
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 2, FEBRUARY 2009 215

Segmentation in Ultrasonic B-Mode Images
of Healthy Carotid Arteries Using Mixtures

of Nakagami Distributions and
Stochastic Optimization
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Abstract—The goal of this work is to perform a segmentation
of the intimamedia thickness (IMT) of carotid arteries in view of
computing various dynamical properties of that tissue, such as the
elasticity distribution (elastogram). The echogenicity of a region
of interest comprising the intima-media layers, the lumen, and the
adventitia in an ultrasonic B-mode image is modeled by a mixture
of three Nakagami distributions. In a first step, we compute the
maximum a posteriori estimator of the proposed model, using the
expectation maximization (EM) algorithm. We then compute the
optimal segmentation based on the estimated distributions as well
as a statistical prior for disease-free IMT using a variant of the
exploration/selection (ES) algorithm. Convergence of the ES algo-
rithm to the optimal solution is assured asymptotically and is in-
dependent of the initial solution. In particular, our method is well
suited to a semi-automatic context that requires minimal manual
initialization. Tests of the proposed method on 30 sequences of ul-
trasonic B-mode images of presumably disease-free control sub-
jects are reported. They suggest that the semi-automatic segmen-
tations obtained by the proposed method are within the variability
of the manual segmentations of two experts.

Index Terms—B-mode, Bayesian model, carotid artery, expec-
tation maximization (EM) algorithm, exploration selection algo-
rithm, mixtures of gamma distributions, mixtures of Nakagami dis-
tributions, segmentation, stochastic optimization, ultrasound.

I. INTRODUCTION

T HE intima-media thickness (IMT) is a double-line pattern
visualized by echography on both walls of the common

carotid arteries in a longitudinal image. It is formed by two par-
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allel lines, which consist of the leading edges of two anatomical
boundaries: the lumen-intima and media-adventitia interfaces
[1]. Semi-automatic segmentation of the IMT on the far wall of
carotid arteries in B-mode ultrasound images is a useful tool for
clinical applications. For instance, one can use such segmenta-
tions as a preprocessing step in order to compute various dynam-
ical properties of that anatomical region, such as the elastograms
[2]. Rayleigh distributions have been used to model the local
brightness of the speckle pattern in a B-mode image [3]–[9].
Rayleigh distributions correspond to the case of a high density
of independent random scatterers within the range cell [10]. In
[3], the image pixels are modeled by three Rayleigh distribu-
tions with means depending on their positions (inside the en-
docardium, between the endocardium and the pericardium, and
outside the pericardium). In [4], the parameters of the Rayleigh
distributions corresponding to two regions of the cross section of
a coronary artery are estimated iteratively using the maximum
likelihood estimator (MLE). Similarly, in [8], the parameters of
the Rayleigh distributions corresponding to the blood and the
arterial wall are estimated independently on each region with
the MLE. In [5], the mixture parameters are preestimated using
the iterative conditional estimation (ICE) procedure, upon con-
sidering a model with likelihood based on two Rayleigh distri-
butions corresponding to the blood and the cardiac muscle. In
[6], [7], and [9], the parameters are preestimated using the ex-
pectation-maximization (EM) algorithm [11], upon considering
a model with no Markov prior, so that the intensities are viewed
as independent variables.

Other distributions have been proposed for the local bright-
ness of the speckle pattern in B-mode images. When unre-
solved coherent components (i.e., the spacing is smaller than
the speckle size) are present within the tissue, the distribution
becomes Rician [12]. In the case of a resolved coherent com-
ponent (i.e., the spacing is larger than the speckle size), the
distribution becomes a generalized Rician [12]. Finally, the
case of few diffuse scatterers is modeled in [12] and [13] by a
pre-Rician K-distribution [14], [15]. Now, except for Rayleigh
distributions, none of these models can be easily estimated.
In order to overcome this technical difficulty, Shankar [16]
proposed to use Nakagami distributions [17] as an approxi-
mation of the true distributions. In [18], a compound model is
proposed that modulates the scaling parameter of the Nakagami
distribution with a gamma distribution. This is reminiscent of
the compound decomposition of the homodyned K-distribution
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Fig. 1. Nakagami distributions for various values of the shape parameter �. From left to right: � � � � ��� (pre-Rician distribution); � � ��� (generalized
Rician distribution); ��� � � � � (generalized Rician distribution); � � � (Rayleigh distribution); � � � (Rician distribution).

into a Rician distribution modulated with a gamma distribution
[19]. In [20], the Nakagami distribution is modulated with an
inverse Gaussian distribution instead of a gamma distribution.
These two models can be viewed as infinite mixtures of Nak-
agami distributions. An alternative consists in finite mixtures
of Nakagami distributions. In [21], four empirical models for
the gray level of the B-mode image are tested, including the
gamma distribution. In [22], the gamma distribution is adopted
as a likelihood in a model for contour segmentation of ultra-
sound images. Let us mention at this point that a Nakagami
distribution on the gray level of the B-mode image is equivalent
to a gamma distribution on the square of the gray level, and
this should not be confused with the gamma distribution on the
gray level itself.

Note that when a log-compression operator or various filters
are applied to the B-mode image, the model of Nakagami might
not be valid anymore, since these operators affect the statistics of
the data ([23, p. 705, second column, l.2-5]). In that case, a mix-
ture of Gaussian distributions has been used in [24]. But then,
a mixture of Nakagami distributions could also be used, except
that each distribution will then lack the physical interpretation
that stands when no filtering operators are applied. In the pro-
posed method, it is assumed that the radio-frequency (RF) image
is available and used to compute the B-mode image. In that case,
mixtures of Nakagami distributions are used to model the bright-
ness of the RF envelope. The parameters of the proposed model
can be estimated using the EM algorithm [11]. Although there
is no closed form to update parameters in the M-step of the EM
algorithm in the case of mixtures of Nakagami distributions, an
efficient iterative method is proposed here. To take into account
the heterogeneity of tissue echogenicities in B-mode images, the
distributions are estimated locally on nonoverlapping windows;
then, at each pixel, the two distributions corresponding to the
two closest adjacent (nonoverlapping) windows to that pixel are
averaged in proportions corresponding to the distance from that
pixel to each window, to ensure a smooth transition from one
window to the next one. In [4], the Rayleigh distributions are
also estimated locally, but on lines instead of regions, and no
averaging of the distributions is considered. Furthermore, un-
like [4]–[9], and [24], instead of associating each distribution
to a single tissue, the echogenicity of the intima-media layers
is modeled by a Bayesian model average of Nakagami distri-
butions, in order to take into account the heterogeneity of the
brightness in that anatomical region. The proposed distributions
are used to model the likelihood of a Bayesian model. The prior
of that model is based on a geometric constraint for rectilinear
curves, an anatomical prior on the IMT for normal subjects, and
a temporal constraint on the difference in the wall position be-
tween two subsequent frames. The solution sought is then for-

mulated as the maximum a posteriori (MAP) of the Bayesian
model. The MAP is computed using a stochastic optimization
algorithm called the exploration/selection (ES) algorithm [25].
The adaptation of the ES algorithm in the context of the pro-
posed method is novel, as well as the proposed model. The
reader can consult [26] for a recent survey on ultrasound image
segmentation.

II. MIXTURES OF NAKAGAMI DISTRIBUTIONS

A. Model

The Nakagami distribution [17] is defined by

(1)

for , where is the Euler gamma function. The real
number is called the shape parameter, and
is called the scaling parameter. The gray level (called local
brightness in [26]) of the speckle pattern in a B-mode image
was first modeled with that distribution by Shankar [16]. It re-
flects the local echogenicity of the underlying scatterers. When

, the Nakagami distribution is equivalent to a Rayleigh
distribution with . When

, the Nakagami distribution becomes Rician [16]; when
, the distribution is generalized Rician; and when
, the distribution is pre-Rician [16]. See Fig. 1 for

an illustration of Nakagami distributions corresponding to var-
ious values of the shape parameter.

To model the brightness in a region encompassing more than
one tissue, one is interested in mixtures of Nakagami distribu-
tions (MND)

(2)

where and . In this paper, the number of
kernels is fixed.

The question of identifiability [27] of the MND
model is now addressed. Namely, given the equality

for all , can one conclude that , , and
up to permutation of the kernels? The answer is

yes, as follows from the known case [28, Proposition 2] of
mixtures of gamma distributions. Indeed, a variable follows a
Nakagami distribution with parameters , if and only if the
variable (called the intensity in [29] and [30]) follows a
gamma distribution [16]:

(3)
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where and . Thus, for all practical purposes,
the parameters of the MND model are uniquely determined by
a large sample of data.

We found convenient to work directly with gamma distri-
butions (in particular, gamma distributions are well known in
the statistical literature). So, in practice, the change of variable

on the data is first performed in order to obtain a mixture
of gamma distributions (MGD)

(4)

where the constraint is set in order to insure
identifiability ( is the mean of a gamma distribution ).
The transformed data is then normalized between 0 and .
This range seemed convenient in our tests, as far as precision in
the numerical methods is concerned.

B. Estimator of the Parameters of the Model

Let be independent and identically-dis-
tributed (i.i.d.) samples of the MGD model. The goal is to esti-
mate the vector of parameters of (4).

Under the Bayesian paradigm, the following priors on the pa-
rameters are set.

1) A Dirichlet prior [31] on the mixture parameters

(5)

where the Dirichlet distribution is defined by
, on the sim-

plex and . Note that, under a Dirichlet
prior, the mean value of is , whereas its variance is
equal to . Thus, the larger the confi-
dence level , the smaller the variance of each proportion

. The special case and corresponds
to a uniform distribution. In this paper, the parameters
of the Dirichlet distribution are adjusted based on prior
anatomical information (see Sections III-D-2 and III-D-4).

2) A uniform prior on the parameters and

on
elsewhere

(6)

where is a compact set of the form
. In principle, one could take and

as the upper limit of real numbers in a particular imple-
mentation. In practice, we restrict the search to a much
smaller domain, upon taking and
(the units are adjusted according to the normalization of
the transformed data between 0 and ). In our tests, this
range appeared to be amply sufficient in order to contain
the estimated values of and .

We propose the MAP estimator

(7)

It can be shown from [32] that this estimator is strongly consis-
tent1. The MAP can be computed using the EM algorithm [11]

1This means that ������ �� � � 	 � 
, where � are the true pa-
rameters and �� is the proposed estimator for a sample of size � .

in the context of an arbitrary prior [11], [33]. The algorithm is
detailed in Table I and its derivation is given in Appendix A. The
stopping criterion adopted here is that the vector of parameters
at the current iteration is at a Euclidean distance of the vector
of parameters at the previous iteration that is smaller than 0.5%
of its Euclidean norm (at the current iteration). In our tests, the
EM algorithm is run with 10 random initializations, with a max-
imum of 10 000 iterations for each run. The solution with largest
posterior value is then taken.

III. APPLICATION TO THE SEGMENTATION OF ULTRASONIC

B-MODE IMAGES OF NORMAL CAROTIDS

The goal is to perform a segmentation of the IMT of carotid
arteries in sequences of ultrasonic B-mode images.

A. Anatomical Specifications

In Section III-C-4, anatomical information is used to con-
struct a prior for the proposed segmentation model. Namely, we
use the average IMT, as well as its spatial and temporal variance
(in the sense of [34]). For that purpose, we use the recent study
[34], in which 47 volunteers (29 women and 18 men) with a
mean age of years underwent ultrasound examination,
all of them presumed healthy. Setting a uniform prior on the four
categories defined in [34, Table 2], one infers that the overall
IMT in the common carotid artery is mm with a spa-
tial intrasubject variance of mm and a tem-
poral intrasubject variance of mm . We used
that study in the implementation of the proposed method, since
it covers a large span of age and includes only healthy subjects.
Furthermore, in order to have prior information on the lumen
diameter and the adventitia thickness, we used the study [35],
in which 233 patients (113 women and 120 men) with a mean
age of years underwent ultrasound examination. The
study population consisted of 104 ischemic stroke patients and
129 patients without stroke. On this population (cf. [35, Table
1]), the IMT in the common carotid artery was mm,
the lumen diameter was mm, the interadventitial di-
ameter was mm, and the outer artery diameter was

mm. One infers that the adventitia thickness was
mm. This information is used in Section III-D.

B. Image Acquisition

The RF images were acquired with a Sonix RP echograph
(Ultrasonix, Vancouver, BC, Canada) with a 10-MHz 38-mm
linear array transducer. The frame rate was set by the radiologist
and depended on the video sequence, but it was around 19 Hz.
In the axial direction, 1 mm corresponds to 51.9 pixels, whereas
in the longitudinal direction, 1 mm is equal to about 6.7 pixels
(i.e., 256 scan lines for 38 mm).

C. Segmentation Model

1) Random Fields: Given a sequence of RF images, let
denote the brightness of the B-mode envelope of the RF signal
in the th frame, i.e., the norm of the Hilbert operator applied to
the RF signal. This brightness reflects the local echogenicity of
the underlying configuration of scatterers filtered by the point-
spread function of the imaging system, but not directly the tissue
structure.
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TABLE I
EM ALGORITHM OF SECTION II-B AND APPENDIX A

Let be a region of interest that includes the inferior IMT
on a longitudinal view, the adventitia, and at least 50% of the
lumen, and that is delimited by two curves and , with
in the lumen and outside the carotid artery. The orientation
of the axial axis is from the lumen toward the carotid artery wall
of interest. In particular, .

For each frame , let be the observable random field
, where is the square of the brightness at pixel

of the corresponding B-mode image. Also, let and
represent the interface between the IMT and the lumen or the
adventitia, respectively, in the th frame. In particular, and

satisfy the point-wise relations (see

Fig. 2). The pair of curves is viewed as a hidden
discrete random field. The segmentation problem can then be
formulated as the estimation of conditional to .

2) Distributions: In order to take into account the lon-
gitudinal echogenicity variations of tissues, the region is
partitioned into vertical strips of about 3 mm (20 pixels)
wide each (see Fig. 2). The distribution of into each
strip is modeled by a mixture of three gamma distributions

. The distributions are ordered

by increasing value of the means . See Fig. 3 for an
example of an estimated distribution and its comparison with
the empirical distribution.

The following assumptions on the tissues are made.
1) The lumen corresponds locally in the th strip to the distri-

bution with lowest mean

(8)

since the lumen presents the lowest intensity.
2) The IMT corresponds locally to the mixture

(9)

where and . One could
have also considered only the gamma distribution

. But, in practice, the IMT presents
the three types of intensity. For most images in our data-
base, the media cannot be really distinguished from the
intima tissue. Thus, note that the media does not corre-
spond necessarily to one of the gamma distributions. A
discussion on how the weights are adjusted will be
presented in Sections III-D-2 and III-D-4. The proposed
averaging model is more robust to the variability in in-
tensity within the IMT due to various ultrasonographic
phenomena (e.g., nonuniform acoustic gel distribution,
acoustic reverberation, attenuation and shadowing, etc.).
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3) The adventitia corresponds locally to the distribution with
highest mean

(10)

since the adventitia presents the highest intensity.
Ideally, the estimation of the parameters should be performed

in a vertical strip centered at each pixel in the region of interest
. Since this would have resulted in time consuming com-

putations, we actually considered Bayesian model averaging
[36]–[38] as follows. Let be a pixel in the region of interest ,
and assume that the vertical strip of width 3 mm centered at
has a proportion of its area contained into the th strip and the
remaining part contained into the th strip. Then, we set

(11)

The proposed averaging operator yields a smoother transition of
the distributions from one vertical strip to another.

3) Likelihood: Using the definition of the curves and
, the assumptions (8)–(10), and the averaging of (11), we

define the likelihood as

(12)

4) Prior: In the proposed model, various priors that set regu-
larizing constraints on the segmentation process are considered.

For that purpose, let be a continuous piecewise linear curve
of the form , where the first coordinate indi-
cates the longitudinal position and the second component in-
dicates the axial position (these correspond to the horizontal
and the vertical positions, respectively, in Fig. 2). Thus, the
curve is parametrized by , . Let

, where . A smoothing spatial
constraint is defined by the normalized geometrical energy (or
action) of the curve

(13)

This quantity is computed with the approximation

(14)

where , and is the average value of .
Next, let and be two curves of the form

and , respec-
tively. Let (in mm), for . A thickness
spatial constraint is defined by the prior statistical energy

(15)

where and are as in Section III-A, and stands for the
Gaussian distribution.

Then, a spatial prior for the first frame is defined by

(16)

where is a positive real number. In the reported tests, the value
of was fixed throughout to 2. It appeared that the segmenta-
tions are affected by the value of . So, ideally, the value of this
parameter should be estimated in some fashion, but as of now,
we have not found a way of doing so.

Finally, we define the temporal constraint by the prior statis-
tical energy

(17)

with as in Section III-A.
Then, if and are the IMT boundaries in the th frame,

a spatio-temporal prior for the th frame is defined by

(18)

5) Posterior Distributions: For the first frame, the posterior
distribution is expressed as

(19)

[cf. (12) and (16)]. For the th frame, one obtains from
(12) and (18) the posterior distribution

(20)

The segmentation of the IMT is then viewed as the following
sequential MAP estimators:

(21)

where .

D. Segmentation Method

The proposed segmentation method is now presented in
details.

1) Manual Initialization: A few pixels (3–5 in our
tests) located in the IMT in the first frame of the sequence are
entered manually by an operator. The piecewise linear curve
defined by these pixels is computed.
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From Section III-A, the IMT plus half the lumen diameter
plus 1 SD of each is equal to 4.31 mm, whereas the IMT plus
the adventitia thickness plus 1 SD of each equals

mm. In our implementation, we actually
consider (somewhat arbitrarily) the region within 5 mm toward
the lumen and 3 mm toward the adventitia from the curve .
Accordingly, the curves and are obtained by translating

mm toward the lumen, and 3 mm toward the adventitia,
respectively.

2) Estimation in the First Frame: In each vertical strip , 800
points between the curves and are chosen randomly
according to a uniform distribution. A mixture of 3 gamma
distributions is estimated using the fea-
ture of the first frame at those 800 points, according to the
EM algorithm of Table I. Let be the average axial distance
between and . Let and be the
mean and the spatial standard deviation of the IMT as pre-
sented in Section III-A. Then, we adjust the hyper-parameters
of the Dirichlet prior on the proportions of the MGD by
setting , thus imposing the prior average thickness
to the region corresponding to the second gamma distribution.
The two other gamma distributions are given an equal prior
weight of , so that .
Also, from the anatomical specifications, we want the vari-
ance of to be equal to . Since the variance of the
marginal variable of the Dirichlet distribution is equal to

, one obtains ,
upon solving the equation .

The distributions , for , are constructed as in
Section III-C [cf. (8)–(11)]. For the first frame, the values

are taken in (9).
3) Segmentation in the First Frame: The continuous piece-

wise linear curves and located within 2 mm above
and below , that maximize the posterior distribution of (19)
are computed using the optimization algorithm of Section III-E.
Note that from Section III-A, the IMT plus 3 SD is equal to
1.57 mm. We actually take 2 mm (somewhat arbitrarily) to cover
an even wider span.

4) Estimation in the Subsequent Frames: Let and
be the two solutions of the current frame . Two curves and

are obtained by translating mm toward the lumen,
and mm toward the adventitia, respectively. From Sec-
tion III-A, half the lumen plus 1 SD is equal to 3.3 mm, whereas
the adventitia thickness plus 1 SD is equal to 1.72 mm. Now,
the estimation as in step 2 is performed, but with the following
modifications.

Let and be the average axial distances between
and , and between and , respectively. Let

. We set , , and ,
in order to impose the prior average thickness , , or to
the region corresponding to the first, second, or third gamma
distribution, respectively. Also, from the anatomical specifica-
tions, we want the variance of to be equal to . We
then deduce the value as men-
tioned above.

In (9), is estimated as the proportion of points in the

-th strip between and for which the distribution

Fig. 2. Top: subdivision of a region of interest into nonoverlapping vertical
strips (see Section III-C-2). Bottom: the curves � and � delimiting the IMT
are constrained within the region between � and � . The solution �� � � �
of the proposed method is viewed as the MAP of a Bayesian model (see Sec-
tion III-C-1).

estimated at the current frame is more likely than
the two other distributions.

5) Segmentation in the Subsequent Frames: The continuous
piecewise linear curves and within 1 mm toward
the lumen from and 1 mm toward the adventitia from
that maximize the posterior distribution of (20) are computed
using the optimization algorithm of Section III-E. The choice of
1 mm is arbitrary, but it seems amply sufficient to allow tracking
the movement of the wall from one frame to the next one, pro-
vided the transducer is held fixed.

6) Final Segmentation of the First 20 Frames: Once the
whole video sequence has been segmented, the first 20 frames
are estimated and segmented again using the solution found
at the 21st frame and working backwards. This procedure
helps correcting the errors found in the first few frames due
to an error in the initialization. The choice of 20 frames was
somewhat arbitrary but it seemed sufficient for the correction
purpose.

E. Optimization Algorithm

In order to perform the segmentation steps of Sections III-D-3
and III-D-5, an optimization algorithm is needed. In the context
of segmentation of ultrasonic images, various optimization al-
gorithms have been used, such as the simulated annealing algo-
rithm in [39], the simulated annealing algorithm with a modified
Gibbs sampler [40], the iterated conditional mode (ICM) algo-
rithm [41] in [42], iterative multigrid dynamic programming in
[3], and a genetic algorithm in [5].
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Fig. 3. Example of the distribution of the B-mode echogenicity in a vertical strip as a mixture of three Nakagami distributions, as estimated by the EM algorithm.
Top: The estimated mixture of Nakagami distributions is compared with the empirical distribution (normalized histogram). Bottom, from left to right, the three
estimated Nakagami distributions in the mixture and their proportions: lumen (almost Rayleigh) distribution (� � ����, � � � ����, � � ����); intima-media
Rician distribution (� � ��	�, � � � ��
�, � � ����); adventitia pre-Rician distribution (� � ����, � � � ��	�, � � ����).

In our case, we resort to the ES global minimization algorithm
of François [25], [43]. The ES algorithm is a particular gener-
alized simulated annealing algorithm that finds asymptotically
a global minimum of a function defined on a finite search
space . A population of solutions (or particles) is initialized
randomly. Then, at each iteration and for each solution inde-
pendently of the others, two operators are available: the random
exploration of a solution within a neighbourhood of the search
space endowed with a connected graph structure (exploration
step), or the replacement of the solution by the best solution of
the previous iteration (selection step). The exploration is chosen
with probability , called the exploration probability that de-
pends on the iteration . This probability decreases to 0 as the
number of iterations increases, at a known rate that ensures con-
vergence to the optimal solution (see Table II). Namely, let
be the diameter of the search space endowed with its connected
graph structure. In order that the ES algorithm converge to a
global minimum, it is sufficient to have (number of par-
ticles) and , where . See for instance [25] or
[44, Ch. 2], for detailed explanations. The general form stated in
[45, p. 40, line 1], for which the convergence is proved in [44],
[46], [47], is actually used in the proposed method; namely, the
exploration distribution can be any positive distribution on the
neighborhood of a solution, and not just the uniform distribu-
tion considered in [25], [43]. This yields a flexible form of the
ES algorithm.

Here, the function is as in Table II, and the search space is
the set of pairs of curves . Since each piecewise linear
curve is described by control points, we consider the search
space . That set is
finite upon considering a finite precision for real numbers on
the computer. The graph structure is defined by the symmetric

relation if and only if the axial coordinate
of each control point of ( ) is within a distance of the axial
coordinate of the corresponding point of ( , respectively).
For each control point, the distance is normalized so that the
axial coordinates of and are at a distance equal to 1. With
that graph structure, the search space has diameter equal to
(in our tests, we take systematically ). Next, if we set

, and we let the exploration step consist of up to
basic explorations within a distance (the number of steps

being drawn from a binomial distribution), then the diameter
of the new implicit underlying graph structure is equal to

.2 Thus, it is enough to take and
in order to have the asymptotic convergence property. In our
tests, we took (in practice, it is preferable to have more
particles than needed in order to accelerate the convergence of
the algorithm) and (we found emprically that is
in general a good choice). See [47] and [48] for similar choices
of the internal parameters of the ES algorithm.3

The application of the ES algorithm in the context of this
paper can be viewed as a variant of the localization and recon-
struction methods of [48]–[51]. Strictly speaking, (18) is equiv-
alent to a Gaussian statistical shape prior on the IMT of the
carotid artery (in a longitudinal view). However, contrary to the
above references, no reduction of dimensionality has been used.
Instead, the variant presented in Table II is based on local moves
of the control points (of the piecewise linear curves). In partic-
ular, we think that the proposed variant could be well adapted
to free curves (i.e., without shape prior).

2Incidentally, if one wished to have �� � �, one should take � � ���.
3In [47] and [48], the radius of exploration � is denoted �. Here, we do not

want to confuse with the speckle brightness �.
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TABLE II
ES ALGORITHM OF SECTION III-E

IV. EVALUATION METHODS

A. Evaluation of the Estimation Method

Let be the estimated mixture of
gamma distributions in the th strip of the th frame, as in Sec-
tions III-D-2 and III-D-4. We want to test the goodness-of-fit
of that distribution on the corresponding sample set . For that
purpose, we propose the following Bayesian test in the context
of [52, Sec. 5.2.4], that uses quantiles of distributions.

Given a fixed number of bins , and a distribution ,
we consider the equiprobable bins corre-
sponding to the quantiles of . Next, given a sample

of size , we let be the number of samples falling
in the th bin, for . We assume that the
numbers follow a multinomial distribution

,

with unknown parameters . We test the null
hypothesis , for if were the
true distribution for the sample , each bin would have prob-
ability (by construction). The alternative hypothesis is

.

The likelihood
under the null hypothesis is equal to

(22)

We choose the Dirichlet distribution

as prior for . This is actually Jeffrey’s prior [53],
[54] for the multinomial model. The corresponding marginal

is equal to

(23)

We obtain the Bayes factor

(24)

The null hypothesis is accepted if and only if .
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TABLE III
MEAN AND STANDARD DEVIATION OF THE SHAPE PARAMETER � AND THE AVERAGE �� OF THE THREE GAMMA DISTRIBUTIONS,

AS ESTIMATED OVER ALL VERTICAL STRIPS AND ALL FRAMES OF THE 30 SEQUENCES WITH THE EM ALGORITHM OF TABLE I

B. Evaluation of the Segmentation Method

Let video sequences of B-mode images be given. For each
sequence, one expert chooses a region of interest and a temporal
interval of two to three cardiac cycles. Then, two independent
experts segmented manually the IMT for each frame of these

sequences. This yields the curves and for the th
sequence , obtained by the th expert ,
on the th frame (the maximal value for varies with the
sequence and corresponds to two to three cycles).

Also, applying the proposed segmentation method of Sec-
tion III-D to the same sequences, one obtains the curves

and for the -th sequence on the -th frame.
Now, let be a distance between two curves. In

the reported tests, the average point-to-point distance and the
Hausdorff point-to-point distance [55] between the two curves
were considered. One then defines the following distance
between two segmentations of a same video
sequence

(25)

For each pair of indices and for each index
, we compare the population of distances between the

segmentation of the experts and , i.e., ,
with the population of distances between the semi-auto-
matic segmentation and the segmentation of expert , i.e.,

. This leads to the one-sided -value of
Welch’s approximate t-test that the random variable
is no more than (null hypothesis). With a confidence
level of , the test succeeds whenever . Note
that if and only if

.

V. EXPERIMENTAL RESULTS

A. Data

video sequences of B-mode images from 15 pre-
sumably disease-free control subjects were considered. For each
subject, longitudinal views of the right distal common carotid
artery and right proximal internal carotid were acquired by one
expert radiologist, for a total of two video sequences per patient.
The number of expert technicians for the manual segmentations
was 2.

B. Performance of the Estimation Method

Two versions of the proposed method were tested: 1) the
MGD model (which is equivalent to a mixture of Nakagami dis-
tributions after the change of variable ) estimated by the
EM algorithm (Section II-B); and 2) the mixture of exponen-
tial distributions (MED) model (which is equivalent to the mix-
ture of Rayleigh distributions after the same change of variable)
estimated by the EM algorithm.4 Using the evaluation method
of Section IV-A, we compared the goodness-of-fit of the esti-
mated mixtures of distributions performed on the 30 video se-
quences. For the distal common carotid artery, the percentage
of success of the goodness-of-fit test was 83.2% with the MGD
model, but only 73.4% with the MED model. For the internal
proximal carotid artery, the percentage of success was 91.5%
with the MGD model, but it was reduced to 87.7% with the
MED model. The mean value and standard deviation of the es-
timated parameters of the gamma distributions (using the EM
algorithm) are presented in Table III. For the MGD model, there
were only 224 runs of the EM algorithm out of 16 484 for which
the convergence was not reached within the maximum of 10 000
iterations.5

C. Performance of the Segmentation Method

In our tests, the first author chose the initial points for the
semi-automatic segmentations in the 30 video sequences. A
clinician (the fourth author) confirmed that there were no
atherosclerotic plaque appearing in the video sequences of the
internal proximal carotid and distal common carotid arteries.
This prior information was used only for the semi-automatic
computerized segmentations. The manual segmentations were
done independently by the two technical experts. In particular,
they had to decide by themselves if there were a plaque or not.
Furthermore, the clinician and the first author decided to restrict
the region of interest in the case of 3 of these video sequences

4In our implementation used for the reported tests, a distribution is dropped
out whenever its estimated proportion becomes less than 5% (i.e., 40 points out
of 800) within the EM algorithm. This exception never occured for the 16 484
estimations in the case of the model of a mixture of Nakagami distributions. In
the case of the model of a mixture of Rayleigh distributions, it occured only 3
times out of the 16 484 estimations (corresponding to all vertical strips of the
frames of the 30 sequences).

5When convergence was not achieved, the parameters were taken as in the
last iteration. We also implemented a stochastic algorithm, called the explo-
ration/selection/estimation (ESE) procedure [46] in the context of a mixture of
gamma distributions in order to initialize the EM algorithm. In that case, the
EM algorithm always reached convergence within 10 000 iterations. However,
the goodness-of-fit tests and most importantly, the segmentation results as in
Tables IV and V were practically the same as with the simpler use of 10 runs
of the EM algorithm, as proposed here. For simplicity sake, we decided not to
include the details of the ESE procedure in this paper.
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Fig. 4. Segmentations of the first frame of the 15 video sequences of B-mode images of common carotid arteries defined as the MAP of a Bayesian model that is
computed using the ES optimization algorithm. The mixtures of gamma distributions that are used to define the likelihood of that Bayesian model, are estimated
using the EM algorithm.

of the internal proximal carotids, due to a great uncertainty in
the location of the IMT (see Fig. 5).

Again, the two versions of the proposed method mentioned in
Section V-B were tested on the 30 video sequences. Figs. 4 and 5
show the segmentations of the IMT on the first frame for the 30
video sequences, using the MND model as estimated by the EM
algorithm. Using the evaluation method of Section IV-B, a de-
tailed analysis of the empirical results is presented in Tables IV
and V.

Namely, Table IV concerns the 15 video sequences of the
common carotid artery, whereas Table V presents a similar anal-

ysis for the internal proximal carotid artery. Row 1 compares
the two experts upon presenting the distance and its stan-
dard deviation. Rows 2 and 3 present an analysis of the results
for the MGD model estimated by the EM algorithm; more pre-
cisely, row 2 compares the segmentation method with the first
expert (distance and standard deviation); the -value of
the one-sided difference t-test of Section IV-B, for the com-
parison of the segmentations obtained by the proposed method
with the manual segmentations of expert 1, is indicated in paren-
thesis. Row 3 concerns the second expert (the distance is now
denoted ). Rows 4 and 5 concern the MED model, as es-
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Fig. 5. Segmentations of the first frame of the 15 video sequences of B-mode images of internal proximal carotid arteries defined as the MAP of a Bayesian
model that is computed using the ES optimization algorithm. The mixtures of gamma distributions that are used to define the likelihood of that Bayesian model,
are estimated using the EM algorithm.

timated by the EM algorithm. Finally, columns 1–4 use, respec-
tively, the average distance for the interface lumen-intima, the
Hausdorff distance for the same interface, the average distance
for the interface media-adventitia, and the Hausdorff distance
for that same interface.

The EM algorithm combined with the segmentation method
took 14 h and 41 min (this represents 16 483 estimations and
2227 segmentations) for the 30 video sequences. The implemen-
tation was in C++ and the tests were run on a 3 GHz Pentium 4
CPU.

VI. DISCUSSION

A. Statistical Model

The results of the goodness-of-fit tests reported in Sec-
tion V-B indicate that the simpler MED model is less adequate
than the proposed MGD model. This is explained by the fact
that the Rayleigh distribution covers only the case of a high
density of random scatterers. In particular, Table III indicates
that the lumen distribution is practically Rayleigh (high density
of random scatterers, i.e., ), the adventitia distribution is
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TABLE IV
COMPARISON OF THE SEGMENTATIONS OBTAINED BY THE PROPOSED METHOD USING MGDs OR MEDs, ON ONE HAND, WITH THE MANUAL SEGMENTATIONS

PERFORMED BY TWO EXPERTS, ON THE OTHER HAND, FOR THE 15 VIDEO SEQUENCES OF THE COMMON CAROTID ARTERY. HERE, THE SAMPLE SIZE IS � � ��.
THE �-VALUE OF THE STATISTICAL TEST THAT THE DISTANCE BETWEEN THE ALGORITHM AND AN EXPERT IS NO MORE THAN THE DISTANCE BETWEEN THE

TWO EXPERTS IS INDICATED WITHIN PARENTHESIS (THE HIGHER THE �-VALUE, THE BETTER THIS TEST SUCCEEDS). TWO TYPES OF DISTANCES ARE USED: THE

MEAN DISTANCE AND THE HAUSDORFF DISTANCE; DISTANCES ARE AVERAGED OVER ALL FRAMES OF A SEQUENCE. SEE SECTION IV-B FOR FURTHER DETAILS

TABLE V
COMPARISON OF THE SEGMENTATIONS OBTAINED BY THE PROPOSED METHOD FOR THE MGDs OR THE MEDs, ON ONE HAND, WITH THE MANUAL

SEGMENTATIONS PERFORMED BY TWO EXPERTS, ON THE OTHER HAND, FOR THE 15 VIDEO SEQUENCES OF THE INTERNAL PROXIMAL CAROTID ARTERY. HERE,
THE SAMPLE SIZE IS � � ��. THE �-VALUE OF THE STATISTICAL TEST THAT THE DISTANCE BETWEEN THE ALGORITHM AND AN EXPERT IS NO MORE THAN

THE DISTANCE BETWEEN THE TWO EXPERTS IS INDICATED WITHIN PARENTHESIS (THE HIGHER THE �-VALUE, THE BETTER THIS TEST SUCCEEDS). TWO

TYPES OF DISTANCES ARE USED: THE MEAN DISTANCE AND THE HAUSDORFF DISTANCE; DISTANCES ARE AVERAGED OVER ALL FRAMES OF A SEQUENCE.
SEE SECTION IV-B FOR FURTHER DETAILS

most often pre-Rician (low density of scatterers) and sometimes
generalized Rician (coherent components with spacing larger
than the pulse width), and the intima-media distribution is on
average Rician (coherent components with spacing smaller
than the pulse width) but presents the greatest variability in
shape among the three distributions. The results concerning the
lumen and the adventitia distributions seem to be in agreement
with anatomical information. Namely, in the carotid, the ery-
throcytes can be viewed as random scatterers in high density;
the adventitia is primarily fibrocellular [56, p. 254], and is
composed of loose connective tissue [56, p. 143], whose cells
can be viewed as random scatterers in low density together
with a resolved coherent component. As for the intima-media
distribution, the intima consists of a monolayer of endothelial
cells [56, p. 253], that can be viewed as random scatterers in
high density together with an unresolved coherent component,
whereas the media is composed of smooth muscular cells,
elastic fibers, and collagen [56, p. 253]. Thus, the IMT offers
a greater variability in the configuration of its underlying scat-
terers, hence perhaps explaining the greater variability in its
echogenic statistical properties. Finally, the results of Tables IV
and V indicate that the MED model performs less than the
MGD, in particular at the interface between the media and the
adventitia. For this interpretation, we adopt the practitioner’s

point of view that a higher -value in a hypothesis test gives a
higher confidence level in the null hypothesis tested (but see
[52, Sec. 5.3], for further discussion).

B. Validation of the Segmentations

Using a significance level of , one concludes from
the experimental results reported in Tables IV and V that the
mean distance between the semi-automatic segmentations ob-
tained by the proposed method and the manual segmentations
performed by either expert, is not significantly more than the
mean distance between the manual segmentations of the two ex-
perts, in the case of disease-free common and internal proximal
carotid arteries.

These conclusions hold for the model of MGDs (or equiva-
lently, Nakagami distributions, after a change of variable). Ta-
bles IV and V indicate that the -values are somewhat lower
when using the simpler model of mixtures of exponential dis-
tributions (MED) (or equivalently, Rayleigh distributions after
the same change of variable), especially for the media-adven-
titia interface.

The same conclusions hold for the Hausdorff distance, but the
-values are lower than for the mean distance. Nevertheless, for

the common carotid arteries, the distance between the semi-au-
tomatic segmentation and either manual segmentation is at most
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0.01 mm more than the distance (0.45 mm) between the two
manual segmentations, on average for the lumen-intima inter-
face, and the distance between the semi-automatic segmentation
and either manual segmentation is at most 0.03 mm more than
the distance (0.38 mm) between the two manual segmentations,
on average for the media-adventitia interface. For the internal
proximal carotid arteries, the distance between the semi-auto-
matic segmentation and either manual segmentation is at most
0.1 mm more than the distance (0.73 mm) between the two
manual segmentations, on average for the lumen-intima inter-
face and the distance between the semi-automatic segmentation
and either manual segmentation is at most 0.01 mm more than
the distance (0.88 mm) between the two manual segmentations,
on average for the the media-adventitia interface. For the sim-
pler MED model, the results obtained are worse, as indicated in
Tables IV and V.

It appears that there is a greater variability between the two
experts in the case of the internal proximal carotid than in the
case of the common carotid. In particular, there was a disagree-
ment on the presence of a plaque or not. But then, the semi-au-
tomatic segmentations appear to be within that range of vari-
ability, especially when using the mean distance and the MGD
model. Thus, we conclude that the semi-automatic segmentation
method is overall no less reliable than the manual segmentations
performed by the expert technicians. We also conclude that the
proposed MGD model is significantly better than the simpler
MED model.6

Assumptions On the Tissue Echogenicity

In the examples where the proposed method performed well,
the assumptions made in Section III-C-II on the echogenicity of
the tissues were for the most part verified. On the other hand,
in the examples where the proposed method did not perform
well, the main cause of difficulty, in our opinion, might be the
fact that these assumptions were not quite satisfied. On the other
hand, the analysis presented in Tables IV and V indicates that
the proposed method is nevertheless robust to the estimation
procedure, in the sense of Section VI-B.

C. Computation Time

Although the average computation time is 24 s per frame (14 h
and 41 min for 2227 frames), further improvements can be made
on a commercial version, provided one is given a few CPUs. We
think that 1–3 s might be enough to treat one frame, with a multi-
thread implementation. In fact, the 10 runs of the EM algorithm
are applied independently on each vertical strip. Also, in the ES
algorithm, each of the 30 particles explores independently a new
solution in its neighborhood. So, the clinician might carry on
the patient examination, while the segmentation of the whole
sequence is performed within 1–4 min. Thus, there is a reason-
able hope to see a clinically applicable version in the future.

6This statistical test is one of the few ones for which the Bayes factor can be
computed directly from the �-value: � � ���� � �� (cf. [57]). Thus, in a
Bayesian framework, one accepts the null hypothesis if and only if � � �,
i.e., � � ���, when both kinds of decision errors are equally weighted. So in
the case of this test, the Bayesian approach (that amounts to using � � ���) is
more severe than the frequentist approach (that uses� � ����[58] for historical
reasons). If one prefers to use � � ���, then our conclusion holds only for the
mean distance and the MGD model. In any case, we have reported the �-values.

VII. CONCLUSION

In the sequences of B-mode images tested, the model of mix-
tures of Nakagami distributions is more conform to the true
statistical distributions than the simpler model of mixture of
Rayleigh distributions. The parameters of the proposed model
can be efficiently and reliably estimated using the EM algo-
rithm. The test reported here suggest that the semi-automatic
segmentations obtained by the proposed method are within the
variability of the manual segmentations of two experts in the
case of disease-free carotids. We are currently developing an
adaptation of our method to carotids presenting pathologies.

APPENDIX

In this appendix, the EM algorithm is explained in the case of
a mixture of gamma distributions.

As usual, it is convenient to introduce a latent variable
, that indicates which kernel is chosen. The MGD

model is then equivalent to the hierarchical model

(26)

where denotes the multinomial distribution.
Let be the current estimation of the parameters

. Let be the configuration of la-
tent labels . Let be i.i.d. samples of a
mixture of gamma distributions. In the EM algorithm, one
considers the expectation

(27)

Up to a constant, this is equal to

(28)

where is a short-hand for .
The E-step consists in computing .

Using Bayes’ Theorem, one obtains

.

For the M-step, the term corresponding to

the constraint is added to (28). Setting the partial
derivative with respect to equal to 0, one obtains

(29)

Setting yields .
In particular, . This gives the expression

. Moreover, setting the partial
derivatives with respect to and equal to 0, one obtains,
respectively, the equations

(30)
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(31)

Setting , (31) implies the identity
. Substituting back into (30), and setting

, one obtains the updating expression for
: , where denotes

the digamma function . Now, the function being
concave on , it follows from Jensen’s inequality [59] that

, where equality holds if and only if
all are mutually equal. This latter case happening with prob-
ability 0, it follows that with proba-
bility 1. Since is a decreasing function on ,

and , one
concludes that can be found by a binary search, unless
all data elements are mutually equal.
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