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Abstract-The objective of this paper is to compare the performance
of conventional FFT-based (basic periodogram and Welch's method)
and modern parametric (all-pole and pole-zero modeling) methods in
estimating the spectral distribution of cardiac bioprosthetic valve
sounds, and for the extraction of the two most dominant frequency
peaks (DFP). These methods were tested for stability by adding ran-
dom noise and truncating the bioprosthetic valve closing sounds, and
for reproducibility by measuring the variance of the spectra obtained
from three consecutive recordings of each patient. Results from a group
of 11 patients show that the basic periodogram and Steiglitz-Mc-
Bride's method with maximum entropy (pole-zero modeling) provide
the most consistent (minimal variance) estimates of the DFP's of the
closing sounds. However, for estimating spectral distributions, the most
stable methods appear to be the basic periodogram and Steiglitz-
McBride's method with extrapolation to zero. The basic periodogram
appears to be the best compromise to estimate both the spectral distri-
bution and the DFP's of the bioprosthetic closing sounds.

I. INTRODUCTION
IT is now widely accepted that spectral analysis of the

closing sounds produced by bioprosthetic valves can
provide useful indication of degenerative changes which
can lead to dysfunction of the valve. For instance, recent
studies [5], [7], [10]-[12] have clearly demonstrated that
the dominant frequency peaks of the closing sounds shift
towards the higher frequencies as a result of valve tissue
calcification, fibrosis, and stiffening. As a clinical tech-
nique for periodically monitoring patients with prosthetic
valves, spectral analysis of valve sounds is particularly
attractive since it is noninvasive, atraumatic, and poten-
tially very sensitive.

Several methods have been investigated for obtaining
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the spectral characteristics of bioprosthetic valve sounds.
Some methods are based on the fast Fourier transform
(FFT), while others utilize more recent ("modem") par-
ametric methods of system identification. Both ap-
proaches have been. applied in clinical studies and have
given interesting results. However, because of the occur-
rence of other cardiac vibrations during the closure of a
bioprosthetic valve, only a portion of the closing sound is
available for analysis. It has thus been suggested [5], [7]
that FFT-based methods do not provide sufficient fre-
quency resolution to completely characterize the spectrum
of bioprosthetic closing sounds. A high-resolution maxi-
mum entropy method (Steiglitz-McBride's method) based
on pole-zero modeling has been shown [6] to give supe-
rior frequency resolution but its stability has not been
evaluated in the case of bioprosthetic closing sounds. In
addition, some a priori knowledge on the properties of
the signal has not been taken into account. For instance,
it is known that bioprosthetic closing sounds are com-
posed of quasi-periodic transients of short duration. Data
modeling procedures used in modem parametric methods
should therefore account for the fast decaying rate of the
temporal signal by forcing the impulse response of the
model to decrease rapidly towards zero outside the sam-
pled interval.

In this paper, we propose to present a brief summary of
conventional FFT-based methods (basic periodogram and
Welch's method) and modem parametric methods based
on all-pole and pole-zero modeling for this particular
problem of spectral estimation. A comparative analysis of
the stability and performance of these methods for the data
obtained from a group of 1 I patients with normally func-
tioning bioprosthetic valves implanted in the aortic posi-
tion is presented and discussed.

II. SPECTRAL ESTIMATION

Nonparametric methods of spectral analysis utilize var-
ious combinations of the FFT, windowing, and autocor-
relation functions [3]. For instance, the basic periodo-
gram of a signal x(n) of duration N is defined as

1
N-1 2

PN(w) ZN x(n)e-jw
N n= 0

(1)
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Welch [13] has introduced a modification of the period-
ogram which is particularly well adapted to the FFT al-
gorithm and reduces both the variance and the bias of the
periodogram. The signal x(t) is first sampled and divided
into R segments (xr (n)) of duration N and the spectrum is
estimated with

R

S. (w) E Xr (ejw)12 (2)RNU r= I

where
N-1

Xr (ei') - Z xr(n) w(n) e (3)
n =O0

and U is the power of the windowing function. The exact
frequency resolution is determined by the spectral prop-
erties ofthe windowing sequence w(n). For estimating the
spectrum of transient signals like bioprosthetic valve
sounds, the input signal is subdivided such that each seg-
ment comprises only one transient which is assumed to
exist for 0 s t c T.

In parametric methods of spectral analysis, a model of
an equivalent system is assumed in the formulation of the
problem. The objective is then to estimate the parameters
of this model from measurements of the signal made over
a limited period of time. Maximum entropy methods can
be regarded as a special case of linear predictive coding
or LPC [8]. The basic idea of LPC is that a signal s(n)
can be modeled as the output of an equivalent system ex-
cited by a given random stationary signal x(n), such that

P Q
s(n) =- aks(n - k) + Z bkx(n - k) (4)

and ak, bk are the parameters describing the system. These
methods do not use windows and their principal objective
is to increase spectral resolution and accuracy when only
a short-duration sample of the signal is available [2], [4].
In other words, the signal or its autocorrelation function
is extrapolated beyond the sampled interval on the basis
that the spectral estimate is mostly random and has a max-
imum entropy behavior. The objective is to preserve the
information contained in the signal.

Parameters ak and bk are estimated by minimizing the
total squared error E between the actual signals s(n) of
duration N and the predicted signal such that

E s(n) -(- aks(n - k)
n=0 k =I=

Q 2

+ Z bkx(n - k)) =0. (5)

The transfer function H(z) of the equivalent system is

'It should be recalled that for spectral estimation of random transient
signals, the "energy" spectrum *I' (w) is more appropriate than the
"power" spectrum S,, (w). However, this formalism is generally not ein-
forced because the two spectra are related by *1' (w) = TS,, (w).

expressed as
Q P

H(z) = Z bkz l1 + E akZ
k=O / k= 1

(6)

and the power spectrum of s(n) is estimated by using z =
ejW in the transfer function and computing its modulus
IH(e 1W)2. In the all-pole model, the numerator of (6) is
replaced by a constant G representing the gain of the sys-
tem.

Traditionally, LPC analysis was done by assuming that
the input signal to the system was a sample from a given
random process. However, for estimating the spectrum of
transient signals, the impulse function signal x(n) = b(n)
is a more appropriate input. Least-squares minimization
of (5) has been studied by many groups. The methods
proposed by Prony, Shanks, Kalman, and Steiglitz-
McBride are well known. A review and comparison of
these methods, as they apply to the modeling of heart
sounds, was done by Joo et al. [6], [7]. Their results in-
dicate that Steiglitz-McBride's method is superior in
overall performance. A drawback of this method is that
its convergence properties are not known [7], [9]. How-
ever, Joo et al. have shown that, for P = Q = 8, five
iterations of the algorithms are usually sufficient to obtain
a good estimate of the signal. Increasing the model order
did not seem to improve substantially this estimation.

III. METHODS

A. Data Acquisition
Patients with normally functioning lonescu-Shiley bio-

prosthetic valves implanted in the aortic position were se-
lected for this study. The ECG and PCG were recorded
on a multichannel FM recorder with a bandwidth of 0-
2500 Hz. At least three recordings were made of each
patient over a period of 30 months. The phonocardio-
grams were recorded in the supine position with a contact
microphone placed at the second right intercostal space
(aortic area). The microphone (Hewlett Packard No.
21050A) has a flat frequency response (±3 dB) from 0.2
to 2000 Hz. Prior to recording, the ECG was low-pass
filtered (-12 dB/octave) at 100 Hz and the PCG was pro-
cessed by a third-order high-pass filter (18 dB/octave) with
a cutoff frequency of 100 Hz to emphasize the high fre-
quency components of the prosthetic closing sounds.
At playback, the PCG was low-pass filtered (-48 dB/

octave) at 900 Hz with an eight-order filter to prevent
aliasing. The ECG and PCG were digitized with a 12-bit
analog-to-digital converter at sampling rates of 250 and
2500 Hz, respectively. An example of the digitized sig-
nals is shown in Fig. 1. Visual examination of the PCG
shows that it is composed of quasi-periodic transients of
short duration with a fast decay rate and background noise.
The first (S 1) and second (S2) heart sounds are the two
major features of the PCG. S1 is produced during ven-
tricular contraction and may consist of two high fre-
quency components (MI and T1) associated to the closure
of the mitral and tricuspid valves, respectively. The entire
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Fig. 1. Example of the ECG and PCG recorded in a patient with an

Ionescu-Shiley pericardial xenograft valve implanted in the aortic posi-
tion.

duration of S1 is approximately 100 ms. Similarly, S2,
which is produced during ventricular relaxation, has two
components (A 2 and P2) associated to the closure of the
aortic and pulmonary valves. Each component usually
lasts less than 50 ms. During inspiration, the two com-

ponents are often separated from each other by 30-60 ms;
during expiration they come close together. Since A 2 and
P2 are not temporally correlated during normal breathing
and P2 is generally smaller than A 2 when recorded in the
aortic area, coherent detection of A2 and averaging over

several cardiac cycles is used to minimize contributions
from P2. Coherent detection and averaging increase the
signal-to-noise ratio of the A 2 component.
A QRS detection algorithm was developed to locate au-

tomatically the beginning of each cardiac cycle. For each
patient, a typical aortic closing sound recorded during
maximal separation of A 2 from P2 was selected as a ref-
erence closing sound. The interval between the detected
QRS of the corresponding cardiac cycle and the beginning
of the reference closing sound was used to locate and se-

lect interactively a series of closing sounds. Time align-
ment with the reference sound was done by a correlation
technique and 20 closing sounds having a correlation level
greater than 60 percent were chosen for further process-
ing. An ensemble average of the 20 signals was also com-
puted to represent the "mean" closing sound. When pro-
cessing subsequent recordings of the same patient, the
reference template of the first recording was used to max-
imize the probability of finding similar closing sounds.
The reproducibility of the closing sounds from one rec-

ording to the other was assessed independently for each
patient by computing the correlation levels between the
three ensemble averages obtained for each patient. Data
from 11 patients with highly reproducible closing sounds
(r - 0.80) were then chosen to compare the performance
of the FFT-based and parametric methods described in the
previous section.

B. Spectral Analyses
The following abbreviations are used to represent five

different algorithms of spectral analysis which were ap-

plied to the selected closing sounds.

P: Basic periodogram (FFT) of the mean closing
sound,

W: Welch's method with a hanning window,

AP: All-pole modeling with the autocorrelation
method (16 poles),

SMME: Steiglitz-McBride's method with maximum
entropy (8 poles and 8 zeroes),

SMEZ: Steiglitz-McBride's method with extrapola-
tion to zero values (8 poles and 8 zeroes).

With algorithm W, the 20 closing sounds obtained at each
recording were processed with Welch's method. All other
algorithms were applied to the mean sound obtained by
coherent detection. The spectra were all scaled in decibels
(dB) to facilitate the comparisons.
As previously mentioned, prosthetic closing sounds

consist of acoustic transients with fast decaying rates.
They are low-entropy signals. This a priori information
is taken into account by algorithm SMEZ, which is iden-
tical to algorithm SMME except that the input signal is
extended with zero values for a total of 256 samples (102
ms) before the analysis. This simple procedure produces
a low-entropy signal by forcing the Steiglitz-McBride al-
gorithm to extrapolate the signal to zero values outside
the sampled interval. Eight poles and eight zeroes were
used in the Steiglitz-McBride algorithm. This may not be
the optimal choice but it allows a direct comparison of
our results with those of Joo et al. In addition, 16 poles
were used for all-pole modeling so as to retain the same
number of coefficients for comparison.

C. Comparison Procedures
To evaluate the stability of FFT-based and parametric

methods of spectral analysis, two tests were performed on
the first recording from each of the 11 patients. The first
test consisted in reducing the duration of the closing
sounds by 5 percent and repeating the spectral analyses.
This test was intended to simulate the difficulty of deter-
mining the exact duration of the A 2 component. The sec-
ond test consisted in adding random noise equivalent to 5
percent of the total energy of the digitized closing sounds
(before the coherent detection) and repeating the spectral
analyses for a third time. This second test was used to-
measure the influence of variations in signal-to-noise ratio
(SNR) between successive PCG recordings obtained from
the same patient. For each method of spectral analysis,
two error spectra were computed by substracting from the
original spectrum, the spectra resulting from the truncated
or noise-contaminated signals. Mean absolute error spec-
tra were then computed and averaged over all patients.
Two frequency parameters, the dominant frequency

peaks (DFP), were also extracted from each spectrum.
The DFP's (F1 and F2) were chosen such that the intensity
of F1 was higher than that of F2. When F1 and F2 had
almost the same intensity (±1 dB), F1 was chosen as the
lowest frequency and F2 as the highest frequency. Mean
absolute errors between the frequency parameters of the
original spectra and those measured after truncation and
noise addition were computed for each method.

In order to evaluate the practical usefulness of each
method for the follow-up of patients with cardiac bio-
prosthetic valve, another study was done on the three rec-
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ordings obtained from each patient. This study was based
on the assumption that bioprosthetic valve degeneration is
not significant during the first five years following valve
implantation [5]. For this specific study, each spectrum
was normalized to its peak spectral value (0 dB) in order
to minimize the influence of microphone coupling and
variability in heart sound intensity observed between the
various recordings of the same patient. 18 frequency pa-
rameters were then obtained from each spectrum and sub-
mitted to a statistical analysis of variance. Parameters P 1
and P2 were the DFP's, while parameters P3 to P 18 were
16 intensity levels (in decibels) of frequency bands se-
lected as follows:

* eight 25 Hz frequency bands centered at 25, 50, * *
200 Hz

* six 50 Hz frequency bands centered at 250, 300, * *,
500 Hz

* two 100 Hz frequency bands centered at 650 and 850
Hz

For each method of spectral analysis, mean values and
variances of the frequency parameters obtained from the
three recordings of each patient were computed and aver-
aged individually for the group of 11 patients. The re-
sulting mean values were then compared to find which
methods showed minimum variance.

IV. RESULTS
A. Stability of the Methods
'An example of the influence of small variations (5 per-

cent) in SNR and closing sound duration on the spectrum
estimation of the five algorithms is shown in Fig. 2. All
methods except SMME appear to be quite stable to both
types of perturbation. The basic periodogram, all-pole
modeling and SMEZ seem to be more sensitive to trun-
cation than to noise addition in the high frequency portion
of the closing sound spectrum (above 400 Hz).
A comparison of a typical mean closing sound (panel

A) with the impulse response of the model obtained by
Steiglitz-McBride's method with extrapolation to zero
values (panel B) and maximum entropy (panel C) is shown
in Fig. 3. The impulse responses from both methods match
relatively well the mean closing sound inside the sampled
interval (0-24 ms). However, under the maximum en-
tropy criterion, the addition of 5 percent of noise or re-
duction of sound duration by 5 percent produced a com-
pletely different impulse response outside the sampled
interval. For extrapolation to zero values, no significant
changes were observed in that region. These results show
clearly that maximum entropy methods are not suitable
for modeling transient signals of short duration.

Inspection of the mean absolute error spectra obtained
from the 11 patients revealed that the error due to trun-
cation and noise addition was generally higher above 300
Hz. The mean value of these spectra were thus computed
from 20 to 300 Hz and from 300 to 1000 Hz in order to
better characterize the frequency dependence of these dis-
turbances. Results are given in Table I. In the low-fre-
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Fig. 2. Example of the influence of small variations in SNR and closing
sound duration on the spectrum estimation of five algorithms: P = basic
periodogram, W = Welch's method, AP = all-pole modeling, SMME
= Steiglitz-McBride's method with maximum entropy and SMEZ =
Steiglitz-McBride's method with extrapolation to zero values. Full lines
represent spectra obtained by processing a closing sound from a typical
recording, dot-dashed lines represent spectra obtained following reduc-
tion of sound duration by 5 percent and dashed lines represent spectra
obtained after adding 5 percent of random noise to the total energy of
the original closing sounds.
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Fig. 3. Comparison of the original mean closing sound (a) with the im-
pluse response of Steiglitz-McBride's method with extrapolation to zero
values (b) and with maximum entropy (c).

quency range (20-300 Hz), all methods except SMME
show very small errors ( c 1.3 dB) for both truncation and
noise addition. Above 300 Hz, the error due to truncation
is small for Welch's method (1. 8 dB). The error increases
gradually with SMME (3.0 dB), SMEZ (3.6 dB), and all-
pole modeling (4.2 dB). As expected, the highest error is
obtained with the basic periodogram (5.7 dB). For noise
addition, the error above 300 Hz is small for all-pole
modeling (1.4 dB) and the basic periodogram (2.2 dB).
Welch's method and SMEZ give similar errors (3.1 and
3.3 dB) while the error increases significantly with SMME
(5.9 dB).
Mean absolute errors (MAE) (measured in Hertz) of F1

and F2 after truncation and noise addition are given in
Table LI. Estimation of F1 appears to be relatively insen-
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TABLE I
MEAN ABSOLUTE ERRORS IN DECIBELS OBTAINED FROM 11 PATIENTS
FOLLOWING TRUNCATION OF SIGNAL DURATION BY 5 PERCENT AND

ADDITION OF 5 PERCENT OF RANDOM NOISE

TRUNCATION NOISE

ALG 20-300 Hz 300-1000 Hz 20-300 Hz 300-1000 Hz

dB dB dB dB

P 1.2 5.7 0.1 2.2

W 1.3 1.8 0.05 3.1

AP 0.7 4.2 0.1 1.4

SMME 3.6 3.0 2.3 5.9

SMEZ 0.7 3.6 0.6 3.3

TABLE II
MEAN ABSOLUTE ERRORS IN HERTZ OF THE TWO MOST DOMINANT
FREQUENCY PEAKS (F, AND F2) FOLLOWING TRUNCATION BY
5 PERCENT OF THE CLOSING SOUND DURATION OR ADDITION

OF 5 PERCENT OF NOISE TO THESE CLOSING SOUNDS

TRUNCATION NOISE

ALG Fl F2 Fl F2

(Hz) (Hz) (Hz) (Hz)

P 0.4 37.7 0.0 8.0

W 3.1 50.6 0.0 21.8

AP 1.3 131.7 0.5 55.9

SMME 35.1 33.2 20.9 19.5
SIMEZ 0.0 75.4 2.2 62.9

sitive to truncation and noise addition for all algorithms
(MAE c 3.1 Hz) except for SMME which produced
MAE of 35.1 and 20.9 Hz, respectively. Estimation of F2
is very sensitive to both truncation and noise for all al-
gorithms. Best results are obtained with the basic period-
ogram, SMME and Welch's method (8.0 c MAE <

50.6 Hz). SMEZ produced errors of 75.4 and 62.9 Hz for
truncation and noise addition while all-pole modeling pro-
duced the largest errors, 131.7 and 55.9 Hz, respectively.
In summary, all algorithms are better than SMME for es-
timating F1 while the basic periodogram and SMME are
the most consistent methods for estimating F2.

B. Application to the Follow-Up of Patients with
Prosthetic Valves

Results from the multiple analysis of variance are shown
in Table III for parameters P 1 and P2 and in Fig. 4 for
parameters P3-P 18. The variance of the two DFP's (F1
and F2) were normalized with their mean values to com-
pensate for their tendency to increase proportionally with
frequency [5]. According to Table III, estimation of F1 is
quite uniform for all algorithms. Corresponding normal-
ized variances (nv) are relatively small except for SMME.
Estimation of the second DFP (F2) varies significantly
from one algorithm to another. In this case, the methods
can be separated in two groups: the basic periodogram,
SMME and SMEZ produced estimates around 200 Hz
while Welch's method and all-pole modeling produced

TABLE III
MEAN VALUE (m) AND NORMALIZED VARIANCE (nv) OF THE Two MOST
DOMINANT FREQUENCY PEAKS (Fl AND F2) OF PROSTHETIC CLOSING
SOUNDS OBTAINED FROM THREE CONSECUTIVE RECORDINGS OF 11

PATIENTS. VARIANCES WERE NORMALIZED WITH THE MEAN
VALUES OF THE DOMINANT FREQUENCY PEAKS IN ORDER
TO COMPENSATE THEIR DEPENDENCE ON FREQUENCY

F1 (Hz) F2 (Hz)

ALG m nv m nv

P 114 1.7 205 35.2

W 116 2.5 375 56.9

AP 104 1.3 344 191.1

SMME 117 8.8 154 15.9

SMEZ 112 2.2 227 91.6

200

tOO

cm 50
N

- 20
0

0

51

II ,y V I . .,
25 50 100 200 500 850
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Fig. 4. Plot of the variance of the spectral intensity levels of the five al-
gorithms obtained from three successive recordings of 11 patients. The
same abbreviations of Fig. 2 are used.

estimates around 360 Hz. SMME and the basic periodo-
gram seem to give the most stable estimates on the basis
of lowest normalized variance. It is also interesting to note
that all-pole modeling is a very unstable estimator of F2.

Information on the variance of the spectral intensity
levels of these closing sound spectra is provided by Fig.
4. As shown in this figure, the variance is generally min-
imum around F1 (115 Hz) and increases rapidly above and
below this dominant frequency peak. The basic periodo-
gram, Welch's method and SMEZ give minimal variances
of about 1 HZ2 while all-pole modeling and SMME show
minimal variances of 5 and 20 Hz2, respectively. The lim-
itations of SMME for estimating spectral intensity levels
are clearly demonstrated here. A similar, but less impor-
tant, effect can be observed for all-pole modeling.
The small variance of the spectral intensity levels ob-

tained with Welch's method compared to the other algo-
rithms for frequencies above 400 Hz requires some expla-
nations. Even if the significant frequency content of
bioprosthetic closing sounds decreases rapidly above 400
Hz, coherent detection and averaging of 20 closing sounds
increase their SNR but do not modify the truncation effect
on the signal. As shown in Table I, the effect of truncation
was always significant (-3 dB) above 300 Hz except for
Welch's method. Indeed, Welch's method reduced con-
siderably the effect of truncation in the high frequency
band because it used a hanning window which tapers the
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signal to zero values at its beginning and end. However,
this window also reduces the frequency resolution of the
method.

V. DISCUSSION AND CONCLUSION
Present methods of "signature" analysis of prosthetic

valve sounds are mostly based on a few parameters ex-
tracted from the spectra of the valve closing sounds. For
instance, an FFT-based method has been used by Stein et
al. [10]-[12] for relating changes in F1 to the degenera-
tion of porcine xenograft valves. Joo et al. [71 were the
first investigators to use Steiglitz-McBride's methods with
maximum entropy for the spectral analysis of porcine
valve sounds. They have shown that a heuristic vector
X(F1, F2) can be used to develop a Gaussian classifier
capable of separating normal from abnormal valve sounds.
A similar method used by Foale et al. [5] showed that,
following valve dysfunction due to degeneration of the
leaflets and infection, F1(89 ± 15 Hz) and F2(154 + 25
Hz) of normal porcine valves increased up to 139 + 54
Hz and 195 + 75 Hz, respectively.
Our results on the stability (Table II) and reproducibil-

ity (Table III) of the two DFP's show that all algorithms,
except SMME, produced estimates of F1 which are highly
stable. All-pole modeling introduces a small bias which
consists in underestimating the value of F1 by 10 Hz. Poor
performance of SMME results from the fact that this al-
gorithm models the signal as the output of an under-
damped system for which the relative intensity of F1 and
F2 are very sensitive to both truncation and noise. For
closing sound spectra with two DFP's of about the same
intensity, F1 may be interchanged with F2 from recording
to recording. For most algorithms, estimation of F2 is
much more sensitive to truncation and noise than esti-
mation of F1. All-pole modeling is unable to estimate F2
because, most often, close DFP's of different intensity are
merged in one peak as F1 and a third frequency peak of
lower intensity is found as F2. Similarly, the windowing
function used in Welch's method produced smoothed
spectra where the true F2 is merged with F1 and a smaller
peak of higher frequency is found as F2. Finally, the three
other algorithms seem to provide consistent estimates of
F2 (around 200 Hz). Best methods are SMME and the
basic periodogram, while SMEZ gives acceptable results.
Indeed, SMEZ produced results very similar to those of
the basic periodogram except for a higher variance in the
estimation of F2. This discrepancy results from the limi-
tation of Steiglitz-McBride's method to match a signal
over a long period of time with a small number of poles
and zeros. Extrapolation to zero values was obtained by
matching the impulse response of the system with a signal
extended with zero values up to 100 ms while under
maximum entropy, the impulse response was always
matched with a signal of duration less than 40 ms. A bet-
ter match for SMEZ would require a greater number of
poles and zeros according to the Akaike criterion [1]. In
this way, second DFP's of small intensity would not be
missed by the least-squares minimization procedure. The

basic periodogram and SMME are thus the best methods
to estimate both F1 and F2, the true advantage of SMME
being in the evaluation of F2 only.

Stability and reproducibility of each method for the es-
timation of spectral distribution of prosthetic valve sounds
were also evaluated. While underestimating the real prob-
lems of closing sound selection (truncation) and SNR
variations, the two studies on the stability of the five al-
gorithms gave interesting results. As expected, the effect
of truncation and noise addition produced large errors in
the high frequency range (300-1000 Hz) of the spectral
estimates. In addition, Steiglitz-McBride's method with
maximum entropy also produced significant errors in the
low frequency range (20-300 Hz). As emphasized in Fig.
3, Steiglitz-McBride's method with maximum entropy
seems to produce spectral estimates with DFP's whose
damping factor is very sensitive to noise and truncation.
In other words, signal truncation and noise addition have
a negligible effect on the central frequency of the DFP's
but a strong effect on their relative intensity. For estima-
tion of spectral distributions, Steiglitz-McBride' s method
is stable only when modeling is done by extrapolating the
signal to zero values outside the sampled interval. Thus,
the model underlying SMEZ reflects much better the tran-
sient nature of the valve sounds than the model underlying
SMME, which is more appropriate for modeling signals
of indefinite duration. Results on the reproducibility of
the spectral distribution of bioprosthetic valve sounds are
in good agreement with those obtained from the stability
analyses. For instance, all three studies show that SMME
is not a stable estimator of the spectral distribution of bio-
prosthetic valve sounds. Welch's method seems very sta-
ble but suffers from a lack of frequency resolution. Best
methods are the basic periodogram and SMEZ, while all-
pole modeling can give good results.-

It can thus be concluded that the basic periodogram is
the best compromise for estimating both the spectral dis-
tribution and the dominant frequency peaks of biopros-
thetic valve sounds. This suggests that, because of the
fast decaying rate of bioprosthetic closing sounds, trun-
cation error is generally not very important and probably
represents only a small portion of the total energy of these
sounds. This is confirmed by SMEZ which extrapolates
the signal to zero values outside the sampled interval and
produces results very similar to the basic periodogram.
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