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Abstract—Quantitative ultrasound (QUS) analyzes the
ultrasound (US) backscattered data to find the properties
of scatterers that correlate with the tissue microstructure.
Statistics of the envelope of the backscattered radio fre-
quency (RF) data can be utilized to estimate several QUS
parameters. Different distributions have been proposed
to model envelope data. The homodyned K-distribution
(HK-distribution) is one of the most comprehensive distri-
butions that can model US backscattered envelope data
under diverse scattering conditions (varying scatterer
number density and coherent scattering). The scatterer
clustering parameter («) and the ratio of the coherent
to diffuse scattering power (k) are the parameters of
this distribution that have been used extensively for
tissue characterization in diagnostic US. The estima-
tion of these two parameters (which we refer to as HK
parameters) is done using optimization algorithms in
which statistical features such as the envelope point-
wise signal-to-noise ratio (SNR), skewness, kurtosis, and
the log-based moments have been utilized as input to
such algorithms. The optimization methods minimize the
difference between features and their theoretical value
from the HK model. We propose that the true value of
these statistical features is a hyperplane that covers a
small portion of the feature space. In this article, we follow
two approaches to reduce the effect of sample features’
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error. We propose a model projection neural network based on denoising autoencoders to project the noisy features
into this space based on this assumption. We also investigate if the noise distribution can be learned by the deep
estimators. We compare the proposed methods with conventional methods using simulations, an experimental
phantom, and data from an in vivo animal model of hepatic steatosis. The network weight and a demo code are

available online at http://code.sonography.ai.
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[. INTRODUCTION

CATTERERS are microstructures thatscatter ultrasound

(US) waves and are typically smaller than the wavelength
of the US wave. Quantitative US (QUS) tries to provide
insight into the scatterers’ characteristics from the analysis
of the detected backscattered signals [1], [2]. QUS methods
can be broadly classified into three categories: spectral-based,
motion-based, and time-domain-based methods. Spectral-
based methods utilize backscattered radio frequency (RF) data
compression wave to estimate parameters like the backscatter
coefficient and the attenuation coefficient, while also remov-
ing system-dependent effects through the use of a reference
phantom [3], [4], [5], [6], [7]. Motion-based QUS methods

1525-8955 © 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Université de Montréal. Downloaded on February 29,2024 at 15:27:55 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2686-8989
https://orcid.org/0000-0002-4957-4844
https://orcid.org/0000-0001-8967-5503
https://orcid.org/0000-0003-0778-1260
https://orcid.org/0000-0001-5800-3034

TEHRANI et al.: HOMODYNED K-DISTRIBUTION PARAMETER ESTIMATION IN QUANTITATIVE ULTRASOUND 355

Highlights

« We addressed the low sample size effect of feature statistics used in HK parameter estimation. We investigated
autoencoder and Bayesian neural network (BNN) approaches to reduce the error caused by low sample size.

« Substantial improvements in HK parameter estimation has been achieved especially for the low sample sizes and
verified using simulation data, experimental phantom, and in vivo data.

« Our findings can provide more accurate HK parametric images and reduce the number of samples required for HK

parametric image calculation.

study the behavior of scatterers in response to an induced
motion, measuring parameters such as the elastic modu-
lus [8], [9] and the shear wave attenuation reflecting tissue
viscosity [10]. Finally, time-domain-based methods estimate
parameters related to the number and coherency of scatterers
by fitting a distribution to the envelope of backscattered RF
data [11], [12], [13]. Spectral-based analysis of the backscatter
coefficient and time-domain analysis of the echo envelope
share common and complementary information [14].

The Nakagami and Homodyned K-distributions
(HK-distribution) are the probability density functions
that have been used more frequently to model the envelope
data, and the parameters of these distributions are found to
be useful in tissue characterization including hepatic steatosis
grading [15], [16], [17], [18], [19], breast cancer diagnosis and
characterization [20], [21], [22], [23], [24], and classification
of metastatic lymph nodes [25]. The HK-distribution is a
more comprehensive distribution compared to the Nakagami
distribution due to the fact that it can model and differentiate
scattering with a high number of scatterers per resolution cell
where the Nakagami fails [18]. However, the HK-distribution
requires a larger number of samples of the amplitude of the
detected echo signals to achieve similar levels of accuracy and
precision in parameter estimation compared to the Nakagami
distribution.

The parameters of the HK distribution, referred here to
as the HK parameters, are also physically meaningful. The
scatterer clustering parameter (¢¢) and the ratio of the coherent-
to-diffuse scattering power (k) are two parameters of this
distribution that are related to the scatterer number density,
and the microstructural organization of scatterers, respectively.
Envelope statistics such as point-wise signal-to-noise ratio
(SNR), skewness, kurtosis, and the log-based moments are
usually employed to estimate HK parameters. Hruska and
Oelze [26] employed SNR, skewness, and kurtosis to estimate
the HK parameters by minimizing the difference between their
sample estimates and the theoretical values. Destrempes et al.
proposed to employ two log-based moments X and U and
used bisection interpolation to estimate the parameters [27].
They reported reduction of bias and variance by using these
two moments (we refer to this method as the XU method).
Liu et al. [28] proposed to utilize several statistics (in total 16)
and compared them with the theoretical values using table
search. They also performed an extensive analysis on feature
selection for each HK parameter estimation.

One of the constraints inherent in conventional methods
is due to their high computational complexity, which limits
their translation into real-time in vivo imaging applications.
Recently, deep learning (DL) methods are being used more
frequently for HK parameter estimation. These method
can be implemented efficiently on GPU which can obtain
real-time performance. Zhou et al. [29] used a multilayer
perceptron (MLP) that takes envelope statistics as input,
and outputs the HK parameters. We also demonstrated that
deep methods can be utilized for not only fast estimation of
the parameters, but also to quantify the uncertainty of the
estimated parameter [30].

The HK-distribution parametric images can be formed by
spatially dividing the envelope data into small grids. A patch
around the center of each grid is selected to estimate HK
parameters. A larger patch size provides a more reliable esti-
mate. However, a larger patch size increases the heterogeneity
within the patch, potentially resulting in the optimization
methods’ failure. Smaller patch size results in deviation of
computed parameters from the theoretical values, leading to
errors in estimating HK parameters.

In this article, we focus on reducing the estimation error
due to low sample size. To achieve this, we consider the
feature space as a high-dimensional space where each patch
is represented by a point. We show that the envelope statistics
features lie in a hyperplane that covers only a small volume
of the feature space, and hypothesize that noisy estimates
of the statistical features of the envelope deviate from this
hyperplane because of statistical errors. We then propose to
project the points into this hyperplane using an autoencoder
to reconstruct clean features from noisy sample estimates.
The reconstructed features can be utilized to estimate the
HK-distribution parameters with either non-DL (like the XU
estimator) or DL methods [MLP, Bayesian neural network
(BNN)].

In addition to the autoencoder approach, we expand the
investigation of our recently proposed BNN [30] because of
its ability to provide estimates of the uncertainty of parameter
estimation. This uncertainty can be of clinical value to convey
clinicians the confidence on the HK parameters. We investigate
different training strategies of the proposed BNN for different
sample sizes.

The two approaches are comprehensively compared with
conventional estimators and validated using simulations,
experimental phantoms, and in vivo data.
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Il. MATERIALS AND METHOD

A. Homodyned K-Distribution Parameters
Estimation Problem Formulation

1) Homodyned K-Distribution:
K-distribution can be defined as [27]

The Homodyned

u*o?\
> ) du
(D
where A is the envelope of the backscattered echo signal,
« is the scatterer clustering parameter that is related to the
scatterer number density, and Jy(.) denotes the zero-order
Bessel function. The coherent signal power is represented by
€2, and the diffuse signal power is 20%a [27]. The scatterer
clustering parameter (o), and coherent to diffuse scattering
ratio k = (€)/(o(a)!/?) are the HK-distribution parame-
ters that are commonly used in tissue characterization. The
envelope statistics (SNR, skewness, kurtosis of the fractional
amplitude, and log-based moments) can be obtained by

SNR(RY)

PHK (Ale, 02, ) =A/ uJo(ue)Jo(uA)(l—i—
0

_ E[AY]
JE[A®] - (E1a*)’
Skewness(S")
E[(A" - E[A"]D]
(E[4>] - (E[A")*)"
Kurtosis(K")
E[A*]-4E[A"|x E[A*"]+6E[A*] x E[AY)*—3E[AY*
(E[a>]-ElT)’ ’

U = E[log(I)] — log(E[1])

X = E[I x log(I)]/E[I1 - E[log(I)] 2)
where I = A? and v takes the two values 0.72,0.88 as
recommended by [26].

2) HK Parameters Inverse Problem: Let the envelope statis-
tic features from a single patch be the vector, F € RM*! =
[RO‘72, RO‘887 50‘72, SO.SS, K0'72, K0.88’ X, U]T, where M is the
number of envelope statistic features fixed at eight similar
to [29], and the vector of HK parameters be denoted as

0 € R?*! = [log,, (), k]7. The forward and inverse problems
can be illustrated as

fi d
® e R¥! 225 F e RMX!

@ c szl inverse

F e RM*! (3)

where F denotes the sample estimate of the envelope statistics,
and © represents the estimated ®. The forward problem
can be viewed as obtaining the envelope statistics from the
known parameters of the distribution. Hruska and Oelze [26]
showed that moments of the HK-distribution can be analyti-

cally obtained from a known HK-distribution by
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Fig. 1. Graphical representation of the denoising autoencoder. The the-
oretical values of envelope statistics lie in a low-dimensional manifold.
Sample estimates are corrupted by noise and lie further away from the
manifold. The MPAE projects the noisy sample estimates into the low-
dimensional manifold.

where 1F;(a, b, x) is a confluent hypergeometric function
of the first kind. The feature vector then can be obtained
by inserting E[A"] obtained from (4) into (2). The (4) is
numerically solved by considering discreet values for x, and
summing the equation inside the integral. For integer values
of x, the equation is not defined and obtained by interpolation.

Estimation of HK parameters from envelope statistics can
be viewed as an inverse problem which maps F from the
feature space with M dimensions to the 2-D HK parameter
space. The sample mean is used to approximate E[A"], and the
vector with the calculated sample envelope statistic features
(17 ) is employed to estimate HK parameters (@). The low
dimensional space of HK parameters enforces the feasible
feature values to lie in a low dimensional manifold. Inspired
by this, we designed a model projection neural network based
on a denoising autoencoder to project the noisy features (F)
into the feasible hyperplane.

B. Model Projection Autoencoder (MPAE)

Autoencoders are neural networks that receive the input and
map them to a lower dimensional representation by trans-
forming into more informative lower dimensional features.
In the encoder part, the input dimension is reduced using
several hidden layers, and in the decoder part, the input is
reconstructed using the lower dimensional representation [31].
These networks have been found useful in many applications,
such as denoising and dimensionality reduction, where it was
shown that they act as a nonlinear principal component analy-
sis (PCA) [32]. Denoising autoencoders employ the corrupted
data and try to reconstruct the clean data. Vincent et al. [31]
showed that if data lie in a low-dimensional manifold, the
corrupted data will be further away from this manifold, and
denoising autoencoders can project the corrupted data into the
low-dimensional manifold. This idea is illustrated in Fig. I.
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Fig. 2. Proposed two-step framework for estimation of HK parameters. The sample estimate of envelope statistical features (f:) is projected into a
low-dimensional space (bottleneck) and the clear features are used in the estimation of HK parameters (estimation step).

Our proposed methods is illustrated in Fig. 2 and has
two steps: a projection step and an estimation step. In the
projection step, we considered the sample estimates of the sta-
tistical features as the corrupted input data and the theoretical
value from the forward problem as the clean output features.
A MPAE was utilized to obtain clean features (projection step).
In the estimation step, an estimator (either non-DL or DL-
based) was employed to estimate the HK parameters from the
denoised features.

1) Network Architecture and Training Schedule: The network
comprised seven layers; the encoder part had four layers with
64,32,32,b nodes, and the decoder had three layers with
32,32, 8 nodes. The parameter b was the number of nodes in
the bottleneck, which determined the size of a low-dimensional
manifold. We investigated different sizes of bottlenecks in the
results section. The activation functions of all layers were
leaky ReLu except the last layer, which did not have any
activation function. We tested placing dropouts in different
layers and obtained the best performance on placing a dropout
on the second encoder layer with the probability of 0.2.
We should clarify that the autoencoder inputs are usually
high-dimensional data such as image and texture features,
hence, the networks tend to decrease the feature dimension
by reducing the number of nodes. However, in our case, the
input has only eight variables. We expanded it to a higher
dimension to increase the learning ability of the network.

The features were normalized to have a zero mean and a
standard deviation of 1. We employed the combination of a
smooth L1-norm (L1) and the mean square error (MSE) as the
loss function, which can be given as

loss = ||F — Flly + ||F — Fl|i (5)

where ||.||; denotes the L2-norm (MSE) and ||.||;s represents
smooth the L1-norm which is added to penalize small errors
as well and being more robust to outliers.

For each simulated sample size (the samples drawn from the
HK-distribution) of Ny = 4096, Ny, = 1024, and N, = 256,
a separate MPAE was trained since the noise distribution is
different for each sample size.

C. HK Parameters Estimators

We employed BNN as the estimator after MPAE feature
reconstruction. The method was also compared with XU
estimator and an optimization method.

1) XU Estimator: Destrempes et al. [27] proposed to employ
two log-based moments, X and U as the statistical features.
They used a bisection interpolation to find the intersection
between the theoretical values and the sample estimates of X
and U. They reported improved estimation using these two
moments compared to the method proposed by Hruska and
Oelze [26] that relies on R, S, and K.

2) Optimization Method: The optimization cost function can
be formulated as: J(w, k) = argg min{||F — F.i0ll2)}, where
F is the sample estimate of the statistical features and F
denotes the theoretical value. The optimization method can
be a simple table search or any other optimization method.
We employed particle swarm optimization to find o and k,
whereas Liu et al. [28] utilized table search.

3) BNN Estimator: In [30], we developed a BNN to estimate
the HK parameters. The BNN estimator outperformed the
artificial neural network (ANN) counterpart [29] and was able
to quantify the uncertainty in parameter estimation. In BNN,
the network weights are sampled from a distribution learned
in the training phase. Each time the network runs, the weights
are different; therefore, the network was run for each feature
vector multiple times (we executed the network 50x) dur-
ing the inference stage, and the average value and standard
deviations were considered as the prediction and uncertainty,
respectively. In this article, we shed more light one this method
by comparing different training strategies to see which method
is best fit to be employed for low-sample sizes.

Different approaches can be followed in the training of
BNN. The theoretical values of the statistical features for
different values of the HK parameters can be employed for
training the BNN. This method (we named it as BNN-Th)
allows us to use one network for all sample sizes, similar to the
generalized neural network in [33]. However, the network is
not informed about the noise distribution of the sample input.
The proposed MPAE can be utilized to reconstruct the features
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for this estimator, an approach we named BNN-Th+MPAE.
Another approach is to train the BNN using the sample
estimate of the features (which we named as BNN-Sam). This
method is informed about the noise distribution of the features
due to low sample size but for each sample size a different
BNN should be used. Another approach to train the BNN is to
employ the reconstructed features from MPAE as the feature
input for the BNN (which we named as BNN-Sam+MPAE).
Although MPAE tries to make the features as close as possible
to the theoretical features, noise and variations are present in
the reconstructed features especially for very low sample sizes;
hence, by this method, BNN sees the noise and variations
presented in MPAE output during the training.

D. Datasets and Data Generation

1) Simulation Data: Training data were generated by sam-
pling from the HK-distribution. The equation suggested
by [26] and [29] was employed to generate the simulation
data

a = / (V2K + XGJ%)2 + (YGJ%)2 ©)

where o and k are the scatterer clustering parameter and
coherent to diffuse scattering ratio. a; is the generated sample,
X and Y are the independent and identically distributed sam-
ples (i.i.d) from the Normal distribution having zero mean and
variance of 1. Z is the sample from the Gamma distribution
with scale parameter of 1 and shape parameter of «. This
equation generates i.i.d samples from the HK-distribution,
which differs from real envelope samples of experimental echo
signals due to the correlation among samples caused by the
resolution cell of US. In order to investigate the effect of
correlation on the performance of the methods, we need to
generate correlated samples from the HK-distribution, which
is not straightforward. In this article, we proposed to generate
correlated samples by employing correlated normal distribu-
tions of X and Y

a;i = \/(\/2_k+ Xia\/m)z + (Yio Z/oe)2

Xi=pXi_1+V1—=p*N(O, 1)
Y; = pYioi +/1—p2N(, 1) (7

where X; and Y; are correlated with previous samples and
o controls the correlation. The correlation coefficient of the
HK-distribution versus p is illustrated in Fig. 3 fora =3,k =
0.1. We selected a small value of p = 0.2 for training and
evaluated the performance for a higher value of p in the
Supplementary Materials.

To generate training data, log;,(«) was randomly selected
from values ranging from —0.3 to 1.3, corresponding to « of
0.5 to 20. k£ was also randomly selected from values ranging
from O to 1.25. As mentioned above, simulation results were
reported for the sample sizes of Ny = 4096, Ny = 1024, and
N, = 256.

The simulation test data were generated for 31 different
values of log,,(o) € {—0.3,...,1.3}, and 11 values of

bt < b o e =2
w IS wn @ ~ ™

HK-distribution correlation
(=]
7o

0 0.2 04 p 0.6 0.8 1

Fig. 3. Correlation coefficient of HK-distribution samples generated by
(7) versus pfora =3, k=0.1.

k € {0,...,1.25}. For each value of log,,(«r) and k, ten
realizations were generated, giving 3410 sample sets for each
sample size and p. Training and test data were generated for
three sample sizes, Ny € {4096, 1024, 256}, and the correlation
value of p € {0.2}. The simulation results for p = 0.9 are also
provided in the Supplementary Materials.

Evaluation Metric for Simulation Test Data: The mean
absolute error (MAE) and the relative root RMSE (RRMSE)
were employed to evaluate the methods for simulation test data
in which the ground truth is known, and they can be defined
as

MAE = (|y — ¥I)

~2
RRMSE:,/—<(y_y) - (8)
Iyl +vy

where y and y are the ground truth and estimated parameter,

respectively, < . > is the averaging operation, and y is a small
nonnegative value (here we used 0.05) to avoid a division by
zero. We report MAE values in the paper, and RRMSE are
reported in the Supplementary Materials.

2) Experimental Phantom Data: A three-layered phantom
having different scatterer number density was constructed from
an emulsion of ultrafiltered milk and water-based gelatin.
5-43 pum diameter glass beads (3000E, Potters Industries,
Valley Forge, PA, USA) were used as the source of scattering.
Data were acquired with a 18L6 linear array transducer operat-
ing at a center frequency of 8.9 MHz, using a Siemens Acuson
S2000 scanner (Siemens Medical Solutions USA, Inc.). Data
collected from this phantom were reported in [34].

The B-mode image of the phantom is illustrated in
Fig. 4. The top and bottom layers have the same scatterer
concentration of 2 g/L, whereas the middle layer has a scatterer
concentration of 8 g/L. The backscattering coefficient of the
middle layer is 6.37 x 1073 cm™! sr~!, whereas for the top
and bottom layers, it is 3.52 x 1073 cm~! sr! at the center
frequency of the transducer. In this phantom, the only source of
intensity change to have a different backscattering coefficient
is the number density of scatterers (after attenuation compen-
sation assuming a random spatial distribution of scatterers).
According to Insana and Brown [35], under the Rayleigh
approximation, the backscatter coefficient is proportional to
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Fig. 4. B-mode image of the layered phantom. Two patches for
extraction of the statistical features are specified. The patches are
moved laterally across several frames to extract multiple features.

the number of scatterers within the resolution cell. Assuming
that alpha is proportional to the number of scatterers [35], the
ratio of the values of alpha in the two regions of the phantom
would be equal to the ratio of the backscatter coefficients in
the same regions. Therefore, the ratio of backscattering coef-
ficients, (6.37 x 1073 cm™! sr™1)/(3.52 x 103 em™! sr!) =
1.81, can be an indicator of the true ratio of « which we
employ as a metric to verify the estimated «.

A 12.6 x 7.8 mm patch size was employed for statistical
feature extraction. To reduce the correlation, five samples
in the axial direction corresponding to one pulselength and
one sample in the lateral direction were skipped, which
gives 3400 samples (N;). The patch was moved laterally in
12 frames to obtain 60 samples of feature statistics for each
of the two regions (R1 and R2). Although the exact value of
« is unknown, the backscattering coefficient ratio can be used
to verify the results.

3) In Vivo Data: Duck liver data were used for compar-
ing the performance of the evaluated methods. The protocol
was approved by the animal ethical care committee of the
University of Montreal hospital research center, Montreal,
QC, Canada. The ducks’ liver data were collected before and
14 days after force feeding to study the formation of fatty liver.
Data acquisition, and annotation of the livers was performed
as part of a study conducted by Bhatt et al. [36]. A Verasonics
Vantage programmable system (Verasonics Inc., Kirkland,
WA) with an ATL L7-4 linear probe (Philips, Bothell, WA)
operating at the center frequency of 5 MHz was employed
for data acquisition. Three ducks among nine were available
after force feeding. The parametric images of two ducks are
provided in the article and the third one is given in the
Supplementary Materials.

To compute statistical features, we selected patches of size
5.5 x 5.5 mm, and skip one sample in axial direction to
reduce the correlation, which provides Ny = 3045 samples for
each patch. These patches were moved with a 63% overlap to
ensure complete coverage of the liver area. We selected smaller
patch size than the one used for the experimental phantom

to preserve the spatial variability of the calculated parametric
images. To minimize the impact of sample heterogeneity,
we employed a patchless deep neural network, previously
developed for scatterer number density regression [37], and
applied a k-medoid clustering algorithm to select only samples
that belong to the same class as the center sample. This
allowed us to compute feature statistics more accurately and
avoid errors arising from sample heterogeneity. A similar
strategy was adopted in [38] where an unsupervised method
was used to define image pixels into a maximum of three
labels (or patches) prior to HK parameter estimation. An
example of output of our preprocessing step is provided in
the Supplementary Materials.

[1l. RESULTS

In this section, we evaluate the performance of the proposed
method and compare it with the XU method and the BNN.

A. Simulation Results

The following methods are evaluated for the simulation test

data.

1) XU: The method proposed by Destrempes et al. [27].

2) XU+MPAE: The method proposed by Destrem-
pes et al. [27] but the X and U are obtained from
denoised features of MPAE.

3) OP: The method proposed by Liu et al. [28]. Only the
eight sample estimate of the features used in this article
are employed.

4) OP+MPAE: The method proposed by Liu et al. [28] but
the denoised features of MPAE are employed.

5) BNN-The: The BNN estimator is trained using the
theoretical values of statistical features [i.e., solving (4)].

6) BNN-MPAE: The BNN estimator is trained using the
theoretical value of the features but testing is done using
MPAE-denoised statistical features.

7) BNN-Sam: The BNN estimator trained and tested using
sample estimate (for each sample size, a different BNN
is trained using sample estimates).

8) BNN-Sam+MPAE: The BNN estimator is trained and
tested using the reconstructed features from MPAE.

The median and interquartile ranges across all simulated

log,o(cr) and k of MAE of simulation test data are illustrated
in Fig. 5. The most important observations are the following.

1) MPAE Performance: By inspecting Fig. 5 we can see that

the benefit of MPAE in denoising varies among estimators and
between « and k. To provide more details, by using MPAE,
there are 4% (N, = 4096)-8.4% (N, = 256) reduction of
median MAE of log,,(«) for the XU estimator. When using
OP as the estimator, we can see 0% (N; = 256)-40% (N; =
4096) reduction of median MAE of log;,(«). By using BNN-
Th estimator, 53% (N; = 256)-55% (N, = 4096) reduction
can be achieved. On the contrary, when using BNN-Sam, the
improvements are more modest compared to BNN-Th, 3.9%
(Ns; = 256)-7.8% (N; = 1024). The reduction range of error
for estimating k after using MPAE are —20% (N, = 4096)—
14.4% (N, = 256) for XU, 0% (N; = 256)-10% (N, = 4096)
for OP, 25% (N; = 4096)-44% (N; = 256) for BNN-Th, and
0% (Ng = 4096)-16% (N, = 256) for BNN-Sam.
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Fig. 5. Median (bar height) and interquartile range (whiskers) of MAE of log4(c) (left) and k (right) for different simulated sample sizes (bar colors)

and p=0.2.

BNN-Sam+MPAE

XU+MPAE

Fig. 6. MAE error map of (a) logyg(cx), and (b) k for Ns = 1024, p =
0.2. The error is averaged over ten realizations for each grid point.
(a) Colorbars and (b) refers to MAE of logo(x) and k, respectively.

XU+MPAE BNN-Th+MPAE BNN-Sam BNN-Sam+MPAE

Fig. 7. Variance of MAE error map of (a) logo(c) and (b) k for
Ns = 1024, p = 0.2. The variance is calculated over ten realizations for
each grid point. (a) Colorbars and (b) refers to MAE of logq(a) and k,
respectively.

2) Error Map: Fig. 6 shows the average of MAE in a color
scale for different values of log,,(«) and k for Ny = 1024.
MPAE substantially decreases BNN-Th’s error, while the error
maps of BNN-Sam and BNN-Sam+MPAE look similar. Two
estimators, namely BNN-Sam and BNN-Sam+MPAE, exhibit
substantial errors in the region around log;,(e) = 0.5 and
k > 1. In contrast, BNN-Th+MPAE displays a relative robust-
ness in this region but exhibits high errors for log,,(e) >
1.1. These high errors in log,,(«) = 0.5 and k > 1 is also
discernible in the error visualization depicted in [30]. These

TABLE |
p-VALUES OF WILCOXON SIGN TESTS FOR LOG1o(). ONLY PAIRS
WITH p-VALUES> 0.001 ARE REPORTED

Pairs Sample size  p-values
XU, XU+MPAE 4096 0.004
BNN-Sam+MPAE, BNN-Sam 4096 0.052
BNN-Th+MPAE, BNN-Sam 1024 0.034

TABLE Il
p-VALUES OF WILCOXON SIGN TESTS FOR k. ONLY PAIRS WITH
p-VALUES> 0.001 ARE REPORTED

Pairs Sample size  p-values
XU, XU+MPAE 1024 0.065
OP, OP+MPAE 4096 0.682
BNN-Sam+MPAE, BNN-Sam 256 0.158
BNN-Sam+MPAE, BNN-Sam 4096 0.080

errors might be attributed to the intrinsic nature of the problem,
and further investigation is required. The variance maps of
MAE in a color scale for different values of log;,(«) and
k for Ny = 1024 are visualized in Fig. 7. BNN-Th+MPAE,
BNN-Sam, and BNN-Sam+MPAE show substantially lower
variance compared to XU, XU+MPAE, and BNN-Th.

3) Statistical Test: A Wilcoxon sign test was performed to
evaluate if the difference between the median of the errors
of the methods is statistically significant. Wilcoxon sign test
is a paired test that is chosen since the MAE errors are not
normally distributed [39]. The p-values of the pairs larger than
0.001 are reported in Table I for log;,(cr) and in Table II for
k. Only a few pairs reported in the tables were not statistically
different.

4) Investigating Different BNNs: By inspecting the results of
different BNNs in Fig. 5, we can find that as follows.
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TABLE IlI
ABLATION EXPERIMENT OF THE BOTTLENECK SiZE OF MPAE.
RESULTS ARE REPORTED BY MEDIAN [25%,75%)]

\ &
MPAEb3 | MPAE-b2

0.041 [0.017,0.097] | 0.146 [0.047,0.303]
0.070 [0.028,0.149] | 0.154 [0.058,0.309]
0.123 [0.054,0.234] | 0.199 [0.080,0.382]

logio(a)
N MPAE-b2

4096  0.066 [0.025,0.168]
1024 0.084 [0.034.0.190]
256 0.136 [0.058,0.276]

MPAE-b3

0.020 [0.007,0.053]
0.026 [0.010,0.081]
0.047 [0.015,0.130]

a) Training using sample estimates: The BNN trained by
sample estimates of the features (BNN-Sam) outperforms the
one trained by theoretical values (BNN-Th). The reason behind
this improvement is that in contrast to BNN-Th, in BNN-Sam,
for each specific sample size an individual BNN is trained and
the network learns the distribution of the noise as well. It is
also comparable to BNN+MPAE which shows that MPAE can
act as the denoiser prior to the BNN-Th estimator

b) Training using reconstructed features: It can be observed
that the BNN trained on reconstructed features (BNN-
sam+MPAE) outperforms BNN4+MPAE which implies that
the BNN is able to learn the noise distribution of the
reconstructed features of MPAE. This method also slightly
outperform BNN-Sam. The median values of the MAE
errors of log,,(«) of BNN-Sam+MPAE are 0.123, 0.070, and
0.041 for sample sizes 256, 1024, and 4096, respectively.
While, they are 0.128, 0.076, and 0.043 for BNN-Sam. For &,
the MAE errors of BNN-Sam+MPAE are 0.046, 0.026, and
0.020. While BNN-Sam achieved the errors of 0.045, 0.031,
and 0.020.

5) MPAE Bottleneck Size: We employed a bottleneck size
of 3 for the reported results in the article. Table III shows the
MAE error for BNN-Th+MPAE using bottleneck sizes of two
and three. We did not use higher dimensions of bottleneck size
since there are eight features for which three of them are highly
correlated with the other three features ([R%72, §072, K072
with [R0-88 5083 K O083]). therefore, there are five features that
are reduced to a three-feature space. We obtained lower error
using a bottleneck size of three compared to the size of two;
hence, we used that throughout the article.

6) Effect of Correlation: The results given in Fig. 5 are with
correlation (p) of 0.2 (both training and test data). To inves-
tigate the effect of correlation on the estimated parameters,
we evaluated the proposed methods on high correlation of 0.9
(networks are trained with p = 0.2) in the Supplementary
Materials. The results show a slight increase of the error of
the estimators for the high correlation of 0.9.

B. Experimental Phantom Results

The box plot of « of the evaluated methods for regions
R1 and R2 (specified in Fig. 4) is illustrated in Fig. 8, the
box plot of k and the p-values of statistical test are also
provided in the Supplementary Materials. The assumed ratio
of @ for R1 and R2 is 1.81 (obtained from the backscattering
coefficient). The median values of the ratios of the estimated
a are 2.345, 2.345, 3.140, 1.463, 3.770, 1.563, 2.110, and
1.682 for XU, XU+MPAE, OP, OP+MPAE, BNN-Th, BNN-
Th+MPAE, BNN-Sam, and BNN-Sam+MPAE, respectively.

R 1 Average ratio of a error
18- B XU:0.54  XU+MPAE: 0.54
R2 : OP:1.33 OP+MPAE: 0.35

BNN-Th: 1.96  BNN-Th+MPAE: 0.35
BNN-Sam: 0.30 BNN-Sam+MPAE: 0.13
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Fig. 8. Boxplot of log;o(cx) of the layered phantom using the evaluated
methods. Most methods achieve closer ratio to the correct one (1.81)
after using MPAE (except XU+MPAE). Outliers (values more than 1.5x
of interquartile range away from the bottom and top of the box) are
shown as red “+."

Most methods achieve closer ratio to the correct one (1.81)
after using MPAE (except XU+MPAE which gave the same
ratio as XU).

The variances of estimated log;,(«) of the R1 region are
0.044, 0.041, 0.058, 0.017, 0.079, 0.018, 0.030, and 0.023 for
XU, XU+MPAE, OP, OP+MPAE, BNN-Th, BNN-Th+MPAE,
BNN-Sam, and BNN-Sam+MPAE, respectively, and 0.097,
0.120, 0.069, 0.013, 0.076, 0.013, 0.009, and 0.009 for region
R2. It can be observed that by adding MPAE to the estimators,
the variance is decreased in most cases. The overestimation of
o and the high variance can be observed in XU and BNN-Th
results. Zhou et al. [18] showed that when the sample size is
not large enough, an overestimation of o occurs, which is also
confirmed by our results. BNN-Sam+MPAE has the closest
ratio of « values (1.682) to the actual ratio (1.81).

C. In Vivo Results

The parametric images of log;,(ct) are illustrated in Fig. 9
for duck A and in Fig. 10 for duck B before force feeding (top
row) and after (bottom row), and their parametric images of k
are provided in the Supplementary Materials. Gesnik et al. [40]
reported that the average of 1/« of the whole liver region con-
sidering all studied ducks increases from 1/ = 0.69 £ 0.10 to
1/a = 0.94 £ 0.07 after 14 days of force feeding. Therefore,
generally, lower « values are expected after force feeding.
According to the given parametric images, XU and BNN-
Th+MPAE results present similar spatial variability of the
quantitative features. XU and BNN-Th+MPAE both produce
high values in the same locations, while BNN-Th produces
very high values of log;,(«) in most parts. BNN-Sam also
provided close results to BNN-Th+MPAE. The results of
BNN-Sam+MPAE were not provided since we observed that
they are very similar to BNN-Sam. The correlation between
XU and other estimators are reported in Table IV, which
indicates higher agreement between BNN-Th+MPAE and XU
than the other estimators with XU. Both ducks’ liver log; (o)
parametric images obtained by XU and BNN-Th+MPAE have
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Fig. 10. B-mode image (first column) and the parametric image of logq(cx) of duck B before force feeding (top row), and after (bottom row).

reduction of portions with high values after force feeding
(Figs. 9 and 10), which is expected as a spatially averaged
reduction was reported in [40]. The box plots of the estimated
log,o(«) for the three ducks are also provided in the Supple-
mentary Materials.

Uncertainty of the estimation is another aspect that can
be investigated. As discussed earlier, the BNN estimator can
also provide the uncertainty by taking the variance of the
estimates using different realization of the network’s weights.
The parametric images of the uncertainty of the BNN-Th,
BNN-Th+MPAE, and BNN-Sam are illustrated in Fig. 11 for
duck A, and in Fig. 12 for duck B. It is clear that BNN-Sam
and BNN-Th+MPAE have substantially lower uncertainty
compared to BNN-Th.

V. DISCUSSION AND FUTURE WORK

In this article, we presented a MPAE to reconstruct clean
statistical features used in the estimation of HK parameters

TABLE IV
CORRELATION BETWEEN THE PARAMETRIC IMAGES OF XU AND THE
OTHER EVALUATED METHODS

Duck A
before force feeding

0.47
0.40
0.67

Duck B
before force feeding

0.05
0.04
0.81

Duck A
after force feeding

0.47

0.52
0.82

Duck B
after force feeding

0.50
0.50
0.78

Methods

XU, BNN-Th
XU, BNN-Sam
XU, BNN-Th+MPAE

from the amplitude of the detected echo signals from noisy
sample estimates. We also investigated different BNN esti-
mators’ training approaches and how to pair them with the
autoencoder. Any HK parameter estimator can be used to esti-
mate HK parameters from MPAE-denoised features. Source of
the noise is an aspect that should be investigated further. In this
article, the noise emanates from the low sample size. Other
sources of noise including the presence of outlier samples or
the accuracy of the HK model of the true echo amplitude
distribution within the patch requires further investigation.
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Fig. 12. Parametric image of uncertainty of BNN of duck B before force
feeding (top row), and after (bottom row).

We observed more substantial improvement by employing
MPAE for the estimators that are blind to the noise distribution
(XU,OP, and BNN-Th) compared to the one that has learned
the noise distribution (BNN-Sam). The main reason is that
when the BNN is trained on the sample estimate of the features
(BNN-Sam), it also learns the noise distribution of that specific
sample size; therefore, it becomes more robust to the noisy
features.

The simulation test results indicate that the enhancements
achieved by utilization of MPAE are less noticeable for
the parameter k compared to «. This observation could be
attributed to the features employed. Incorporating additional
features, such as 2 (the parameter of the Nakagami distribu-
tion), might address this issue. Another way that might solve
this issue is to train separate BNNs for « and k.

We should note that by observing Fig. 6, it is noticeable
that BNN-based methods exhibit higher error in the region
of log;y(e) =~ 0.5 and k > 1, while XU method has a high
error in log,o(a) > 1. This shows that optimum estimator
may vary depending on the value of o and k. We also
checked our implementation to verify the correctness of the
implementation of theoretical feature values. We generated
20000 random samples drawn from the HK-distribution to
ensure the effect of lack of samples is minimized. In the next
step, we calculated sample estimates of statistical features from
the generated samples, and compared them with the theoretical
value. We found a very low and negligible value of error (less
than 0.001) which shows that the implementation is correct.

Another interesting area to investigate the effect of sam-
ple/patch size is through beam steering, where additional
samples become available by insonifying the ROI using a
different beam direction [41].

In Section III-B, the validation of the experimental findings
was conducted through comparing with the backscattering
coefficient ratio. However, it is important to note that this
validation is contingent upon certain conditions or hypotheses
being satisfied, namely the low ratio of coherent to diffuse
scattering, a spatially uniform random distribution of scatterers
within the patch, and proper compensation for total attenua-
tion [14], [42], [43].

In Section III-C, the parametric images of log;,(c) were
investigated and displayed. The box plots of log,,(x) val-
ues of the three ducks were provided in the Supplementary
Materials which showed that separability of the log,,(«) was
improved by employing MPAE. We selected a patch size of
5.5 x 5.5 mm, which provided Ny = 3045 samples for
estimating the statistical features. We noticed noisier (higher
variance) parametric images when smaller patch size was
employed. By increasing the size of the patch, the parametric
image looked smoother but the spatial resolution was reduced.
The selected patch size resulted in a good balance between the
variance and the spatial resolution.

Both the BNN and MPAE were implemented using PyTorch
and were trained on a single Nvidia RTX 3090 GPU. MPAE
requires 0.57 £ 0.049 ms for processing, whereas BNN takes
7.5 £ 0.3 ms for each inference on GPU. For the batch
size of 1 (which is the batch size in our implementation), the
processing time on CPU is lower compared to GPU, achieving
0.33 £+ 0.032 and 3.6 £ 0.29 for MPAE and BNN, respec-
tively. In order to estimate parameters and quantify the uncer-
tainty, multiple inferences are required; therefore, we executed
the BNN 50x per observation, resulting in a total processing
time of 7.5 £ 0.3 ms x 50 = 377 £ 15.4 ms on GPU.
It should be noted that the processing times are reported for the
batch size of 1; GPU performance is expected to be improved
and outperform CPU performance if a higher batch size is
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Fig. 13. Processing time for 500 patches. The XU was implemented on
MATLAB and executed on CPU. For the batch size of 1, the processing
time of BNN and BNN+MPAE is lower on CPU compared to GPU.

employed. No efforts were made to optimize the code which
can be a topic of feature research. The XU and OP estimators
were implemented on MATLAB and executed on an i7 CPU,
and the processing time was varied with an average and stan-
dard deviation of 8.33 £ 7.26 and 19.50 £ 4.8 s, respectively,
for each patch. The processing time is an important factor in
HK parametric image calculation since there might be hun-
dreds of patches within the region of interest. For instance, for
a ROI containing 500 patches, XU estimator takes an average
of 69.4 min. Whereas, BNN only takes 3.14 min on average
when executed 50x per observation (the number of executions
can be reduced to accelerate the computation), which is 16x
faster than XU. The processing times for 500 patches are
illustrated in Fig. 13. It should be noted that no optimization
has been done on the implementation of XU and OP. A more
optimized implementation can speed up those methods.

In this article, we proposed the MPAE as a preprocessing
stage to be used before the HK parameter estimators, and we
also investigated different training approaches for the BNN
estimator. One possible area of future work is to combine
MPAE and the BNN. The two networks can be trained in
an end-to-end fashion, which can reduce the computational
complexity of the method.

V. CONCLUSION

In this article, we proposed a model projection neural net-
work based on denoising autoencoders to reconstruct refined
statistical features to improve the HK-distribution parameter
estimation. We also thoroughly investigated different training
strategies of the BNN. The proposed methods were validated
using simulation data, experimental phantom, and clinical
data. Our findings showed that employing MPAE-denoised
features can reduce the errors of estimators especially for
low sample sizes. Comparing the two estimated parameters,
we observed more substantial improvements in estimation of
log,(c) than k.
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