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Modeling and Analysis of Ultrasound
Backscattering by Spherical Aggregates and

Rouleaux of Red Blood Cells
Beng-Ghee Teh and Guy Cloutier, Member, IEEE

Abstract—The present study concerns the modeling and
analysis of ultrasound backscattering by red blood cell
(RBC) aggregates, which under pathological conditions
play a significant role in the rheology of blood within hu-
man vessels. A theoretical model based on the convolution
between a tissue matrix and a point spread function, repre-
senting, respectively, the RBC aggregates and the charac-
teristics of the ultrasound system, was used to examine the
influence of the scatterer shape and size on the backscat-
tered power. Both scatterers in the form of clumps of RBC
aggregates and rouleaux were modeled. For all simulations,
the hematocrit was kept constant at 10%, the ultrasound
frequency was 10 MHz, the insonification angle was varied
from 0 to 90�, and the scatterer size (diameter for clumps
and length for rouleaux) ranged from 4 �m to 120 �m. Un-
der Rayleigh scattering by assuming a Poisson distributed
scatterers in space, the ultrasound backscattered power in-
creased linearly with the particle volume. For non-Rayleigh
scatterers, the intensity of the echoes diminished as the
scatterer volume increased, with the exception of rouleaux
at an angle of 90�. As expected, the backscattered power
was angular dependent for anisotropic particles (rouleaux).
The ultrasound backscattered power may not always in-
crease with the size of the aggregates, especially when they
are no longer Rayleigh scatterers. In the case of rouleaux,
the anisotropy of the backscattered power is emphasized in
the non-Rayleigh region.

I. Introduction

Under normal physiological conditions, the red blood
cells (RBCs) may aggregate into stacks called

rouleaux, which is a result of the interaction between
plasma proteins and the RBC membrane. The rouleaux
may further interact with other rouleaux to form rouleau
networks, depending on the flow conditions, cellular fac-
tors, and the blood plasma protein content. Clumps of
RBCs can be found under human pathological conditions.
Aggregates formed in stationary flow or low flow condi-
tions disaggregate at higher flow rates due to the increase
in shear forces. Because RBC aggregation is a reversible
process, reducing the shear forces results in the reaggre-
gation of RBCs. Under pathological conditions in which
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de la Recherche en Santé du Québec (to G.C.), and by grants from
the Medical Research Council of Canada (#MT-12491 and #MOP-
36467) and the Heart and Stroke Foundation of Quebec.

B. G. Teh is with Cypress Semiconductor, San José, CA.
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RBC aggregability is elevated, the rate of aggregate for-
mation and the adhesive strength between RBCs are in-
creased. Pathological levels of RBC aggregation play a role
in microcirculatory flow disorders and vascular thrombo-
sis [1], [2].

Several research groups have shown that ultrasound
backscattering is sensitive to the presence of RBC aggre-
gation [3]. The ultrasonic backscatter from flowing whole
blood was found to be different from that of RBC saline
suspensions (no aggregation) in that the former is shear
rate dependent [4]. These last experiments were conducted
with animal blood from different species, and the results
pointed to a species-dependent backscatter that could be
explained based on the degree of aggregation of the species’
blood sample. The same group also showed that ultra-
sonic backscatter from flowing whole blood was depen-
dent on the concentration of fibrinogen (a plasma pro-
tein that strongly promotes RBC aggregation) [5]. Kim
et al. [6] demonstrated that the ultrasonic backscattered
intensity increased after the human blood sample in an
oscillatory flow was abruptly stopped. They also observed
a rapid decrease in echo intensity when the flow was re-
sumed. Boynard and Lelièvre [7] used ultrasound to mea-
sure the backscattering intensity of a RBC dextran sus-
pension. They made an attempt to relate the mean size of
RBC aggregates to the backscattered intensity.

Ultrasonic backscattered power from asymmetric scat-
terers with size in the range of the wavelength has been
shown to be angular dependent, in which the angle is be-
tween the ultrasonic beam and the longitudinal axis of
the scatterers. Some examples of such observation can be
found in experiments conducted with myocardial tissue [8],
bovine liver [9], human Achilles tendon [10], and renal
parenchyma [11]. All of the results showed a maximum
ultrasonic backscatter when the direction of the ultrasonic
beam was perpendicular to the longitudinal axis of the
scatterers, and a minimum when the beam direction was
parallel to their long axis. Such anisotropic behavior also
was observed in flow experiments conducted with porcine
whole blood, as well as with carbon fibers suspended in a
saline-glycerol solution [12]. Each carbon fiber was approx-
imately 7 µm in diameter and 250 µm in length, mimicking
a long rouleau of RBCs. In this last study, the anisotropy
was not observed for porcine RBCs suspended in a saline
solution, in which scatterers existed in the form of indi-
vidual RBCs not forming aggregates, and for conditions
in which clumps were expected.
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In summary, a correlation exists between the size
and orientation of RBC aggregates, and the ultrasonic
backscattered power. When the blood sample is in mo-
tion, the shearing effects of the flow cause the RBC ag-
gregates to break apart, leading to smaller aggregates and
weaker backscattered power. Conversely, when the flow is
ceased or reduced, the shearing effects decay accordingly,
consequently, the RBCs reaggregate, which is reflected by
a stronger backscattered power and possible anisotropy.
Blood samples with little or no aggregates, such as bovine
whole blood or RBCs suspended in a saline solution, are
independent of the shearing effects of the flow under lami-
nar flow, and the backscattered power is not influenced by
the angle.

According to the Rayleigh scattering theory [13], the
power backscattered by one particle (backscattering cross
section) depends on the square of the particle vol-
ume. However, at a constant hematocrit, the ultrasound
backscattered power is expected to be proportional to the
mean aggregate’s volume [14]. This situation should exist
if scatterers are small enough to satisfy the Rayleigh scat-
tering condition, and if their spatial arrangement (packing
factor) is unchanged when the volume of the aggregates
is increased. From this discussion, it is clear that the ul-
trasound backscattered power can be used as a signature
to study RBC aggregation. However, although it is known
from the literature that RBC aggregation increases ultra-
sound backscattering, the exact mechanism by which the
power is increased is unknown. The volume of the aggre-
gates certainly has an effect, but other factors—such as
the hematocrit, the manner in which RBCs are packed,
the shape of the aggregates, their variance in size, and the
fluctuation of all these parameters in time and space—
may all contribute. In the present study, the influence of
the volume and shape of the aggregates was specifically
addressed with a theoretical simulation at various insoni-
fication angles.

II. Method

A. The Model

A linear model was developed to study ultrasound
backscattering by spherical aggregates and rouleaux of
RBCs. A similar model recently was used to simulate
the ultrasonic signal backscattered by nonaggregating
RBCs [14]. A strength of the model is the possibility to
consider the effect of acoustic interference on the backscat-
tered power. The model takes into account interference be-
tween echoes from all point sources sampled within each
scatterer. This allows modeling of both Rayleigh and non-
Rayleigh scattering conditions. The model uses the Born
approximation, which implies that the scattered echoes
are weak compared to the incident signal. The backscat-
tered radio-frequency (RF) signal from a volume of interest

(VOI), RF3D(x, y, z), can be expressed as:

RF3D(x, y, z) =
∂2

∂y2T3D(x, y, z)⊗ Z3D(x, y, z),
(1)

where T3D(x, y, z) is the three-dimensional (3-D) point
spread function (PSF) of the ultrasound system,⊗ denotes
the convolution operation, and Z3D(x, y, z) is the acoustic
impedance function that considers the scatterer’s shape,
size, and spatial arrangement. The variable y refers to the
direction of propagation of the pressure waves, and x and z
are along the lateral and elevation directions, respectively.
The second order derivative with respect to y considers the
fluctuations in acoustic impedance of the medium (fluctu-
ations in density and compressibility).

For the ease of computation, we consider a single slice
of the 3-D RF signal (obtained from all scatterers in the
VOI), RF2D(x, y) = RF3D(x, y, 0). If T3D(x, y, z) is sepa-
rable, that is, T3D(x, y, z) = T (x, y)Tz(z), (1) simplifies to
a 2-D convolution:

RF2D(x, y) =
∂2

∂y2T (x, y)⊗ Z(x, y), (2)

where Z(x, y) =
∫
z

Tz(−z)Z3D(x, y, z) dz. (3)

In (3), Z(x, y) is the projection of the 3-D impedance
function weighted by Tz(−z).

Because the region of interest is composed of a collec-
tion of scatterers, the tissue impedance, Z3D(x, y, z), can
be assumed to be an ensemble of small scatterer inhomo-
geneities:

Z3D(x, y, z) =
∫
n

Zn(x, y, z), (4)

where n indicates the nth scatterer in the VOI. If scatterers
all have the same size and shape, then only a universal
scatterer prototype is required to generate Z(x, y). In that
case, a scatterer prototype function can be defined and
repeated at each scatterer position, i.e.:

Zn(x, y, z) = anC3D(x− xn, y − yn, z − zn), (5)

where an represents the echogenicity of the nth scatterer,
and C3D(·) is the scatterer prototype function. Substitut-
ing (5) into (4) and then into (3) gives:

Z(x, y)
(6)

=
∫
z

∑
n

anTz(−z)C3D(x− xn, y − yn, z − zn)dz.

When the scatterer size is small compared to the thick-
ness of the beam in the z direction, the value of Tz(−z)
remains constant within each scatterer volume. With re-
spect to each scatterer, this implies that Tz(−z) varies
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only from scatterer to scatterer and not in the z direction
within any particular scatterer location. Therefore, Tz(−z)
can be taken out of the integral, which results in:

Z(x, y) =
∑
n

anTz(−zn)
∫
z

C3D (7)

(x− xn, y − yn, z − zn)dz

=
∑
n

anTz(−zn)C(x− xn, y − yn),

where C(x, y) =
∫
z

C3D(x, y, z)dz. (8)

This means that the 2-D tissue impedance function
Z(x, y) can be generated by projecting the scatterer pro-
totype function along the z-axis, then weighting the result
with Tz(−zn) at each scatterer location. Z(x, y) also can
be expressed as the 2-D convolution between C(x, y) and
a position matrix N(x, y):

Z(x, y) = C(x, y)⊗N(x, y), (9)

where N(x, y) =
∑
n

anTz(−zn)δ(x− xn, y − yn).
(10)

N(x, y) is essentially a matrix with randomly positioned
Dirac delta functions weighted by Tz(−zn) and an, that
describes the spatial arrangement of scatterers. With the
model of (1), the scattering arrangement in space is deter-
mined by the statistical model used to describe N(x, y, z).
Based on (9) one will get an ”ideal” tissue matrix, in which
all scatterers simulated have the same size, shape, and
orientation. Having obtained Z(x, y), the 2-D RF image,
RF2D(x, y), can be computed according to (2).

B. Main Assumptions of the Model

The main assumptions used in the modeling of ultra-
sound backscattering by RBCs are:

• The medium is weakly scattering (Born approxima-
tion). A weak scattering medium implies that multi-
ple scattering does not significantly contribute to the
backscattered power.
• There is no attenuation by the medium. Attenua-

tion could be included in the model (RF3D(x, y, z) =
e−α(y) ∂2

∂y2T3D(x, y, z) ⊗ Z3D(x, y, z), where α is the
attenuation coefficient). However, this was not done
because the attenuation as a function of the level of
aggregation and scatterer’s shape is not well charac-
terized in the literature (especially at the ultrasound
frequency and hematocrit considered in this study).
• The ultrasound beam is large enough that scatterers

are small compared to the beam thickness, i.e., Tz(−z)
in (6) remains constant within each scatterer volume.
For the simulation of RBC rouleaux, the change in the

scatterer volume was reflected in its length, and its di-
ameter remained constant. For the RBC clump mimic,
the diameter of the spherical clump increased with the
scatterer volume. As described later, the largest clump
diameters and longest rouleaux simulated had a di-
mension of 120 µm, which is still considerably smaller
than the beam thickness of a typical ultrasound trans-
ducer that is about a millimeter. Thus, Tz(−z) can be
considered constant within each scatterer and it can
be taken out of the integral in (6).
• All scatterers have an equal echogenicity an within

the VOI.
• All scatterers have the same size, shape, and orienta-

tion. This simplifies the computation because it allows
us to use a single scatterer prototype C for all parti-
cles. If a more realistic tissue image is required (i.e., a
unique shape, size, and orientation for each scatterer),
the method described in [15] can be used.

C. Implementation for Computer Simulations

The following steps can be used to implement the linear
model of (2) on a computer:

Step 1. Create the PSF matrix ∂2

∂y2T (x, y), and rotate
the PSF about the center of the matrix to simulate differ-
ent angles of insonification (0 to 90◦). The 3-D PSF was
modeled by a Gaussian modulated cosine function:

T3D(x, y, z) = e

(
− x2

2ψ2
x
− y2

2ψ2
y
− z2

2ψ2
z

)
cos(4πfy/c),

(11)

where ψx, ψy and ψz are the standard deviations of the
Gaussian envelope controlling the beamwidth, the band-
width (transmitted pulse length), and the beam thickness,
respectively. A transducer beamwidth (2ψx) of 0.5 mm, a
PSF length (2ψy) of 65.2 µm, and a transducer beam thick-
ness (2ψz) of 0.5 mm were modeled1. The parameters 2f/c
in (11) represent the transducer spatial frequency, where
f is the ultrasound frequency, and c is the speed of sound
in blood. It is easy to show that the hypothesis of separa-
bility used to obtain (2) is valid for this PSF definition. In
the present study, a transducer frequency (f) of 10 MHz
and a speed of sound (c) of 1570 m/s were considered.

Based on the definition of (11), the PSF matrix
∂2

∂y2T (x, y) can be shown to be equal to:

∂2

∂y2T (x, y) = T (x, y)[(
y
ψ2
y

)2
+ (8πfy/c) tan(4πfy/c)−1

ψ2
y

−
(

4πf
c

)2
]
. (12)

1In this manuscript, the standard deviations used in the definition
of the 3-D PSF (11) and scatterer prototype function (13) are used to
approximate the radius of the dimension considered. For a Gaussian,
68.3% of the energy of the function is within the mean± one standard
deviation. Thus, the true dimension is larger than the one defined
here.
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Fig. 1. The PSF used in the present study (12), for insonification angles of 0 and 45◦.

Fig. 2. Rotation of the x − y plane about the z axis to simulate
different insonification angles. The y axis represents the direction of
propagation of the ultrasonic waves.

Fig. 1 shows the PSF defined by (12). Having obtained
the PSF matrix, its rotation about the origin was accom-
plished by first rotating the axis by a desired angle, then
implementing the function on the rotated axes, as shown
in Fig. 2. Any arbitrary point on the x − y plane was
mapped onto the p − q plane through the relationships
shown in Fig. 2. Because the 2-D Gaussian function was
applied onto the rotated axes, no interpolation was per-
formed on the PSF matrix; therefore, no interpolation er-
rors were introduced.

Step 2. Referring to (2), the objective is to create the
tissue impedance function Z(x, y), which is the convolu-
tion between the scatterer prototype function C(x, y) and
the position matrix N(x, y) (9).

A 3-D separable Gaussian function was used to model
C3D(x, y, z). This function was previously utilized to
model biological tissues [16], [17]. The selection of this
prototype tissue function allows modeling of isotropic and
anisotropic scatterers of different sizes by simply modify-
ing the dimension of the Gaussian function in the x, y,
and z directions. This function also simplifies computa-
tion because the Fourier transform of a Gaussian is still a
Gaussian in the frequency domain. According to (8), the

2-D Gaussian scatterer prototype was computed as:

C(x, y) = σz
√

2πe

(
− x2

2σ2
x
− y2

2σ2
y

)
, (13)

where σx, σy, and σz are the standard deviations repre-
senting its width, length, and depth. Referring to (10), the
scatterer position matrix N(x, y) is a 2-D matrix with ran-
domly positioned Dirac delta functions scaled by an and
Tz(−zn), that are considered constant here. Tz(−zn) is
supposed constant, not only within the scatterer volume,
but also within the whole VOI. This is valid if one considers
that scatterers are uniformly distributed along the z axis.
If small pixel sizes are defined in the x and y directions,
all scatterers are thus in phase with respect to the oscil-
lations of the PSF, and their contribution can simply be
added without using a specific weighting factor, Tz(−zn),
for each scatterer. The function N(x, y) was modeled as a
Poisson distributed matrix modeling the random number
of scatterers per pixel in the sample volume. The Poisson
parameter (λp) was specified to consider a constant hema-
tocrit of 10% (λp = 0.10 multiplied by the pixel volume,
and divided by the volume of one scatterer). The pixel size
and number considered are defined below.

Having created the scatterer position matrix N(x, y),
the tissue impedance function Z(x, y) in (9) can be ob-
tained by computing the product of the fast Fourier trans-
form (FFT) of both C(x, y) and N(x, y) matrices, then
computing the inverse FFT (IFFT) of the product. In
order to minimize computation, the IFFT was not com-
puted, and the tissue impedance, Z(X,Y ), was left in the
frequency domain, where X and Y are the 2-D frequency
variables.

Step 3. Following computation of (2) in the frequency
domain to obtain RF2D(X,Y ), the last step was to evalu-
ate the backscattered power. The average power of the RF
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image, in decibel (dB), was computed as follow:

POWav = 10× log10


 1
M2

M/2∑
Xk=−M/2

M/2∑
Yk=−M/2

|RF2D(X,Y )|2

 ,

(14)

where M is the number of samples along each side of the
image, and k is the frequency sample. The power on a
linear scale also was computed for some figures. No nor-
malization of the backscattered power was done. The IFFT
of RF2D(X,Y ) also was computed to obtain the B-mode
image that is essentially the envelope of RF2D(x, y) (ob-
tained by Hilbert transformation).

D. Simulated Conditions

Blood scatterers are usually moving in vivo. Such mo-
tion was not simulated, but it was indirectly considered
because the movement of the fluid affects the shape, size,
and orientation of the scatterers. Thus, simulating a snap-
shot of the scatterer positions may be consistent with re-
ality. Simulating several snapshots for averaging purposes
may reflect position changes of scatterers as a function
of time, although no specific time-variation pattern was
simulated in the present study. The size of the region of
interest simulated was 1.28 mm × 1.28 mm, the number
of pixels simulated was 512 × 512, and the image reso-
lution was 2.5 µm (which corresponds to a sampling fre-
quency, c/2 divided by 2.5 µm, of 314 MHz). The pixel
size into which scatterers were positioned according to the
Poisson distribution function had a volume of 3125 µm3

[2.5 µm× 2.5 µm× 0.5 mm(2ψz)]. Note that the center of
each scatterer is positioned not its entire volume. For all
simulations, the hematocrit stayed constant at 10%.

Simulations were performed to evaluate the effect of the
volume of scatterers and anisotropy due to their structure
on the backscattered power. The signal power from two
different sets of tissue matrices representing two differ-
ent types of scatterer structures was compared: one was
a group of isotropic scatterers (clumps); the other was
anisotropic (rouleaux). Thirty tissue matrices for each set
were generated to establish the error margin. All samples
had the same scatterer size and hematocrit level; the only
difference was the location of the scatterers, which was
randomly distributed. For rouleaux, they were all aligned
with the y axis (see Fig. 2). The power variation was ex-
amined at different insonification angles ranging from 0
to 90◦. Note that at 0◦, the direction of propagation is
parallel to the long axis of rouleaux.

The scatterers in each set of tissue matrices were gen-
erated according to (13). Spherical clumps were modeled
with identical standard deviations in the x, y, and z direc-
tions. Rouleaux were mimicked with the standard devia-
tion in one direction greater than the others. More specifi-
cally, the width and depth of each rouleau, which is deter-
mined by σx and σz, were set to 7 µm (i.e., σx and σz were

both set to 3.5 µm), whereas the length of each rouleau
ranged from 4 µm to 120 µm (i.e. σy varied between 2 µm
and 60 µm). Because the thickness of a typical RBC is
2 µm, this was to simulate a group of rouleaux, each con-
sisting of 2 to 60 RBCs stacked together in the form of
a rod. For RBC clump mimic, because a sphere is used
to mimic this type of aggregates, σx, σy, and σz were all
set equal. Values ranging from 2 µm to 60 µm (diameter
= 4 to 120 µm) were used. Fig. 3 shows one example of
gray scale tissue images for each type of scatterer (rouleau
lengths and clump diameters = 60 µm), as well as the
corresponding RF and B-mode images at 0◦.

The simulated range of 4 µm to 120 µm, the scatterer
shapes selected and orientation for the case of rouleaux
were solely for the purpose of examining the power for
these conditions. These characteristics do not imply their
physical existence physiologically. Such a range also was
selected to observe the power in both Rayleigh and non-
Rayleigh scattering situations. Rayleigh scattering occurs
at particle sizes approximately less than one-tenth of the
wavelength [13]. With the carrier frequency at 10 MHz and
a sound velocity in blood at 1570 m/s, the correspond-
ing wavelength is 157 µm. Rayleigh scattering thus oc-
curred only for clump diameters or rouleau lengths smaller
than 15.7 µm. The backscattered power estimated with
our linear-system model recently showed good agreement
with the T-matrix theory for nonaggregating spheres at
high frequencies (non-Rayleigh scattering) [14]. Thus, the
model should still be valid up to the dimension mentioned
here, which is close to the size of the wavelength but no
longer in the realm of Rayleigh scattering.

III. Results

At a fixed hematocrit and similar spatial arrangement of
scatterers, a linear relationship is expected under Rayleigh
scattering (scatterer’ sizes < 15.7 µm) between the signal
power and the particle volume for the linear model to be
valid. For the first series of simulation, the diameter of
the clump mimics was preset to range from 4 to 13 µm,
at 1 µm increment. This corresponded to σx, σy, and σz
varying from 2 to 6.5 µm, and an approximate range of
scatterer volume from 34 to 1150 µm3, respectively. The
length of the rouleau mimics was also preset to the same
range (σy varying from 2 to 6.5 µm) with the correspond-
ing scatterer volume ranging from 154 to 500 µm3. Fig. 4
presents the power versus volume relationship for the RBC
clump and rouleau mimics. As shown, linear relationships
were obtained for the scatterer volumes considered. For a
given scatterer volume, the power was higher for the clump
mimics compared to the rouleau mimics.

Fig. 5 shows the mean backscattered power as a func-
tion of the angle of insonification, for rouleau lengths and
clump diameters of 60 µm (non-Rayleigh scatterers). From
this graph, it is apparent that the difference in the scat-
terer shape is reflected in the power with this model. A
change of approximately 25 dB in the mean power for RBC
rouleau mimics was observed as a function of the angle. As
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Fig. 3. Examples of tissue images Z(x, y), RF images RF2D(x, y), and B-mode images of RBC clump and rouleau mimics, at an angle of 0◦

and a hematocrit of 10%. For RBC rouleaux, scatterers are aligned parallel to the y axis.
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Fig. 4. Linear power-volume relationships for isotropic spherical clumps and anisotropic cylindrical rouleaux, at an angle of 0◦. The error
bars for each scatterer size represent one standard deviation obtained from 30 tissue matrices. The correlation coefficients (r2) were fitted
onto the mean backscattered power values.

Fig. 5. Comparison of the mean backscattered power between simu-
lations of RBC clumps (60 µm in diameter) and rouleaux (60 µm in
length). The error bars for each angle represent one standard devia-
tion obtained from 30 tissue matrices.

expected, no change in the mean power was found for the
RBC clumps.

To further elucidate the role of the scatterer size and
shape on the backscattered power, 30 different scatterer
volumes were simulated over dimensions (σ) varying be-
tween 2 and 60 µm. Both σx and σz remained at 3.5 µm
for the rouleau mimics, and the change in volume was re-

flected in σy. As performed before, σx, σy, and σz all had
identical values for the clump mimics. Fig. 6 shows re-
sults for the range of sizes considered, and insonification
angles of 0, 22.5◦, 45◦, 67.5◦, and 90◦. One can see that
the signal power increases up to a peak as the scatterer
size increases, but any further increase in the diameter or
length of the scatterers results in a decrease in the signal
power, except when the scatterer structure is in the form
of a rouleau at the insonification angle of 90◦. In this case,
the signal power continues to increase with the scatterer
length (it is expected to drop for longer rouleaux when
the size exceeds the ultrasound beam thickness). For RBC
rouleau mimics, the position of the peak is also changed,
depending on the insonification angle; and the differences
across the insonification angles appear to be enhanced for
longer rouleaux. For spherical clumps, no anisotropy was
observed as expected.

IV. Discussion

A. Influence of the Scatterer Size
on the Backscattered Power

Generally, the backscattered power in Fig. 6 increased
up to a peak then decreased as the scatterer volume con-
tinued to increase. Such behavior can be better under-
stood in the frequency domain. The convolution operation
described in (2) is the multiplication, in the frequency do-
main, of the Fourier transform of the PSF with the Fourier
transform of the tissue image. Fig. 7 shows the magni-
tude spectrum of the PSF at an arbitrary insonification
angle of 0◦. The position of the two spots on the 2-D spec-
trum is at the carrier frequency of the PSF (10 MHz). The
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Fig. 6. Power versus dimension (diameter for clumps and length for
rouleaux) of RBC mimicking aggregates. The data are for 5 differ-
ent insonification angles (0, 22.5◦, 45◦, 67.5◦, and 90◦). Because no
angular dependence was found for RBC clump mimics, all data were
pooled and plotted as one curve. The error bars for each scatterer size
represent one standard deviation obtained from 30 tissue matrices.

Fig. 7. Magnitude spectrum of the transducer PSF in Fig. 1 for an
insonification angle of 0◦.

right panels of Figs. 8 and 9 present the magnitude spec-
trum of the tissue images shown on the left panels, for RBC
clumps with diameters of 20 µm and RBC rouleau mimics
with a length of 20 µm. These spectra are essentially ma-
trices with 2-D delta functions weighted by the scatterer
prototype function (9). According to (2), the backscat-
tered power is determined by the overlapping area between
the PSF spectrum (Fig. 7) and the tissue image spectrum
(right panels of Figs. 8 and 9).

From the Fourier transform relationship between space
and frequency, scaling in the spatial domain leads to an
inverse relationship in the frequency domain [18]:

f(ax) FT←→ 1
|a|F

(ω
a

)
(15)

where f(ax) is the function in the spatial domain, a is
the scaling factor, x is the spatial domain variable, FT is
the Fourier transform, F is the function in the frequency
domain, and ω is the frequency domain variable. As the
scatterer size is increased along a given direction in the
spatial domain (a < 1) in (15), the tissue image spectrum
shrinks along the same direction in the frequency domain,
and its amplitude increases. However, if the scatterer size
is reduced in one direction (a > 1), the spectrum of the
tissue image expands in the same direction, and the ampli-
tude decreases. For small scatterers, as the size is increased
the increase in the amplitude of the spectrum offsets such
scaling effect in the frequency domain; as a result, the
backscattered power is increased as observed in Fig. 4 for
Rayleigh scattering. As the scatterer size continues to in-
crease, the overlapping region between the PSF spectrum
and the tissue image spectrum is reduced, leading to a de-
crease in backscattered power. For the particular case of
rouleau mimics, the tissue spectrum has the form of an el-
lipsoid. Because the diameter of rouleaux is kept constant
for all simulations, the bandwidth of the spectrum along
the X frequency axis is unchanged when the scatterer size
is increased. Shrinking of the spectrum only occurs along
the Y frequency axis. When the rouleau size is reduced,
the ellipsoid in the spectrum of the tissue image tends to
be circular.

In general, as the scatterer size is increased, one can
conclude that the backscattered power depends on the in-
crease in amplitude of the tissue spectrum, the decrease
in the overlapping region with the PSF spectrum, and the
number of scatterers in the region of interest. The number
of scatterers in the region of interest for large scatterers
is not as numerous as when the scatterers are smaller, be-
cause the hematocrit is kept constant. As a consequence,
this effect may also contribute to the reduction of the
backscattered power at high scatterer sizes.

B. Effect of the Insonification Angle
on the Backscattered Power

In the model, the change in the insonification angle was
represented by the rotation of the PSF about its origin,
which is the center of the image. In the frequency domain,
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Fig. 8. Tissue matrix mimicking RBC clumps of 20 µm diameter at 10% hematocrit with the corresponding magnitude spectrum. Note that
the DC component has been removed from the spectrum for better visualization.

rotating the PSF produces a rotation of the two spots
shown in Fig. 7. From the spectrum in Fig. 8, it is not diffi-
cult to see that the backscattered power from such a tissue
mimic is angular independent because the isotropic struc-
ture of the scatterers is reflected in the frequency domain.
As the PSF is rotated across the different insonification
angles, the symmetry of the tissue image spectrum causes
the overlapped region with the PSF spectrum to remain
unchanged, leading to the angular-independent backscat-
tered power.

According to Fig. 6 for rouleau mimics, increasing the
angle leads to an increase of the backscattered power. This
can be explained by the fact that the two spots on the
PSF spectrum increasingly overlap with the region occu-
pied by the ellipsoidal tissue image spectrum as the angle
is changed from 0 to 90◦. Note that at 90◦, the power
drop is not observed because the volume change of the
rouleau mimics is reflected in the length, which is along
the y axis. In the frequency domain, the change in the
scatterer volume does not affect the overlapping region
between both spectra because the two spots of the PSF
are aligned along the x axis and superimposed over the
tissue spectrum. Thus, the increase in amplitude of the
tissue spectrum as the rouleau length is increased raises
the backscattered power.

C. Comparison of the Simulated Results

To our knowledge, modeling of blood backscattering
by RBC aggregates has not been attempted before. Ku-
mar and Mottley [19] proposed a time-domain Born ap-
proximation model to predict the anisotropy of ultra-
sound backscattering from myocardial muscular fibers.
They modeled the differential backscattering cross section
from one fiber of different lengths, as a function of the in-

sonification angle. The anisotropy was not significant be-
tween 2 and 8 MHz for a length of 41 µm. However, for
fibers of 80 and 102 µm, the backscattered power was max-
imum at 90◦ and minimum at 0◦ for frequencies above
4 MHz. In the non-Rayleigh region (higher frequencies),
the power continued to increase with frequency at 90◦ and
60◦, and dropped at 30◦ and 0◦. In Fig. 6, a similar be-
havior was found at 10 MHz in the non-Rayleigh region
(longest rouleau mimics). For instance, the backscattered
power increased as the rouleau length was raised for an
angle of 90◦, whereas it decreased for all other angles. In
[19], the backscattering coefficient at 8 MHz was plotted
as a function of the angle of insonification θ. The backscat-
tering coefficient varied as sin(2θ−90◦), which is similar to
the variation observed in Fig. 5 for the rouleau mimics. It
is interesting to note that similar results were also obtained
analytically by Insana [17]. In that study, a transverse
isotropic correlation model was developed to explain the
anisotropy of the kidney microstructure. The integrated
backscatterer coefficient varied sinusoidally with the angle
of insonification, at frequencies ranging between 2.5 and
5 MHz, and 5 and 15 MHz.

D. Other Considerations

It is important to note that the position of the peaks
observed in Fig. 6 is dependent on the carrier frequency of
the PSF. In this study, a PSF carrier frequency of 10 MHz
was used for all simulations. However, the peak would be
expected to occur at a larger scatterer size if the carrier
frequency had been reduced, and vice versa. From a phys-
ical point of view, lower carrier frequency implies greater
wavelength, which means that larger scatterers can be con-
sidered as Rayleigh scatterers.
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Fig. 9. Tissue matrix mimicking RBC rouleaux of 20 µm length at 10% hematocrit with the corresponding magnitude spectrum. Note that
the DC component has been removed from the spectrum for better visualization. The RBC rouleaux are aligned parallel to the y axis.

With regard to the effects of the system parame-
ters toward the backscattered power, the bandwidth and
beamwidth of the ultrasound system, which corresponds
respectively to the standard deviations ψy and ψx in (11),
are also important because both variables affect the spec-
trum of the PSF. However, any power variations due to
these system parameters will not affect the trend of the
backscattered power observed in Figs. 4 to 6.

In this study, the pixel size into which scatterers were
positioned according to the Poisson distribution function
had a volume of 3125 µm3 (2.5 µm × 2.5 µm × 0.5 mm).
The distribution used is dependent on the number of scat-
terers per pixel. For a fixed hematocrit level of 10%, the
scatterer number per pixel is generally less than 12 (for
scatterers greater than 4 µm in length or diameter), which
can be adequately modeled by the Poisson distribution.
However, this probability distribution function would not
be appropriate to study higher hematocrits because scat-
terers become correlated. In this case, a Gaussian statisti-
cal distribution function may be more appropriate to dis-
tribute the number of scatterers per pixel, as used in an-
other study [14]. The parameters of the Gaussian model
as a function of the level of RBC aggregation remain to be
studied.

The linear relationships obtained in Fig. 4 between the
signal power and the scatterer’s volume may not be repro-
ducible at a hematocrit higher than 10%. One hypothe-
sis that has to be respected for this situation to exist is
the presence of a similar spatial arrangement of scatter-
ers between each step change in volume. By considering
a low hematocrit, the packing arrangement of scatterers
was kept unchanged for the range of volume considered,
and linear relationships were obtained in Fig. 4. However,
in the presence of physiological RBC aggregation under
flowing condition, different aggregate packing organization

may exist even if the hematocrit is low and kept constant.
This would have to be considered to simulate a more re-
alistic physiological situation. Moreover, because rouleaux
are not expected to be perfectly aligned in the human cir-
culatory system, a larger variance is anticipated for mea-
surements such as those in Figs. 5 and 6.

As shown in (13), 3-D Gaussian-shaped scatterers were
used in this study. Because the transducer may not be able
to resolve the edges of scatterers, and because the acous-
tic impedance of RBCs (density and compressibility) may
not be uniform within the cell and higher near the center,
a function that decays smoothly may be a good approx-
imation. In a recent study [14], we used both Gaussian
and spherical scatterer prototypes to describe the shape
of the RBC. For the Gaussian isotropic prototype, the
backscattered power decayed as in Fig. 6 for non-Rayleigh
scattering. However, the power oscillated around a mean
value for spherical scatterers. Based on the current knowl-
edge, it is difficult to determine the appropriate scatterer
prototype. For instance, no experimental data is available,
to our knowledge, to compare our results for non-Rayleigh
scattering.

In this study, two or more scatterers may overlap on
top of one another when the 3-D matrix is projected along
the z axis and is collapsed into a 2-D version in (2). Note
that, even though scatterers may overlap, the contribution
of each of them on the backscattered power is considered in
the model. Moreover, because scatterers are sampled in 2-
D with a resolution of 2.5 µm, acoustic interference within
each scatterer is also considered with the model. In the 2-D
convolution of (2), the phase of the PSF in the volume of
interest determines the effect, on the backscattered power,
of constructive or destructive echoes produced from the
different point sources.



teh and cloutier: ultrasound backscattering and red blood cells 1035

V. Conclusion

In a recent study [14], a comparison of the simulation re-
sults to theoretical predictions and experimental results re-
ported in the literature validated the linear-system model.
In that study, computer simulations of the model were
used to study the power backscattered by non-aggregating
RBCs as a function of the hematocrit, the volume of the
scatterers, and the frequency of the incident wave. The
current study is a first attempt aiming to evaluate the ef-
fect of RBC aggregation on the backscattered power. The
modeling of the tissue function with identical clumps and
rouleaux, all oriented with the y axis for the rouleaux, does
not reflect physiological condition. Under in vivo flowing
condition, polydispersity in size, shape, and orientation is
expected. Due to the complexity of ultrasound backscat-
tering by blood, the strength of the current approach is
the possibility of studying individually the effect, on the
backscattered power, of variables such as the scatterer
size, shape, and insonification angle. In contradiction to
what would be expected from the Rayleigh scattering the-
ory [13], the model predicts that the ultrasound backscat-
tered power may not always increase with the size of the
aggregates, especially when they are no longer Rayleigh
scatterers. It was also observed from this study that the
anisotropy of the backscattered power is emphasized in the
non-Rayleigh region.
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