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Intravascular Ultrasound Image Segmentation: A
Three-Dimensional Fast-Marching Method Based on
Gray Level Distributions

Marie-Hélene Roy Cardinal, Jean Meunier, Gilles Soulez, Roch L. Maurice, Eric Therasse, and Guy Cloutier*

Abstract—Intravascular ultrasound (IVUS) is a catheter based
medical imaging technique particularly useful for studying
atherosclerotic disease. It produces cross-sectional images of
blood vessels that provide quantitative assessment of the vascular
wall, information about the nature of atherosclerotic lesions
as well as plaque shape and size. Automatic processing of
large IVUS data sets represents an important challenge due to
ultrasound speckle, catheter artifacts or calcification shadows.
A new three-dimensional (3-D) IVUS segmentation model, that
is based on the fast-marching method and uses gray level
probability density functions (PDFs) of the vessel wall structures,
was developed. The gray level distribution of the whole IVUS
pullback was modeled with a mixture of Rayleigh PDFs. With
multiple interface fast-marching segmentation, the lumen, intima
plus plaque structure, and media layers of the vessel wall were
computed simultaneously. The PDF-based fast-marching was
applied to 9 irn vivo IVUS pullbacks of superficial femoral
arteries and to a simulated IVUS pullback. Accurate results
were obtained on simulated data with average point to point
distances between detected vessel wall borders and ground truth
<0.072 mm. On in vivo IVUS, a good overall performance was
obtained with average distance between segmentation results and
manually traced contours <0.16 mm. Moreover, the worst point
to point variation between detected and manually traced con-
tours stayed low with Hausdorff distances <0.40 mm, indicating
a good performance in regions lacking information or containing
artifacts. In conclusion, segmentation results demonstrated the
potential of gray level PDF and fast-marching methods in 3-D
IVUS image processing.

Index Terms—Fast-marching, IVUS, probability density func-
tion, segmentation, 3-D imaging.

Manuscript received November 21, 2005; revised January 16, 2006. This
work was supported in part by the Canadian Institute of Health Research under
Grant MOP-53244 and in part by Valorisation-Recherche Québec under Grant
2200-094. The work of M. H. Roy Cardinal was supported in part by a stu-
dentship award from the Fonds de la Recherche en Santé du Québec and the
Groupe de modélisation biomédicale of the Institute of biomedical engineering
of the University of Montreal. The work of G. Soulez was supported in part by
the Fonds de la Recherche en Santé du Québec under a clinical scholarship. The
work of G. Cloutier was supported in part by Fonds de la Recherche en Santé
du Québec under a National Scientist award.

M.-H. Roy Cardinal and R. L. Maurice are with the Laboratory of Biorhe-
ology and Medical Ultrasonics, University of Montreal Hospital’s Research
Center, 2099 Alexandre de Seve, Montréal, QC H2L 2W5, Canada (e-mail: roy-
carmh @iro.umontreal.ca).

J. Meunier is with the Département d’Informatique et de Recherche Opéra-
tionnelle, University of Montreal, Montréal, QC H3A 2B2, Canada.

G. Soulez and E. Therasse are with the Radiology Department, University of
Montreal Hospital, Montréal, QC H2L 2W5, Canada.

*G. Cloutier is with the Laboratory of Biorheology and Medical Ultrasonics,
University of Montreal Hospital’s Research Center, Montréal, QC H2L 2WS5,
Canada (e-mail: guy.cloutier@umontreal.ca).

Digital Object Identifier 10.1109/TMI1.2006.872142

1. INTRODUCTION

VER the past few years, intravascular ultrasound
O(IVUS) technology has become very useful for studying
atherosclerotic disease. IVUS is a medical imaging technique
that produces cross-sectional images as a catheter is pulled-back
inside blood vessels. These images show the lumen but also
the layered structure of the vascular wall. It provides quanti-
tative assessment of the wall, information about the nature of
atherosclerotic lesions as well as the plaque shape and size.
In clinic, IVUS was rapidly recognized as a valuable tool in
diagnosis and in pre-intervention analysis of atherosclerosis.
Its ability to characterize the vascular wall was initially proven
in 1989 [1] and studies of the mid-1990s showed in vivo, based
on IVUS images, that 40% of angiographically normal vessels
were in fact atherosclerotic [2]. It may be worth mentioning that
this phenomenon, known as compensatory arterial enlargement,
had been earlier observed on histologic cuts [3]. It was also
demonstrated, using IVUS, that conventional stent implantation
resulted in incomplete apposition and expansion causing throm-
bosis, which changed the clinical practice [4]. IVUS is also
expected to play an important role in atherosclerosis research;
for example, to achieve precise evaluation of the disease in
new progression-regression therapies [5]. Experts agree that
IVUS imaging adds precious complementary information to
angiography which only shows a projection of the lumen [6].

The tomographic nature of IVUS makes three-dimensional
(3-D) reconstruction of the vessel wall possible. When com-
bined to biplane angiography to recover the catheter path, ge-
ometrically accurate 3-D reconstruction is also feasible [7], [8].
Furthermore, two-dimensional (2-D) and 3-D quantitative mea-
surements of atherosclerotic disease such as plaque volume,
intima-media thickness, vascular remodeling and lumen area
stenosis can be retrieved from IVUS data [9]. However, a typical
IVUS acquisition contains several hundred of images making
nonautomatic analysis of the data long, fastidious and subject to
intraobserver and interobserver variabilities. These could be se-
rious constraints against the clinical usage of IVUS. In addition,
because IVUS image quality remains poor due to speckle noise,
imaging artifacts and shadowing of parts of the vessel wall by
calcifications, it is necessary to develop specific segmentation
methods that take into account the nature of IVUS images.

So far, a number of segmentation techniques have been
developed for IVUS data analysis. A great portion of this work
was based on local properties of image pixels, namely gradient-
based active surfaces [10] and pixel intensity combined to
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gradient active contours [11]. Graph search was also investi-
gated using local pixel features: e.g., Sobel-like edge operator
[12] and gradient associated to line patterns correlation [13].
Another portion of the IVUS segmentation work was based
on more global or region information. Texture-based morpho-
logical processing was considered [14]. Gray level variances
were then used for the optimization of a maximum a posteriori
(MAP) estimator modeling ultrasound speckle and contour
geometry [15]. In addition, some studies defining only the
lumen boundary and not using the full IVUS potential can be
found in the literature. Still, in 2001, a clinical expert consensus
from the American College of Cardiology [9] reported that no
IVUS edge detection method had found widespread acceptance
by clinicians.

Recently, graph search was revisited using other edge filters
[16]. Hereafter, other methods such as elliptical template fitting
[17] and multiagent segmentation [18] were proposed. How-
ever, these new models were again using local pixel or edge in-
formation and they were not taking advantage of the statistical
information of IVUS data (speckle texture). Very recently, the
MAP estimator was revised using statistics of the signal [19], but
for the lumen contour only and without modeling of the whole
IVUS graylevel statistical distribution.

The aim of this paper was, thus, to achieve IVUS image seg-
mentation by using global image features and a region based
model. Since pixel gray values are distributed according to a
Rayleigh probability density function (PDF) in B-mode imaging
of uniform scattering tissues [20], [21], it is believed that PDF
features can be of value for IVUS segmentation. This informa-
tion is hypothetically valuable for IVUS image analysis, espe-
cially when the vascular wall edges are weakly defined.

The atherosclerotic plaque structure can have an irregular
and complex shape that is rarely elliptical. A fast-marching
method [22], derived from the level-set model, that can handle
topological changes and object irregularities should, therefore,
be appropriate for IVUS images. Also, fast-marching propa-
gates interfaces in the direction of the boundaries through an
exhaustive analysis of the propagation region, this should de-
crease the variability of segmentation results. Consequently,
this paper proposes a 3-D fast-marching segmentation based
on automatic detection of vessel wall component PDFs to ad-
dress the IVUS segmentation problem.! The fast-marching
combined to gray level gradient was also evaluated for com-
parison purpose.

The paper is organized as follows: Section II presents the PDF
estimation algorithm of the different vessel wall structures. The
IVUS 3-D fast-marching method based on estimated PDFs and
gray level gradient is detailed in Section III followed by the ini-
tialization technique. Experimental and simulated data are pre-
sented in Sections IV and V. Segmentation results are then re-
ported in Section VI and discussed in Section VII.

II. PROBABILITY DENSITY FUNCTION ESTIMATION

In B-mode imaging,2 a Rayleigh PDF can model the gray
level distribution of the ultrasonic speckle pattern in a uniform

A preliminary 2-D version of this paper can be found in [23].

2The B-mode signal is the envelop filtered radio-frequency signal.

scattering tissue [21]. The gray level distribution of a whole
IVUS series can then be estimated by a mixture of Rayleigh
PDFs, each corresponding to the lumen, plaque structure of the
intima, media, and adventitia plus surrounding tissues.

The expectation-maximization algorithm (EM) is an itera-
tive computation technique of maximum likelihood estimates
for incomplete data [24]. It provides the parameters of a density
distribution function in which information is hidden. In IVUS
imaging, the occurring probability of the gray level values, or
observed data, can be measured by computing the image his-
togram. But the vessel wall structure to which each pixel be-
longs is unknown or hidden for images that are not segmented.
Because the IVUS data are incomplete in terms of maximum
likelihood estimation, the EM algorithm was applied to eval-
uate the mixture parameters.

The Rayleigh PDF px () with parameter a?, where X is the
gray level taking values in [1, ..., 256], is given by

T .TZ

with z, a? > 0 and the variance 02 = a%(4 — 7)/2.

IVUS data, in which there are M different tissue structures,
were modeled by a mixture of M Rayleigh PDFs with parame-
ters © = {(w;,a3)}}L,, where w; 1s the proportion of the jth
component of the mixture so that Z —1 wj = 1. The PDF mix-
ture then becomes

px(w;0°) =

ijp :17|a 2)

Px|e (z©) =

To describe the global data PDF, the parameters (w;, a3) of
each distribution composing the mixture need to be estimated.
The EM algorithm is necessary because O, the mixture param-
eter maximizing the likelihood of p( X |®), cannot be solved an-
alytically. A hidden variable Y, the tissue class taking values
[1,..., M], must be introduced at this point. The log-likelihood
of thejomt distribution of (X,Y) = {(w;,4;)}L,, where N is
the data size, is

N
= logp(y:)p(xily:,©).  (3)

i=1

The first step of the EM algorithm (Expectation)
is the calculation of the cost function Q(©,0') =
Eylog(P(X,Y]0))| X, 0], the expected value of the log-
likelihood of (X,Y"), the joint distribution, given the observed
data X and ©" = {(w},a] a?) M. a previous estimate of the
mixture parameters. The next step is to evaluate ©, the new
parameter estimate, by maximizing Q(©, ©’) with respect to
O, that can now be done analytically.

The detailed PDF parameter estimation procedure via the EM
algorithm is as follows.

* [Initialize ©’, the previous estimate of mixture parameters.3

log (px.y|e(z,y]0))

3nitialize w) = (1/M) + ldIldOIIl value between —1/M and 1/M with
wh =1— M Yw! anda = random value between 1 and 202 /(4 — ),
where o2 is the vanance of the pixel gray values.



592

TABLE I
ESTIMATED PROBABILITY DENSITY FUNCTION PARAMETERS FOR 30 RUNS OF
THE EM ALGORITHM ON 1 IVUS PULLBACK

Component w (%) a?
Lumen 29.63+0.88 0.6456+0.0014
Intima and Plaque 20.72+0.72 341.531+6.49
Media 13.4940.11 22.43+0.39
Surrounding Tissues 36.1940.24 2283.04+12.09

* Expectation:
Evaluate the cost function

M N
= Z Zlog(wjp(a:i|a§)p(yi =jlz;,0"). (5)
j=1i=1

Calculate p(y; = jl2:,0") = (Wp(zila?)/
Ziu:l wipr(x;]a?)), according to Bayes rule, and using
the previous parameter estimate ©’ and (1).

¢ Maximization:

Calculate é, the new estimate of the mixture parameters

M
G =argmaz,, [ Q(O,0)+ A 1= w;
j=1
1 N
=N > oy = jlei ©) (6)
1=1

where A = N is a Langrangian making the w; sum to 1.
a3 =argmaz,2Q(0,0")

2 _ Zi\;1 p(yi = jlzi, ©")z} 7
T2l ply = e, ©)

« If © # ©, update previous estimate ©' =

expectation/maximization.

In summary, the EM algorithm maximizes the likelihood of
the joint distribution of the observed and hidden data by esti-
mating the posterior distribution with py-| x e/ (y|x, ©"). An in-
teresting property of the EM algorithm is that it is guaranteed
that the likelihood of the observed data X increases at each it-
eration [24].

For computation efficiency, the EM algorithm was only ap-
plied to a randomly drawn subset of the observed data X, which
are, in this case, pixels from the whole IVUS series. The subset
size was about 400 000 pixels, a complete IVUS pullback con-
tained over 80 000 000 pixels. It is to note that no statistically
significant difference was found between the parameters calcu-
lated for a subset of this size and the whole observed data set
(p > 0.2 for each parameter on the effect of subsampling ac-
cording to two-way ANOVA tests* on parameters calculated
from 5 whole IVUS series and 30 different subsets for each
pullback). The subset pixels were randomly sampled from axial
IVUS frames of the whole pullback. An example of average
mixture parameters for runs of the EM algorithm on 30 different
subsets from 1 IVUS pullback is shown in Table I described in
Section VI

>

o, repeat

4SPSS statistical software, version 13.0, SPSS Inc., Chicago, IL.
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Once the gray level distributions of the artery components
were estimated, they were used as segmentation features.

III. SEGMENTATION MODEL

A. Fast-Marching Method

The fast-marching method was derived from the level-set
model introduced by Osher and Sethian to follow an interface
(or front, or contour) propagating under a speed function F'
[22], [25]. These methods can be applied to image segmentation
by interpreting an image boundary as the propagating interface
final position [22], [26]. To achieve this, the speed function is
defined in terms of image or shape features and should become
close to zero when the propagating front meets with object
borders. The interface stop on image boundaries since the speed
value is near zero, which ends the segmentation process.

Fast-marching is a particular case of the level-set model. It
consists of the evolution of an interface propagating under a
unidirectional speed function. In this case, the evolving contour
must be inside the region to segment (for a positive speed func-
tion or outside for a negative one) because the front does not ex-
plore its initial inside region. In the fast-marching formulation,
the evolution of the contour is expressed in terms of the arrival
time T'(z) of the contour at point = (z1,22,...,2Z,) € R"™.
The T function satisfies (8), stating that the arrival time differ-
ence between two adjacent pixels increases as the velocity of
the contour decreases

IVT|F = 1. 8)

The propagation of the interface is done via the construction
of the arrival time function. The construction algorithm [27] se-
lects the interface point having the smallest arrival time and cal-
culates the arrival times of its neighbors. This is repeated until
the interface has propagated across the whole image or until the
front is considered stationary (when the time gradient is suffi-
ciently high). The fast-marching equation is independent of the
interface dimension. On a discrete 3-D grid, neighbors’ arrival
times are updated by solving (9) [22], an approximation of (8).
Another method, proposed in [28], can be used to solve (8)

1 xT
‘2_'1‘ =maz (Dl i & T, Djj w1 0)
0,5,k
+ max (DL ]ykT ijykT 0)
+ max (DZ i “uT, DZ i 21T, 0) . &)

For the x dimension

x Tix15k — Tijk
pr =+ Tettas = T
where A is the grid element size and (i, j, k) is the 3-D position
of the point havmg its arrlval time calculated. Similar definitions
apply for D; J o and D 2. T, in the y and z dimensions.
Since mu1t1ple borders (lumen intima and media) must be
identified on the IVUS series, image segmentation is done via
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v v

0 A

Fig. 1. Example of two interfaces propagating in opposite directions to detect
a boundary. The black region is the unexplored propagation area. The white
dashed line is the desired boundary. The gray pixels on each side of the black
region correspond to the propagating interfaces that will meet at the boundary;
the arrows indicate the direction of propagation.

a multiple interface extension of the fast-marching algorithm
[29]. For this particular case, a boundary is defined by the
meeting position of two contours propagating in opposite
directions. Fig. 1 shows a schematic representation of the
multiple interface fast-marching for the detection of a boundary
in which the interfaces propagating in opposite directions are
represented by the gray lines on each side of the propagation
area that is represented by the black region. Fig. 1 also shows
that each interface propagates inside the region that it segments.
A speed function must then be determined for each propagating
interface and the 7" map is built by selecting the point with
the smallest arrival time value from all interfaces.> Notice
that the multiple interface fast-marching enables simultaneous
segmentation of different parts of the vessel wall. The multiple
interfaces directly depict the layered structure of the wall and
prevent the detected borders from overlapping.

In the PDF-based fast-marching, each interface propagating
in a vessel wall layer evolves at a velocity defined in terms
of the PDF P,,c1 of the corresponding anatomical structure.
The propagation speed of interface m € L, where L is the set

1,2,..., Ny, of the Ny, vessel wall structures, is given by (10)
1 log P (1) -
.. 0glm\1ls
Fm(l7j7k): 1+ — -
N, ; ﬁ Zl;ém,leL logPy(I,)
(10)

1 is the gray level value of pixel s at position (%, 7, k) in image
1, P, (1) and P;(I;) are the measured occurring probabilities
of pixel I in region m and [. Because the occurring probability
is more significant for a region than for a single pixel, the speed
function is calculated over a certain number V,, of neighbors,
which are the 26-connected pixels around (7, 7, k). According
to (10), the interface m velocity will always be positive and
will take higher values when inside a region having a grayscale
distribution close to P,,. As the front approaches the boundary,
neighbors start to be distributed under other component PDFs,
this should increase P;(I), decrease P,,(I5) and the interface
speed. This velocity function has a general form that can be used
with any types of PDF and provides neighborhood averaging.

SA detailed description of the T map construction algorithm can be found in
[29].

Since gray level gradient is a widely accepted image feature,
comparison was also made with a gradient implementation of
the fast-marching segmentation. The speed function is given
by [22]:

1

PG b = e, 1)

QY

where G, is a9 X 9 pixel symmetric gaussian smoothing filter
of standard deviation 0 = 0.5 and the gradient is computed
in 2-D. This speed function propagates interfaces faster on low
gradient regions.

Multiple interface fast-marching segmentation is finished
when all fronts propagating in opposite directions have met.
Fronts are, thus, obligated to evolve until the arrival time map
is completely built.

B. Segmentation Initialization

This fast-marching segmentation requires the initial inter-
faces propagating in opposite directions to include the border
of the object to segment. This was assured with an initialization
procedure in which propagation regions were computed; the
initial interfaces propagating in opposite directions were set as
the bounding contours of the propagation region (see Fig. 1).
The initial regions were determined from manually traced
contours on longitudinal images (L-views) of the IVUS series.
Longitudinal cuts of the IVUS volume were used, instead of a
single 2-D IVUS frame, because they give information about
the whole series. Also, the number of manually traced contours
on longitudinal images is independent of the number of IVUS
2-D slices.

On each longitudinal view and on both sides of the catheter
[see Fig. 2(a)], a contour was traced close to the lumen boundary
and another one inside the media (which appears as a hypoe-
choic ring on axial frames). Contours from three different lon-
gitudinal cut planes at equally spaced angles over 360 degrees
were sufficient to compute the initial propagation areas. The
number of planes was not fixed, although 3 seemed to be ad-
equate in the current study; it had to be chosen so that the vessel
wall boundaries were included in the propagation regions. At
the end of this procedure, 4 lines were traced on 3 longitudinal
images (for a total of 6 points on the lumen border and 6 points
inside the media in each axial frame).

The longitudinal contour points were spline-interpolated axi-
ally and longitudinally while being forbidden to overlap (to pre-
serve the layered structure of the vessel wall). The axial lumen
contours were then shifted radially in the 2 opposite directions
to compute the pair of 3-D tube-like initial lumen interfaces, as
illustrated by the gray lines on Fig. 1. The axial contours inside
the media were used to compute 2 pairs of interfaces to initialize
the segmentation of the internal and external media boundaries.®
The first pair of interfaces, to initialize the inner media border,
was composed of the axial contours inside the media and of an
inward radially shifted version of these contours. The pair of

The internal media border delimits the plaque of the intima, whereas the
external media border separates the external tissue from the vessel wall.
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Current lumen longitudinal contour being
entered on one side of the catheter

Corresponding points

11:24:09 0661

(b)

Fig. 2. (a) Longitudinal IVUS image of the 3-D data set in which a contour is
being entered and (b) current longitudinal contour point displayed on the cor-
responding 2-D IVUS image. At the end of the initialization procedure, 4 lines
were traced in 3 longitudinal images (that converts into 6 points on the lumen
border and 6 points inside the media in each axial frame).

outer media border initial interfaces was set similarly, but with
an outward radial shift of the axial media contours. The length
of the radial shifts were set to separate the interfaces of each pair
(lumen, inner and outer media) by 24 pixels (0.625 mm). These
3 propagation regions, when combined, corresponded to 55 +
5% of the vessel volume. More than half of the vessel volume
was, thus, explored with the propagating interfaces.

To facilitate interaction, the last longitudinal point clicked by
the user was displayed on the corresponding IVUS frame as
shown by Fig. 2. The contour could also be restarted from any
previous points. This way, the user could explore, on-line and
easily, sections of an IVUS series that were more difficult to
interpret on L-views.

IV. EXPERIMENTAL DATA

A total of 9 in vivo IVUS pullbacks (of 600 frames/series)
from diseased superficial femoral arteries of either one or both
legs were performed on 7 patients before undergoing balloon
angioplasty. In these cases where the disease is advanced, the
vessels reveal extensive irregular atheromas that project into the
lumen [30]. Data were acquired with a Jomed equipment (In-vi-
sion gold, Helsingborg, Sweden) using a 20-MHz transducer.
Images of size 10 x 10 mm were digitized on 384 x 384 pixel
matrices and stored using the DICOM standard. The acquisi-
tion was done at a 10 images/sec frame rate and the catheter
pullback velocity was set to 1 mm/sec generating 0.1 mm thick
2-D slices. Acquisition parameters were set by the clinician to
optimize image quality (the gain varied from 46 to 54 and the
grayscale look-up table was set to 5). Image acquisition was not
ECG-gated.

A. Validation

The EM algorithm was applied at the beginning of each
segmentation because mixture parameters are specific to each
IVUS series as gain and other parameter settings were different
and the echogenicity of the different wall components was
variable between patients. The detected mixtures were com-
posed of 4 distributions (corresponding to the lumen, intima,

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 5, MAY 2006

media, and surrounding tissues regions). Each pullback was,
thus, segmented with its own set of parameters. The IVUS
series were segmented three times with both 3-D methods
using different sets of initial fronts. Lumen, intima (plaque),
and media borders were obtained.

To validate the segmentation results, comparison was made
with manually drawn contours. Boundaries were traced two
times by two independent experimented users (Z. Qin. and 1.
Renaud) on 1 every 10 frames of each IVUS pullback. For
each series, boundary positions from 60 IVUS frames were,
thus, available. Even though 3 contours were available with the
fast-marching segmentation, the validation was performed only
on the lumen and external media boundaries. For instance, it is
not the practice to manually trace the intima-media boundary
because, in any artery IVUS scans, this boundary is not well
delineated as pointed out by the IVUS clinical expert consensus
[9]. The consensus, thus, established that plaque measurements
should be made with the lumen and the external media borders.

To quantify the boundary detection accuracy, average and
Hausdorff point to point distances [31], and area differences
between the manually traced contours and segmentation results
were calculated. Hausdorff distance represents the worst case,
it is the maximum distance between different contours. Average
and Hausdorff distances directly depict point to point contour
variations. Since each pullback was manually analyzed four
times (two times per user expert), the error metrics were also
calculated between the different manually traced contours to
evaluate the intrauser and interuser variabilities.

Moreover, to quantify the repeatability of the segmentation
results under various initializations, average and Hausdorff
point to point distances between segmentation results from
different initial contour sets were calculated.

Detected boundaries from a whole IVUS pullback represent
the wall layers in 3-D without the vessel curvature. Reconstruc-
tion of the vessel boundaries was made from a simple smoothed
contour stack (see Fig. 8, Section VI).

B. Statistical Analysis

Multiple pairwise comparisons with Bonferonni tests were
performed for the average and Hausdorff distances, and area
differences. The analysis was carried out on metrics calculated
with the manual and 3-D fast-marching contours based on PDF
and gradient features; the same statistical test was also used to
assess the significance of the distance metrics and area differ-
ences with respect to the intrauser and interuser variabilities.
The average and Hausdorff distances between segmentation re-
sults from each method for different initial contour sets were
compared with paired t-tests. All statistical analyses were per-
formed with the SPSS statistical software, version 13.0, SPSS
Inc., Chicago, IL.

V. NUMERICAL SIMULATION OF IVUS DATA

In addition to the above validation of the segmentation
methods, realistic simulations of IVUS data were conducted to
evaluate the segmentation accuracy. Since the exact geometry
of simulated data is known, direct calculation of the detected
boundary performance could be obtained. The simulated IVUS
images were segmented using the same algorithms as for the in
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Is{r o)

Segmented contours (2)

in vivo IVUS (1)

Simulated IVUS
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Fig. 3. Schematic implementation of the image-formation model. An in vivo IVUS pullback (1) was used to create the vessel geometry (2). z(z, y) is a function
representing the acoustic impedance variations; z(r, ) is the acoustic impedance function mapped in polar coordinates; h(r, ¢) is the polar PSF, with a beam
width that increases with depth; & is the 2-D-convolution operator; I(r, ¢) is the simulated polar radio-frequency image; I (7, ¢) is the polar B-mode image,
that was computed using the Hilbert transform (HT) [33] of I(r, ¢); I5(x, y) is the Cartesian B-mode image or simulated IVUS image. This simulation strategy
was repeated for the whole image series of a pullback within a diseased superficial femoral artery. For more details on the simulation model, refer to [32].

vivo data, also with 3 different sets of initial L-view contours.
Lumen, intima (plaque), and media borders were obtained.
Average and Hausdorff point to point distances between ground
truth and detected boundaries were calculated for segmentation
results from each set of initial contours.

The image-formation model that was used to simulate the
IVUS echograms is detailed in [32]. Under assumptions such
as space-invariance of the imaging system, IVUS images were
modeled by a convolution operation between the point-spread
function (PSF)7 of the ultrasound system and a function repre-
senting acoustic impedance variations within the vascular wall.
The PSF was modeled by a one-dimensional cosine modulated
by a 2-D Gaussian envelope: a simple approximation of the ul-
trasound far field PSF. One in vivo IVUS series was used to gen-
erate a realistic vessel geometry. The vessel boundaries (lumen,
plaque of the intima, media) were created from manually traced
contours, on longitudinal cuts of the IVUS data. The simulated
pullback from a diseased superficial femoral artery (different
from the 9 pullbacks described in Section IV) contained 86
IVUS 2-D frames.

Fig. 3 illustrates the implementation of the image-formation
model for a 20-MHz transducer with a 60% bandwidth at —3 dB
and a beam width of 0.1 mm. For the purpose of these simula-
tions, the media was selected 2 times more echogenic than the
lumen; the plaque, 1.5 times more echogenic than the media; and
the surrounding tissues 2 times more echogenic than the media.
The signal-to-noise ratio was set at 20 dB. For each vessel sec-
tion, the scatterers were randomly positioned in space, and their
backscattering cross-sections (echogenicity) were distributed ac-
cording to a Gaussian model (with a standard deviation of 0.5).

"The PSF is the equivalent radio-frequency image of a single ultrasound scat-
terer. In other words, the PSF expresses the intrinsic characteristics of the ultra-
sound imaging system.

0.06 IVUS Histogram i
0.05 Lumen 4
£ — — — Medi
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= <+ ---+ - Intima and Plaque
E o3t == Surrounding Tissues
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\
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o= — = — — —_— w
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Fig. 4. Intravascular ultrasound image gray level histogram and detected mix-
ture of PDFs.

A. Statistical Analysis

The average and Hausdorff distances between ground truth
geometry and segmentation results from each method were
compared with paired t-tests.

VI. RESULTS

A. Probability Density Function Estimation

An example of average mixture parameters detected with the
EM algorithm on 30 different subsets from 1 IVUS pullback is
shown in Table I. An automatically detected Rayleigh PDF mix-
ture and corresponding IVUS pullback histogram is shown in
Fig. 4. In the PDF mixture of Fig. 4, distribution overlaps occur
for nonadjacent wall layers (the lumen and media; the plaque
and the surrounding tissues); thus, the overlaps did not affect
significantly the boundary detection process.8 The presence of
regularly spaced histogram peaks, that are probably caused by

8The neighborhood averaging in (10) also gives additional information if gray
values fall in the overlapping regions.
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TABLE II
ESTIMATED PROBABILITY DENSITY FUNCTION PARAMETERS WITH THE EM
ALGORITHM, AVERAGE VALUES FOR THE 9 IVUS PULLBACKS

Component w (%) a?
Lumen 18.82+£10.44 5.52+12.50
Intima and Plaque 27.81+14.54 1052.401+1405.97
Media 15.87+3.61 339.46+£817.80
Surrounding Tissues 37.504+13.82 2580.49+654.49

a digitization artifact of the IVUS system, did not seem to inter-
fere either with the parameter estimation.

Table I shows that small variations were found between dif-
ferent runs of the EM algorithm, it was, thus, applied to the 9
available pullbacks to study PDF variability between different
patients. The results are shown in Table II.

B. Segmentation

1) Simulated IVUS Data: Typical results on simulated
IVUS data for each method are displayed in Fig. 5. Table III
shows the average and Hausdorff distances in mm between
detected boundaries from different initializations and ground
truth values obtained from the simulated geometry. Smaller av-
erage and Hausdorff distances were achieved with the gradient
method on detected lumen borders. However, PDF feature had
better worst case performance (Hausdorff distance) on plaque
and media borders.

2) In-vivo IVUS Data: A typical segmentation result for the
3-D fast-marching method using PDFs and gradient is shown
in Fig. 6. The lumen, intima and media detected boundaries are
presented for 3 different cross-sectional IVUS images. A qual-
itative analysis of the PDF- and gradient-based fast-marching
segmentation revealed detected contours that were very close to
all vessel layers. An example of the PDF-based speed function
calculated according to (10) for the lumen region is shown in
Fig. 7 where the darker pixels depict lower speed values.

Table IV shows the average and Hausdorff distances, and
area differences between the manually traced and detected
boundaries. Table IV also presents the interuser and intrauser
variabilities. Except for the media Hausdorff distance, statis-
tically significant smaller average and Hausdorff distances,
and area differences were obtained with both PDF- and
gradient-based 3-D fast-marching methods when compared
to the interuser variability. Area differences smaller than the
intrauser variability were also achieved with both segmenta-
tion methods.

Table V shows average and Hausdorff distances between seg-
mentation results from each method for different initial contour
sets. Statistically significant better consistency was achieved
with the PDF-based method for the worst case index on all
vessel wall layers (smaller Hausdorff distances). Nevertheless,
gradient-based segmentation presented lower variations on av-
erage distance for the media boundaries.

Fig. 8 shows a 3-D reconstruction of the lumen and media
borders obtained with PDF-based 3-D fast-marching segmen-
tation for which a double stenosis is clearly seen. The gradient
fast-marching method provided similar qualitative results (data
not shown).
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VII. DISCUSSION

The goal of this paper was to demonstrate the IVUS segmen-
tation potential of the 3-D fast-marching method, and the use-
fulness of region statistics (PDFs) in the determination of the
vessel wall anatomical structures.

The EM algorithm was first presented to detect a mixture
of Rayleigh distributions in IVUS data. Table I showed that
mixture detection is a robust and stable process with stan-
dard deviations of w and a? going from 0.2% to 3.5% for
several runs of the algorithm on different pixel subsets of an
IVUS pullback. As expected, because of instrument settings
and echogenicities specific to the different plaque structures,
Table II emphasized the high variability between mixture pa-
rameters of distinct pullbacks. These results suggest that the
EM algorithm is capable of fitting various Rayleigh mixtures
from different patients.

A. Comparison of the Segmentation Methods

The typical simulated IVUS segmentation results in Fig. 5
showed that detected boundaries were very close to the vessel
wall structures. They also revealed that the external border
of the media was smoother with the PDF fast-marching than
with the gradient-based method, but that the lumen, which can
have a rougher surface, was detected with sufficient details.
Gradient methods seemed to trace speckle contours on objects’
boundaries, because speckles have high gray level intensity
differences.

As presented in Tables III-V, the average and Hausdorff dis-
tances were chosen as comparison metrics because they directly
depict point to point contour variations. For the segmentation
accuracy evaluation on simulated IVUS data, correlation coef-
ficients between area measurements from simulated vessel and
segmentation results were higher than 0.99 for both gradient
and PDFs on each vessel layer. The average and Hausdorff
distance are, thus, more sensitive metrics on simulated data.
As seen in Table III, very low average and Hausdorff distance
values were obtained, for both PDF- and gradient-based 3-D
fast-marching, demonstrating that this method is very powerful
for simulated IVUS segmentation. In fact, average deviation
ranged from 0.060 to 0.072 mm and worst point to point
distances were between 0.154 and 0.226 mm, which is highly
satisfying. Lower Hausdorff distances were obtained on lumen
boundary with the gradient method (p < 0.01) because the
blood and intima frontier produces bright echoes for which the
gradient information is significant. However, on less contrasting
boundaries such as the intima (plaque) and media, statistically
significant lower Hausdorff distances (p < 0.05) were achieved
with the PDF-based method.

Fig. 6 showed that vessel wall boundaries of in vivo IVUS
images could be identified even if the contrast was very low, as
seen at 4 o’clock for the collateral vessel in Fig. 6(a) or behind
a calcified plaque at 11 o’clock in Fig. 6(c). Also, boundaries in
Fig. 6(e) and (h) demonstrated that noncircular lumen could be
detected with fast-marching methods.

Fig. 7 was given as an example of a PDF-based speed function
for one of the vessel wall structure (each layer has its own PDF
speed function). The speed function map of the lumen region
in Fig. 7 showed that the speed values calculated according to
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Vessel Geometry Simulated IVUS Image

(a) (c)

Vessel Geometry

(b)

3D PDF Fast-Marching 3D Gradient Fast-Marching

(e) (9)

3D PDF Fast-Marching

()

Fig. 5. Segmentation examples on simulated data. (a) and (b) Vessel geometries and (c) and (d) simulated IVUS cross-sectional images. Lumen, thickened intima,
and media detected boundaries with (e) and (f) PDFs and (g) and (h) gradient 3-D fast-marching methods.

TABLE III
AVERAGE DISTANCE AND HAUSDORFF DISTANCE BETWEEN DETECTED BOUNDARIES ON SIMULATED IVUS DATA AND TRUE BORDER POSITION
Segmentation Lumen Plaque Media
Method AD (mm) HD (mm) AD (mm) HD (mm) AD (mm) HD (mm)
FMM-3D PDFs 0.072+ 0.062 0.226+ 0.074 0.0614+ 0.038 0.154+ 0.046 0.063+ 0.038 0.164+ 0.048 §
FMM-3D Gradient 0.069+ 0.056 § 0.1974+ 0.085 § 0.060+ 0.044 0.1734+  0.050 0.063+ 0.044 0.180+ 0.052

AD is the average distance between the detected boundary and true border, HD is the Hausdorff distance (maximum distance between the boundary and
true border). The pixel size is 26 x 26 pm2. FMM-3D is the three-dimensional fast-marching segmentation. PDF signifies probability density function. *, §
indicate statistically significant better performance (smaller distances) (x has p < 0.05, § has p < 0.01 on paired t-test). A column without x, § indicates no

statistical difference (p > 0.05).

(10) were higher in the lumen region. The lower speeds in the
plaque region indicated that the lumen front would propagate
slower there.

To evaluate the error of the segmentation method, detected
boundaries were compared to manually traced lumen and
media contours in Table IV. Small average distances, between
0.12 and 0.16 mm, and Hausdorff distances, between 0.31 and
0.40 mm, were obtained with the PDF- and gradient-based 3-D
fast-marching. Only the media Hausdorff distances between
these contours, for both PDF and gradient methods, were
significantly higher than the interuser variability (p < 0.05).
This shows that the segmentation errors were smaller than
the differences between different manual analyses. Also, the
intrauser variability was significantly higher than the seg-
mentation errors for the area measurements (p < 0.05). The
difference with the manual and 3-D fast-marching boundary
areas ranged from —0.2 to 0.4 mm?. Area differences do not
directly depict point-to-point contour differences, but area
measurements are widely used in clinic to evaluate the plaque
volume and percentage of stenosis. Area differences between
detected and manually segmented contours shown in Table IV
were slightly higher than those reported in [16], [18] (between
—0.14 £ 1.01 and 0.27 £+ 0.49 mm?), however, in the current

study, data were acquired on femoral arteries, which are larger
than the coronary arteries of these other studies.

Multiple pairwise comparisons with Bonferonni tests were
also performed to compare the accuracy of the PDF- and
gradient-based segmentation results of Table IV. For the
media boundary, smaller Hausdorff distances were obtained
with the PDF-based segmentation, but average distances
were smallerwith the gradient method (p < 0.05). The
lumen boundary, which often has strong edges, was closer
to the manual segmentation with the gradient fast-marching
according to the average distances and area differences
(p < 0.05). However, the difference between the segmentation
errors of the gradient and PDF methods were lower than half
the pixel size for all point-to-point contour distances. Overall,
good performances were achieved with the gradient and the
PDF information when used separately in a 3-D fast-marching
segmentation scheme. Consequently, it would be interesting to
combine these two features in the speed function of (10). Also,
the usage of edge direction information could improve the
vessel boundary detection in a fast-marching model combining
PDF and edge features.

Quantitative evaluation and comparison of the variability or
consistency of 3-D fast-marching under different initializations
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Fig. 6. (a)-(c) Typical IVUS cross-sectional images and corresponding segmentation results. Lumen, thickened intima, and media detected boundaries with (d)-(f)

PDFs and (g)-(i) gradient 3-D fast-marching methods.

were performed in Table V with in vivo data. Results indicated
that PDF-based fast-marching had the smallest Hausdorff
distances (p < 0.01), which remained under 0.249 mm for
all boundaries compared to a value of up to 0.297 mm for
the gradient implementation. PDF fast-marching also had
relatively small average distances between borders, of 0.083
mm and lower which is less than 3.2 pixels, but they were
significantly higher than media average distances obtained
with the gradient-based method (p < 0.05). However, the
differences between these distances were small (lower than the
pixel size). Thus, 3-D fast-marching detected boundaries had
small variations when initialized differently and the maximum
distance to the closest point, representing the worst case, stayed
low.

Overall, these results indicate, with small average and Haus-
dorff distances in Tables IV and V, that the segmentation is ac-
curate even in regions lacking information, for example if de-
sired boundaries were covered by catheter ring-down artifacts,
lost behind calcium deposits or in side branches. This is ex-
plained by the initial longitudinal contour information, but also
by the multiple interface extension of the fast-marching method.
The parallel segmentation of the different wall components in-
tegrates high-level information because the layered structure of
the vessel wall is preserved during the segmentation. Also, be-
cause of their associated low speeds, regions of missing speckle
information are segmented after all other propagation areas have
been explored through the arrival time construction map algo-
rithm based on (9). In these regions, the interfaces are pulled by
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Fig. 7. (a) Typical IVUS cross-sectional image and (b) corresponding speed function map for the lumen interface calculated according to (10) where darker pixels

depict lower speed values.

TABLE IV
AVERAGE DISTANCE, HAUSDORFF DISTANCE AND AREA CORRELATION COEFFICIENT BETWEEN DETECTED BOUNDARIES AND MANUAL SEGMENTATION
WITH 3-D FAST-MARCHING

Segmentation Lumen Media

Method AD (mm) HD (mm) Area diff (mm?) AD (mm) HD (mm) Area diff (mm?)
FMM-3D PDFs 0.16E 0.10% 0.40+£ 0.25% 0.4+ 2.1 (r=0.93)%x* 0.13+ 0.07* 031+ 0.168 0.2+ 2.1 (1=0.92)%x*
FMM-3D Gradient 0.14+  0.10%§ 0.39+ 0.24% 0.14 2.0 (1=0.94)%x§ 0.124+ 0.07%§ 033+ 0.16 024 2.1 (1=0.93)%x*
Inter-user var 0.18+ 0.23 0.444 0.41 0.6+ 2.8 (=0.89) 0.17+ 0.22 0294+ 0.24 0.3+ 2.2 (1=0.92)
Intra-user var 0.14+ 0.20 0.36+ 0.37 0.8+ 2.5 (r=0.91) 0.10£ 0.08 026+ 021 0.1+ 1.9 (1=0.94)

AD is the average distance between manually traced and detected boundaries, HD is the Hausdorff distance (maximum distance between boundaries), Area
diff is the difference between the detected and manual contour areas and r is the area correlation coefficient. The pixel size is 26 x 26 um2. FMM-3D is the
three-dimensional fast-marching segmentation. PDF signifies probability density function. Inter-user var and Intra-user var are, respectively, the inter-user and
intra-user variabilities; the AD, HD, Area diff and r coefficient were calculated between the different manually traced contours. % and % indicate, respectively,
statistically significant smaller value than the inter-user and intra-user variabilities (* and = have p < 0.05 on pairwise comparisons). A column without * or
* indicates no statistical difference with the intra- and inter- user variabilities (p > 0.05). § indicates statistically significant better performance between the
PDF- and gradient-based method (§ have p < 0.05 on pairwise comparisons). A column without § indicates no significant difference (p > 0.05).

TABLE V
AVERAGE DISTANCE AND HAUSDORFF DISTANCE BETWEEN DETECTED BOUNDARIES FROM DIFFERENT INITIALIZATIONS ON INTRAVASCULAR ULTRASOUND IN
Vivo DATA
Segmentation Lumen Plaque Media
Method AD (mm) HD (mm) AD (mm) HD (mm) AD (mm) HD (mm)
FMM-3D PDFs 0.083 + 0.089 0249+ 0.145 * 0.064 + 0.066 0.190+ 0.104 * 0.079+ 0.079 0228+ 0.115*
FMM-3D Gradient 0.085+ 0.099 0.297+ 0.144 0.065+ 0.068 0.222+ 0.100 0.076 £ 0.082 * 0273+ 0.113

AD is the average distance between closest points in different detected boundaries, HD is the Hausdorff distance (maximum distance between boundaries). The
pixel size is 26 x 26 um?2. FMM-3D is the three-dimensional fast-marching segmentation. PDF signifies probability density function. % indicates statistically

significant better performance (smaller distances) (x has p < 0.001 on paired t-test). A column without * indicates no statistical difference (p > 0.05).

their adjacent parts that propagated in areas containing reliable
information.

In short, fast-marching methods explore the object border
area in a detailed manner: all pixels are analyzed with respect to
all preceding neighbors through the arrival time map construc-
tion. Also, since the initial front is inside the region to segment,
the interface is forced to go into the boundary direction. The
PDF feature, when used in conjunction with an in-depth explo-
ration algorithm such as the fast-marching, compares very well
with the widely used gradient and can be a valuable and relevant
information for IVUS segmentation.

B. Other Considerations

A fast-marching segmentation algorithm based on an auto-
matically detected mixture of Rayleigh PDFs was presented for
IVUS image analysis. This method was able to identify vessel

wall structure in 3-D; however, some limitations can be identi-
fied. As many IVUS segmentation techniques, an initial contour
was necessary for the PDF and gradient fast-marching. In this
study, contours from 3 longitudinal views were sufficient and
were manually traced in 4.1 £ 0.8 minutes. For more complex
lesions, the user might have to trace contours on more views
during the initialization procedure. This is a limitation of the
method. However, the number of initial longitudinal contours
could be reduced with a correction strategy based on a multi-
scale optimization. With this approach, a higher resolution data
set is initialized with low resolution segmentation results of the
same pullback. If one adopts this strategy, initial contours would
only be used for the segmentation of the coarsest data set. Still,
results demonstrated that the PDF information was able to char-
acterize the statistics of each component of the vessel wall. This
may be useful for the elaboration of an automatic initialization
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0.75cm

Fig. 8. Example, from one pullback, of the volumic reconstruction of the lumen
(dark gray) and external media boundary (light gray). The 3-D segmentation
was performed with the PDF based 3-D fast-marching method (internal media
boundary is not shown for better visibility).

strategy, that could be done through a search in likelihood maps
of the pixels calculated from the detected mixture.

The processing time for all segmentation calculations (PDF
mixture, gradient and 3-D fast-marching) was approximately
1 sec/image for a Matlab and C combined implementation on a
Pentium IV 2.6 GHz. Proper data structures were used to handle
the arrival time map 7 to rapidly retrieve, add or remove values.
The segmentation was not real-time, however, with some opti-
mizations, close to real-time computation can be expected.

The goal of the PDF parameter estimation is to characterize
the statistics of each wall layer over the whole vessel. The EM
algorithm was able to estimate a PDF mixture that could fit the
IVUS data globally for patients having different vessel wall
appearance, even when the pullbacks contained structures such
as heterogeneous plaques. For future developments, it is possible
to conceive an estimation algorithm that would detect more than
four PDFs, in addition to their parameters, to allow the segmen-
tation of the heterogeneous nature of plaques (lipidic, calcified,
fibrous, necrotic, etc.). Also, to increase the performance of the
proposed segmentation method, other types of PDFs such as
the K [34], Nakagami [35] or Rician inverse Gaussian (RilG)
[36] distributions can be considered to model tissues that are not
Rayleigh distributed (when the number of scatterers is low, when
they are not randomly distributed or when log-compression or
other filtering operations performed by the ultrasonic equipment
modified the signal PDFs). For these distributions, the cost
function of (4) might not be maximized analytically. In this case,
to evaluate the mixture parameters, other algorithms such as the
stochastic EM [37] might be used. In this study, a Rayleigh PDF
mixture was able to model the IVUS gray level distributions.

Finally, for the segmentation of arteries with a small or even
absent media, as often seen in the coronary arteries, a weight
factor [w; in (2)] close to zero for the media distribution in the
PDF mixture estimation is expected. In that case, the segmen-
tation would be performed on the lumen and external vessel
boundaries only.

VIII. CONCLUSION

IVUS image processing is a difficult but important task.
Image series contain highly relevant clinical information but
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are sometimes of poor quality and subject to shadowing and
catheter artifacts.

This study has demonstrated the efficiency of fast-marching
segmentation using Rayleigh PDF mixture and gradient on in
vivo and realistic simulation of IVUS images. Fast-marching
approach, a segmentation method with small variability, is a
promising technique for in vivo IVUS image processing. The
PDF information is relevant for IVUS image analysis and would
benefit of being combined with the gradient information. With
an automated initial contour calculation, it is hoped that the
fast-marching algorithm using the PDF and/or gradient infor-
mation may become a reliable segmentation tool of choice for
IVUS.
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