3 12.0 20.7 3-3 12.0 21.7 
APC 6.5 8.2 11.3 6.1 8.4 16.1 
SMME 5.5 3.5 5.8 4-4 4.2 10.5 
SMEZ 2-5 6.4 8.2 2.5 6-3 11.0 

Results are given in Table 1 for 8 per cent of truncation 
and addition of - 3 0  dB and - 4 0  dB of random noise. 
These perturbation values correspond to the S/N ratios of 
the mean aortic closing sounds before and after coherent 
detection of A 2 with the technique described in part 2 of 
this series of papers (CLoUTIER et  al., 1987b). In the low- 
frequency range, SMEZ and FFTR show the best results 
with a mean absolute error of 2.5 dB and 2.6 dB for both 
S/N ratios. FFTS and APA give similar results with a 
mean absolute error of 3.1 and 3.3 dB, followed by FFTM,  
SMME, F F T N  and APC. Except for maximum entropy 
algorithms (APC and SMME), the other techniques do not 
seem to be affected by the noise addition in the low- 
frequency range. Between 200 and 500 Hz and above 500 
Hz, the error due to truncation and addition of - 4 0  dB of 
random noise is small for SMME, with a mean error of 3.5 
dB and 5.8 dB. With the addition of - 3 0  dB of random 
noise, this algorithm also gives the best results, with a 
mean error of 4.2 and 10.5 dB. Observation of the results 
for - 4 0  and - 3 0  dB of random noise shows clearly that 
noise addition has almost no effect in the middle-frequency 
range except for F F T N  and SMME, which present a 
variation of 0.8 and 0.7 dB, respectively. However, noise 
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3.3 Variability o f  Fz , F 2 and BW3o 

The variability of the spectral parameters has been com- 
puted with FFTR for F 1 and SMME for F 2 and BW3o. 
Results show a variability of 13 H z f o r  F z with a mean 
value, averaged over the 15 patients, of 116 Hz. Finally, 
the variabilities of F 2 and BW3o have been estimated to 42 
Hz (146 + 42 Hz) and 62 Hz (286 + 62 Hz). 

4 D i s c u s s i o n  
The results of this study indicate that two spectral tech- 

niques should be used for optimal extraction of parameters 
F 1 ,  F 2 and BW3o: the fast Fourier transform with rec- 
tangular window for F z and the Steiglitz-McBride method 
with maximum entropy for F 2 and BW3o. The accuracy of 
the FFTR algorithm in estimating Fz is approximately 10 
Hz and SMME extracts F 2 and BW3o to within 50 and 27 
Hz, respectively. An accuracy of 50 Hz for F 2 c a n  be con- 
sidered to be rather poor but this may be explained by the 
fact that SMME gives spectral peaks with unstable ampli- 
tude (DURAND e t  al., 1986). Indeed, it was observed that 
the amplitude of F 2 w a s  overemphasised for some patients 
and the algorithm substituted F 2 for the real value of the 
dominant spectral peak. Then, although this algorithm 
estimates the location of the spectral peaks well, its accu- 
racy is reduced because of the interchanging of F1 and F 2 . 

These results on the accuracy of the spectral parameters 
can be compared with those of DURAND et al. (1986), who 
studied the influence of signal truncation and background 
noise on the spectra of aortic bioprosthetic valve sounds. 
However, the results on the accuracy of BW3o could not be 
compared to any reported study. In the analysis of Durand 

c et al., the aortic closing sounds were perturbed by a rela- 
tive change in the sound duration and noise addition, and 
their influence on F z and F 2 w e r e  observed. Following 
truncation of the signal, SMEZ and FFTR presented the 
best stability for F1 and SMME for F2,  which is in 
accordance with our results. Following addition of random 
noise, no variation was observed for F i estimated with 
FFTR. As shown in this analysis, F z estimated with FFTR  
is also little affected by random noise. However, a varia- 
tion of 20 Hz was obtained by Durand et al. for F 2 esti- 
mated with SMME, which is different from our result. As 
seen in Fig. 4, addition of random noise had little effect on 
the accuracy of F 2 ,  except at a truncation level of 15 per 
cent. 

This difference can be explained by i the methodology 
used to extract the frequency peaks. DuCand et al. searched 
for spectral peaks between 20 and /1000 Hz. In this 
analysis, the detection of the spectral peaks has been 
limited between 20 and 500 Hz to minimise the rebound 
effects seen in the high-frequency range with the FFTR  
and FFTS algorithms, and to limit/the contribution of 
false spectral peaks when using maximum entropy algo- 
rithms. Indeed, as presented by LAN~ and MCCLELLAN 
(1980), spurious peaks are generated by parametric 
methods of spectral analysis for low/S/N ratios. By evalu- 
ating the spectral peaks between 20 and 500 Hz, fewer false 
peaks of higher amplitude have been substituted for the 
real value of F 2 obtained with SMME. Thus, the accuracy 
of F z has been less affected by the noise addition. 

Limiting the peak detection to frequencies below 500 Hz 
is justified by three analyses. First, BRAIS et al. (1986) found 
no significant information beyond 500 Hz when using 
Welch's method of spectral estimation (WELCH, 1967) in 
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patients wifh normal aortic Ionescu-Shiley bioprosthetic 
heart valves, Secondly, FOALE et al. (1983) and Joo et al. 
(1983) found no dominant spectral peaks (F 1 or F2) above 
342 Hz in pat ients  with normal and abnormal aortic bio- 
prosthetic heart valves. 

In a previous analysis reported by CLOUTIER et al. 
(1987b), it was shown that the coherent detection algo- 
rithm used to select the mean aortic closing sounds 
increased the S/N ratio of the signals by approximately 10 
dB. The mean S/N ratios of A 2 , before and after coherent 
detection, were 30 and 40 dB, respectively. In this analysis, 
the accuracy of F1, F 2 and BW3o computed for - 4 0  dB 
and  - 3 0  dB of random noise and a truncation level of 8 
per cent were both 10 Hz for F~ estimated with FFTR,  50 
and 45 Hz for F 2 and 27 and 23 Hz for BW3o estimated 
with SMME. We can therefore conclude that the coherent 
detection algorithm of A 2 did not increase the accuracy of 
the spectral parameters. However, as seen in Table 1, 
coherent detection of A 2 reduced the error in the high- 
frequency range (500-1000 Hz) of the estimated spectra 
significantly. 

In the last analysis, the variability of the spectral param- 
eters computed from three recordings of the 15 patients 
was estimated. This variability can be explained by the 
limited accuracy of the spectral estimation technique, the 
changing physiological conditions of the patient, changes 
in the coupling between the microphone and the thorax as 
well as its location, and many other factors. However, the 
accuracy of the spectral technique should be considered 
independent of the other factors. The accuracy and varia- 
bility of F~ were estimated to be 10 and 13 Hz, respec- 
tively. Almost no difference is observed between them. 
Thus, F~ extracted from different recordings of the same 
normal patient presents a good reproducibility. The varia- 
bility of the normal acoustic signature of F 2 was 42 Hz 
and the accuracy of the SMME algorithm was 50 Hz. 
Then, we can only conclude that the reproducibility of F 2 
is less than 50 Hz and could not be estimated because of 
the lack of accuracy of the SMME algorithm. Finally, the 
accuracy and variability of the normal acoustic signature 
of BW3o were estimated at 27 and 62 Hz, respectively. This 
difference between the two measurements shows clearly the 
variability of this parameter from one recording to the 
other. These results should give some insight when study- 
ing F1, F 2 and BW3o from normal or abnormal patients, 

As reported in part 2 of this series of papers (CLOUTIER 
et al., 1987b), the mean aortic closing sounds were charac= 
terised by a duration of 24 -t- 9 ms and a truncation level 
of 8 per cent. The duration of the simulated sounds for a 
truncation level of 8 per cent is 18 + 4 ms. This difference 
between the duration of the aortic closing sounds and the 
corresponding simulated sounds could be explained as 
follows. For  some patients, a period of low sound activity 
was included before the onset of A 2 . By averaging the 
aortic closing sounds in the coherent detection algorithm, 
this low sound activity was often reduced to the back- 
ground noise of A 2 . Then, in the simulation approach, this 
period of inactivity was excluded and the synthesised 
sounds began with the onset of A 2 . 

5 Conc lus ion  
The results on the accuracy of F 1 and F 2 provide an 

opportunity to discuss the clinical results of STEIN et al. 
(1980; 1984), BRAIS et al. (1986), FOALE et al. (1983) and 
Joo et al. (1983). 

An important finding of our studies is that the F F T  with 
a rectangular window is one of the best techniques for 
estimating Fz of aortic closing sound spectra. This result 

confirms the validity of the clinical studies performed by 
Stein et al. Welch's method with Harming window (WN) 
was used by Brais et al. to characterise the spectral dis- 
tribution of normal patients with an Ionescu-Shiley bio- 
prosthetic heart valve. Because WN and F F T N  used the 
same temporal window, we can expect better results with 
FFTR and SMME because FFTR has a mean error in the 
spectral distribution of 3.0 dB lower than F F T N  between 
20 and 200 Hz and because SMME has a mean error of 
6.7 dB lower than F F T N  between 200 and 500 Hz. In 
addition to this analysis, Brais et al. estimated F 1 o f  
normal patients also with the WN algorithm. Better results 
should be expected with FFTR. 

Foale et al. and Joo et al. used parametric spectral tech- 
niques in their clinical analyses. Their choices were based 
on the fact that the FFT-based methods did not provide 
sufficient frequency resolution. However, as reported in 
this analysis, the FFT-based method gives good results for 
extracting F 1 . Then, in the study of Foale et al. and Joo et 
al., based on the extraction of F1 and F2,  better  results 
could have been obtained by using the FFTR algorithm 
for extracting F1. 
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