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Nonalcoholic fatty liver disease (NAFLD) is the most 
common cause of chronic liver disease, with an esti-

mated global prevalence of 38% (1). NAFLD can progress 
to nonalcoholic steatohepatitis (NASH) in 16% of patients 
(1) and to cirrhosis in 3% of patients (2). NAFLD is as-
sociated with obesity and type 2 diabetes, which are glob-
ally increasing (3). The anticipated increase in NAFLD 
will have implications on health care systems, as the higher 
demand for imaging studies will require additional equip-
ment, trained personnel, infrastructure, and likely assis-
tance using artificial intelligence.

Hepatic steatosis is defined by the presence of vacuoles 
of fat within hepatocytes, which constitutes a hallmark 

histopathologic feature. Increased grades of steatosis are 
associated with worse outcomes in liver diseases (4). Cur-
rently, liver biopsy and MRI are respectively considered the 
historical and noninvasive reference standard techniques 
for assessment of hepatic steatosis (5–7). Both techniques 
have limitations associated with cost-effectiveness and 
availability, hampering their use for screening and moni-
toring of patients (8).

B-mode US is often used for screening and monitoring 
of hepatic steatosis due to its wide availability, low cost, and 
lack of radiation (9,10). However, B-mode US has some 
limitations. In the setting of chronic liver disease, it may be 
difficult to attribute the echogenicity of the liver to steatosis,  
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Requirement for informed consent was waived, and consent was 
obtained for data access.

Patient Selection
Patients were identified in a convenience series among those 
who underwent B-mode abdominal US and liver biopsy within 
1 year of each other for suspected or confirmed chronic liver 
disease. The study period was across 9 years (September 2010 to 
October 2019). Patients were included if they had a histopatho-
logic diagnosis of NAFLD, NASH, or NASH-related cirrhosis 
and excluded if they had any other causes of chronic liver disease. 
Control patients were included when there was no other lesion 
present or if they had a minor nonspecific lesion (such as cho-
lestasis, dysplasia, nonspecific inflammation, and microgranulo-
mas). Therefore, they had less than 5% hepatocytes containing 
macrovesicular steatosis and no inflammation or fibrosis. To pro-
tect health information, patient identifiers were encrypted using 
salt and pepper cryptographic hashing, nominal information 
and headers were cropped from images, and pathology reports 
were anonymized using randomization algorithms.

Index Test
The index test was B-mode abdominal US from seven different 
scanners, including iU22 (Philips), Aplio 500 and i800 (Canon 
Medical Systems), Acuson S2000 and S3000, (Siemens Health-
ineers) Sequoia (Siemens Healthineers), and LOGIQ E9 (GE 
HealthCare). Images were acquired according to the institutional 
clinical US protocol. Image analysts (S.I.C., Y.H.L., C.L.R., and 
L.P.B., medical students in training with 1–3 years of experience) 
reviewed images associated with selected pathology reports and 
excluded images in Doppler mode or dual-display view or im-
ages with severe visualization limitations according to the Liver 
Imaging Reporting and Data System (19).

Reference Standard
Liver biopsies were interpreted using NASH score (20), includ-
ing steatosis grade, ballooning grade, lobular inflammation 
grade, and fibrosis stage. Biopsies were performed via a transcu-
taneous approach with US guidance using 16- or 18-gauge core 
needles (21). Medical students (S.I.C. and Y.H.L.) extracted ste-
atosis grades from pathology reports (22,23), which determined 
steatosis as the percentage of hepatocytes containing fat mac-
rovesicles according to the following ordinal scale: none (<5%, 
grade S0), mild (5%–33%, grade S1), moderate (34%–66%, 
grade S2), and severe (>66%, grade S3). Fat fraction is a com-
mon data element for radiology, and histologic scores were di-
chotomized as follows: S0 versus S1 or higher; S0 or S1 versus 
S2 or S3; and S2 or lower versus S3.

Reader Subset Selection
Considering all eligible patients, a subset was created for reader 
assessment by selecting those with at least one good quality  image 
showing (a) the liver and kidney, (b) portal vein, and (c) hepatic 
vein. Image quality was considered good when there were no 
or minimal limitations (US visualization score A) or moderate 
limitations (US visualization score B) according to the Liver 
Imaging Reporting and Data System US (19). Not all patients 

fibrosis, or both, given that both conditions affect the brightness 
on gray-scale images (11). Additionally, image acquisition may be 
affected by technical sources of variability, such as scanner, probe, 
and settings (9). Moreover, grading of hepatic steatosis at US is 
reader-dependent (9), with high intraobserver and interobserver 
variability (10,12). Improving the ability to objectively grade he-
patic steatosis on B-mode US images would provide a scalable 
option for the diagnosis and follow-up of hepatic steatosis.

The continuous development of artificial intelligence tech-
nologies, specifically advances in deep learning in the past de-
cade, has shown potential for diverse applications (13–15). Deep 
learning techniques have been increasingly popular in medical 
imaging (16), aiming to automate computer vision tasks such 
as classification, detection, and segmentation. Deep learning has 
been recently investigated for steatosis detection and classification  
(17,18). However, to our knowledge, prior studies have not com-
pared its performance with human readers, including fellowship- 
trained abdominal radiologists, on the same test data set.

The purpose of this study was to evaluate the classification 
agreement and diagnostic performance of radiologists and deep 
learning models applied to B-mode US images for grading he-
patic steatosis in NAFLD, using biopsy as the reference standard.

Materials and Methods

Study Design
The Centre Hospitalier de l’Université de Montréal institu-
tional review board approved this retrospective, cross-sectional,  
case-control, diagnostic, single-site model creation study. 

Abbreviations
AUC = area under the receiver operating characteristic curve, NAFLD =  
nonalcoholic fatty liver disease, NASH = nonalcoholic steatohepatitis

Summary
Deep learning methods applied to B-mode US images showed  
comparable performance with six human readers in grading hepatic 
steatosis and may be used as a valuable tool for screening patients.

Key Results
 ■ In a retrospective study of 199 patients with a spectrum of nonal-
coholic fatty liver disease, six radiologists visually graded hepatic 
steatosis on B-mode US images; interreader agreement was fair in 
detecting patients with any degree of steatosis (S0 vs S1 or higher, 
0.34 [95% CI: 0.31, 0.37]), for differentiating no or mild steatosis 
from those with moderate or more severe steatosis (S0 or S1 vs S2 
or S3, 0.30 [95% CI: 0.27, 0.33]), and for grading patients with 
severe steatosis against all other grades (S2 or lower vs S3, 0.37 
[95% CI: 0.33, 0.40]).

 ■ Individual readers graded hepatic steatosis, with areas under the 
receiver operating characteristic curve (AUC) ranging from 0.49 
(95% CI: 0.46, 0.51) to 0.84 (95% CI: 0.70, 0.98) for classify-
ing S0 versus S1 or higher, from 0.57 (95% CI: 0.43, 0.71) to 
0.76 (95% CI: 0.64, 0.87) for S0 or S1 versus S2 or S3, and from 
0.52 (95% CI: 0.43, 0.60) to 0.81 (95% CI: 0.67, 0.95) for S2 or 
lower versus S3.

 ■ A deep learning model graded hepatic steatosis with AUCs of 0.85 
(95% CI: 0.83, 0.87) for classifying S0 versus S1 or higher, 0.73 
(95% CI: 0.71, 0.75) for S0 or S1 versus S2 or S3, and 0.67 (95% 
CI: 0.64, 0.69) for S2 or lower versus S3.
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in the database had appropriate images meeting the three re-
quirements. The sampling maintained a similar proportion of 
steatosis grades across the selected patients. The final number 
of patients included in the study was based on feasibility and 
convenience for the readers.

Image Interpretation
To assess intra- and interobserver agreement and diagnostic per-
formance of steatosis grading by humans, six readers indepen-
dently graded steatosis. The six readers had increasing levels of 
expertise in abdominal sonography: junior resident, senior resi-
dent, medical fellow, junior, midcareer, and senior fellowship-
trained abdominal radiologists (J.M., E.A., T.M.A., K.N.V., 
J.M.L., and J.S.B., respectively a 2nd-year resident, 5th-year 
resident, 1st-year abdominal fellow, and radiologists with 4, 13, 
and 29 years of experience). Before image interpretation, a radi-
ologist (A.T., with 18 years of experience) provided instructions 
on how to grade liver steatosis according to features such as de-
gree of ultrasound attenuation, echogenicity of liver parenchyma 
relative to the adjacent kidney, visibility and clarity of vessel bor-
der definition, and visualization of the diaphragm. The readers 
graded steatosis on an ordinal scale from S0 to S3. Steatosis grad-
ing was based on visual assessment of figure collages presenting 
three views per patient that included the liver, right kidney, right 
portal vein, and hepatic veins. To minimize recall bias, readers 
graded steatosis severity again 2 weeks later, but with figure col-
lages of the same patients presented in a randomized order. Dur-
ing both reading sessions, the readers were blinded to the cor-
responding pathology reports as well as to the steatosis grading 
assigned in other readings.

Data Set Selection for Deep Learning
The entire data set was split into training, validation, and test sets. 
The independent test set contained 15% of the data, while the re-
mainder was used for fivefold cross-validation. For each fold, 15% 
of the data were used for validation, with the remaining 85% were 
used for training. The data were partitioned at the patient level to 
prevent data leakage, and the proportion of steatosis grades was 
similar for each set. Preprocessing was applied by cropping the 
display to remove all screen information and by resizing images to 
a determined input size with use of bicubic interpolation.

To allow a direct comparison between the deep learning 
model and readers, a second split of the data set was created. Spe-
cifically, the test set was the same subset evaluated by the readers,  
while the remainder was used for training, without cross-validation.  
Data partitioning methods are presented in Figure S1.

Deep Learning Models
Training sets containing images and biopsy scores were used to 
train binary classifiers for predicting hepatic steatosis grades. 
To standardize the scale and distribution of the input data, the 
mean and SD were computed across all images in the training 
set. Standardization of all sets was performed by subtracting the 
mean and dividing by the SD of the training set. No data aug-
mentation was used in this study.

The VGG16 (24) architecture was used for the binary clas-
sification task, with transfer learning and dropout layers (Table 
S1). VGG16 is a widely adopted architecture for classification, 
featuring a moderate depth and availability of pretrained weights 
on the ImageNet data set (24). VGG16 performance was com-
pared with that of ResNet-50 and Inception-v3.

Figure 1: Flowchart of patient selection. NAFLD = nonalcoholic fatty liver disease, NASH = nonalcoholic steatohepatitis.
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During fivefold cross-validation, after each training epoch, 
the validation set provided an evaluation of the models. Hyper-
parameter tuning and configuration changes were evaluated in 
the cross-validation setting by varying input size, batch size, opti-
mizer, learning rate, loss function, and dropout to determine the 
optimal settings (Table S2). To monitor training performance, 
the lowest validation loss was used, and the epoch with the low-
est average loss across the five folds was selected. Subsequently, 
only the best-performing configuration was used for the test sets.

All layers of the network were allowed to update during train-
ing. Input size was 128 × 128, and batch size was 32. Stochastic 
gradient descent with a learning rate of 0.0001 was used as the 
optimizer. Binary cross-entropy was selected as the loss function, 
and the dropout rate was set at 0.5 on the fully connected layers 
before the softmax.

Class activation mapping (25) was implemented to inves-
tigate the influence of areas of an image on the output of a 
trained classifier. A weighted activation map was generated for 
any given image, allowing for localizable deep features that can 
be interpreted to better understand the class identified by the 
trained model.

Software was developed in Python (version 3.7; Python Soft-
ware Foundation) using NumPy (version 1.19.2), Pillow (ver-
sion 6.2.0), Pandas (version 0.25.1), scikit-learn (version 1.0.2), 
Keras (version 2.2.4), and TensorFlow (version 1.14.0) libraries. 
The code is publicly available at https://github.com/LCTI-AnTang/
binary_steatosis_classifier.

Statistical Analysis
The kappa coefficient, κ, was used to measure intra- and inter-
reader agreement. Multireader Fleiss κ was used for the inter-
reader agreement between multiple readers, and Cohen κ was 
used when performing paired comparisons. A κ value less than 
0.21 was considered poor agreement; 0.21–0.40, fair agree-
ment; 0.41–0.60, moderate agreement; 0.61–0.80, substantial 
agreement; and 0.81–1.00, excellent agreement. To investigate 
the relationship between the years of experience of the readers 
and their accuracy and intrareader agreement, linear regression 
was used. Steatosis grade predictions of readers and deep learn-
ing models were compared with reference standard values, with 
measurements of sensitivity, specificity, positive predictive value, 
negative predictive value, and area under the receiver operating 
characteristic curve (AUC). AUC was the preferred metric for 
comparisons, as it is less sensitive to class imbalance and allows 
for comparisons in different thresholds. Metrics calculated for 
deep learning architectures considered the cutoff point with the 
highest Youden index on the receiver operating characteristic 
curve. For the independent test set and the reader set, results 
were obtained for all images in single tests. All statistical analyses 
were performed and implemented in Python by using the SciPy 
package (version 1.3.1), and 95% CIs for AUC were calculated 
with the DeLong method. To compare the results of the deep 
learning model and the six readers, DeLong tests were con-
ducted, pairing each reading session with the model. The power 
of the test was evaluated by using the fixed sample size and the 
effect size for the comparisons. To investigate the potential con-
founding effects of fibrosis, inflammation, and ballooning on the 

steatosis classification, Spearman rank correlation was used. The 
level of significance was set at P < .05 for all tests. Bonferroni cor-
rection was applied for the comparison between the deep learn-
ing model and reading sessions.

Results

Patient Characteristics
Figure 1 shows the study flowchart. The initial database con-
tained 3758 biopsy reports. Ninety-four patients without US 
examinations linked to the reports or with a delay longer than 
1 year between the biopsy and US examination were excluded, 
and 3465 reports were excluded for reporting a pathologic 

Table 1: Characteristics of the 199 Patients Included in 
the Study

Characteristic Value
Sex
 M 101 (50.8)
 F 98 (49.2)
Age (y)
 Mean ± SD 53 ± 13
 Median and range 55 (20–81)
 IQR 45–62
Body mass index* 30.5 ± 7.8
Time between examination and biopsy (d)
 Mean ± SD 76 ± 110
 Median and range 15 (0–364)
 IQR 1–135
Steatosis grade
 S0 (<5% of hepatocytes involved) 57 (28.6)
 S1 (5%–33% of hepatocytes involved) 87 (43.7)
 S2 (34%–66% of hepatocytes involved) 25 (12.6)
 S3 (>66% of hepatocytes involved) 30 (15.1)
Lobular inflammation
 0 (no foci) 3 (1.5)
 1 (<2 foci per 200 × field) 98 (49.2)
 2 (2–4 foci per 200 × field) 28 (14.1)
 3 (>4 foci per 200 × field) 0 (0)
 Not reported 70 (35.2)
Hepatocellular ballooning
 0 (none) 13 (6.5)
 1 (few balloon cells) 84 (42.2)
 2 (many cells or prominent) 32 (16.1)
 Not reported 70 (35.2)
Fibrosis
 F0 (none) 21 (10.6)
 F1 (perisinusoidal or periportal) 27 (13.6)
 F2 (perisinusoidal and periportal) 18 (9.0)
 F3 (bridging fibrosis) 28 (14.1)
 F4 (cirrhosis) 39 (19.6)
 Not reported 66 (33.2)

Note.—Unless otherwise specified, data are numbers of patients, 
with percentages in parentheses.
* Body mass index was calculated as patient weight in kilograms 
divided by patient height in meters squared.
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abnormality other than NAFLD or NASH. Table 1 summa-
rizes patient characteristics. Table S3 presents the steatosis dis-
tributions across the sets, and Table S4 describes the patient 
distributions across the US scanners. The data set for this study 
consisted of 7529 B-mode US images from 142 patients (mean 
age, 53 years ± 13 [SD]; 70 men) with hepatic steatosis and 
57 control patients (54 years ± 13; 31 men). The data set in-
cluded 57 patients and 966 images for grade S0, 87 patients 
and 3312 images for grade S1, 25 patients and 1683 images for 
grade S2, and 30 patients and 1568 images for grade S3. The 
majority of the images (5765 of 7529 [77%]) were collected 
using transducers C5–1, PVI-475BX, or PVT-375BT, which 
have frequency ranges from 1.0 to 6.2 MHz. Most images in 
the data set were acquired using frequencies of 2.5 MHz, 4.0 
MHz, or 4.5 MHz. The average body mass index (calculated as 
patient weight in kilograms divided by patient height in meters 
squared) was 30.5 ± 7.8, and 44% of the patients (87 of 199) 
had mild steatosis. Figure 2 shows representative B-mode im-
ages of different steatosis grades. The subset selected for reader 
assessment contained 52 patients, including 12 patients with 
grade S0, 17 patients with grade S1, 11 patients with grade S2, 
and 12 patients with grade S3.

Intra- and Interreader Agreement
Table 2 shows intra- and interreader agreements for classifica-
tion of visual grading of steatosis. Based on κ values, intrareader 
and interreader agreements were moderate (0.45 [95% CI: 0.32, 
0.59]) and fair (0.34 [95% CI: 0.31, 0.37]), respectively, for clas-
sifying steatosis as S0 versus S1 or higher; moderate (0.56 [95% 
CI: 0.45, 0.66]) and fair (0.30 [95% CI: 0.27, 0.33]) for S0 or 
S1 versus S2 or S3; and moderate (0.44 [95% CI: 0.28, 0.60]) 

and fair (0.37 [95% CI: 0.33, 0.40]) for S2 or lower versus S3. 
Table S5 shows the κ values for all reading pairs. The impact  
of years of experience on intrareader agreement was weak  
(R2 = 0.09) (Appendix S1). Across all steatosis grades, the mean 
interreader κ was 0.25 (95% CI: 0.19, 0.32) for the two residents 
and 0.17 (95% CI: 0.10, 0.23) for the three radiologists. The 
mean interreader κ was 0.24 (95% CI: 0.21, 0.27) between the 
medical fellow and radiologists and 0.19 (95% CI: 0.15, 0.23) be-
tween the medical fellow and residents. There was no relationship  
between the level of training and interreader agreements.

Diagnostic Performance of Readers
Table 3 shows the diagnostic performance of the readers. For 
classifying S0 versus S1 or higher, readers had AUCs ranging 
from 0.49 (95% CI: 0.46, 0.51) to 0.84 (95% CI: 0.70, 0.98). 
For classifying S0 or S1 versus S2 or S3, readers had AUCs rang-
ing from 0.57 (95% CI: 0.43, 0.71) to 0.76 (95% CI: 0.64, 
0.87). For classifying S2 or lower versus S3, readers had AUCs 
ranging from 0.52 (95% CI: 0.43, 0.60) to 0.81 (95% CI: 0.67, 
0.95). Table S6 and Figure S2 show detailed results for each 
reader. There was no strong relationship between the level of 
training and the accuracy of readers (R2 < 0.15).

Diagnostic Performance of Deep Learning
In this study, VGG16 outperformed ResNet-50 and Inception-
v3 in terms of AUC. The deep learning model performance was 
assessed on the independent test set and on the reader set. De-
tailed results for both test splits can be found in Table 4.  Figure 3 
shows representative class activation maps generated using 
trained models on images with different outcomes on the three 
dichotomized classification tasks (Appendix S1), and receiver 

Figure 2: Examples of representative B-mode US images. Hepatic steatosis grades are classified as none (grade S0), mild (S1), moderate (S2), and severe (S3). Biopsy-
proven steatosis grades, from S0 to S3, indicate the amount of fat according to pathology reports, which were used as the reference standard. S0 images are in a 50-year-old 
female patient, S1 images are in a 34-year-old female patient, S2 images are in a 46-year-old female patient, and S3 images are in a 35-year-old female patient.
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operating characteristic curves are given in Figure 4. Confusion 
matrixes are presented in Figure S3.

Comparing the results of the reading sessions and deep learn-
ing (Tables 3, 4), in S0 versus S1 or higher, the model signifi-
cantly outperformed 11 of 12 readings (P < .001 for all), except 
for the highest-performing reading (P = .84). In S0 or S1 versus 
S2 or S3, the model outperformed only the lowest-performing 
reading (P = .03) when not adjusted for multiple comparisons. 
When Bonferroni correction was applied for 12 comparisons, no 
statistical difference was observed. In S2 or lower versus S3, the 
model outperformed only one reading (P = .002; P ≥ .04 for all 
remaining comparisons). For all comparisons with significant dif-
ference, the power of the test was higher than 80%. Secondary 
analysis was performed to observe the influence of time delays be-
tween US examinations and biopsies and is presented in Table S7.

Confounding Variables
Univariable correlation coefficients demonstrated that steatosis 
classification was correlated with fibrosis stage in S2 or lower 
versus S3 (P < .001), but not for S0 versus S1 or higher (P = .40) 
or for S0 or S1 versus S2 or S3 (P = .61). Unweighted sum of 
inflammation and ballooning was correlated with steatosis clas-
sification for S2 or lower versus S3 (P = .01) and for S0 versus S1 
or higher (P = .02) while not showing any correlation in S0 or S1 
versus S2 or S3 (P = .48). The detailed results for confounding 
variables are presented in Table S8.

Discussion
This study evaluated intra- and interreader agreements and di-
agnostic performance between six readers with different levels of 
training and performed a head-to-head comparison with a deep 
learning model in grading hepatic steatosis on B-mode US im-
ages in patients with a spectrum of nonalcoholic fatty liver dis-
ease and control patients without steatosis, using histopathologic 
findings as the reference standard for both groups. For S0 ver-
sus S1 or higher, the readers achieved fair interreader agreement  
(κ = 0.34) and performance ranging between 0.49 and 0.84 in 
area under the receiver operating characteristic curve (AUC), 
while the deep learning model achieved an AUC of 0.85, which 
was better than 11 of 12 readings (P < .001). In S0 or S1 versus 
S2 or S3, the readers achieved fair interreader agreement (0.30) 
and performance ranging between 0.57 and 0.76 in AUC, while 
the deep learning model achieved an AUC of 0.73, with no sta-
tistically significant difference. In S2 or lower versus S3, the read-
ers achieved fair interreader agreement (0.37) and performance 
ranging between 0.52 to 0.81 in AUC, while the deep learn-
ing model achieved an AUC of 0.67, which was better than one 
reading (P = .002). For human visual classification, the sensitiv-
ity was the highest when distinguishing patients with steatosis 
from those without steatosis. This could be helpful in the clinical 
setting to screen patients with any level of fat.

Automatic deep learning classification of steatosis grades at 
B-mode US achieved a higher AUC for detection of steatosis 
than for grading severity of steatosis (ie, S0 or S1 vs S2 or S3 
and S2 or lower vs S3). This is consistent with the prior litera-
ture reporting high performance for detection of hepatic steato-
sis (17,18). Using US images obtained with a single system and 

using biopsy reports as the reference standard, Byra et  al (17) 
reported an AUC of 0.98 in 55 patients with obesity, and using 
visual assessment as reference, Cao et al (18) reported an AUC 
of 0.93 in 240 patients. Direct comparison with other studies 
is limited owing to the differences in the data sets, although the 
results for steatosis detection by the deep learning model in the 
two separate test sets in our study (AUC, 0.85 for the reader 
set and 0.98 for the independent test set) are similar to those 
reported in the literature.

While there was substantial variation between readers, there 
was no evidence of a difference across levels of experience for all 
readers. Prior studies reporting κ for readers assessing fatty liver 
at B-mode US addressed either detection or grading of steatosis. 
For detection of steatosis, prior studies reported intrareader κ 
values ranging from 0.54 to 0.89 (12,26–28) and interreader κ 
from 0.40 to 1.00 (12,27,29–31). For grading of steatosis, prior 
studies reported intrareader κ from 0.58 to 0.68 (12,26) and in-
terreader κ from 0.49 to 0.93 (12,32–34). However, most stud-
ies used readers with similar levels of expertise, except one (28), 
which was the only study with more than three readers.

Our study presents several advantages over the current lit-
erature, including the use of images from multiple equipment 
types and biopsy reports as the reference standard. Addition-
ally, model results are compared with various human readers. 
A recent study used radiofrequency-based techniques for ste-
atosis detection and grading (35), but our proposed method 
uses existing B-mode images from various manufacturers and 
produces real-time predictions without the need for dedicated 
software or calibration phantoms.

Our study had limitations. First, the potential confound-
ing effect of fibrosis, inflammation, and ballooning on the 

Table 2: Intra- and Interreader Agreement for Visual 
Grading of Steatosis on B-Mode US Images

Steatosis Grade Classification  
and Comparison κ Statistic Agreement
Four grades separately
 Intrareader 0.38 (0.26, 0.49) Fair
 Interreader 0.22 (0.20, 0.24) Fair
S0 vs S1 or higher
 Intrareader 0.45 (0.32, 0.59) Moderate
 Interreader 0.34 (0.31, 0.37) Fair
S0 or S1 vs S2 or S3
 Intrareader 0.56 (0.45, 0.66) Moderate
 Interreader 0.30 (0.27, 0.33) Fair
S2 or lower vs S3
 Intrareader 0.44 (0.28, 0.60) Moderate
 Interreader 0.37 (0.33, 0.40) Fair

Note.—Data are average κ statistics, with 95% CIs in 
parentheses. Hepatic steatosis grades are classified as none (grade 
S0), mild (S1), moderate (S2), and severe (S3). Multireader Fleiss 
κ was used for the interreader agreement across all readers, and 
Cohen κ was used for intrareader agreement in paired readings. 
A κ value of less than 0.21 was considered poor agreement; 0.21–
0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, 
substantial agreement; and 0.81–1.00, excellent agreement.



Vianna et al

Radiology: Volume 309: Number 1—October 2023 ■ radiology.rsna.org 7

performance of steatosis classification could not be fully explored 
given the available data. In our results, the relationship between 
steatosis classification and the remaining features is inconsis-
tent across different grade comparisons. Therefore, there is no 
evidence to suggest that these effects had a significant influence 
on the overall results. Second, we did not address the NASH 
diagnosis, as we were only focusing on steatosis. Third, we as-
sessed the performance of our model on a split test set from a 
single-center study, which limits generalizability, as the data set 
is reflective of the patient population at our institution and lim-
ited by the eligibility criteria. Finally, readers did not have access 

to image settings such as transmit frequency, harmonics, com-
pounding, and time gain compensation, which could hide the 
influence of attenuation.

In conclusion, this cross-sectional, case-control, single-center 
study demonstrates that deep learning approaches may provide 
similar classification accuracies compared with human readers 
for steatosis detection and grading. The performance of our 
model suggests that deep learning may be used for opportunistic 
screening of steatosis with use of B-mode US across scanners 
from different manufacturers or even for epidemiologic stud-
ies at a populational level if deployed on large regional imaging 

Table 3: Diagnostic Performance of Readers Grading Hepatic Steatosis on B-Mode US Images

Steatosis Grade 
Classification* A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2
S0 (n = 12) vs  

S1 or higher  
(n = 40)

0.57 
(0.44, 
0.69)

0.54 
(0.41, 
0.67)

0.58 
(0.46, 
0.70)

0.52 
(0.43, 
0.62)

0.55 
(0.43, 
0.68)

0.84 
(0.70, 
0.98)

0.52 
(0.43, 
0.62)

0.58 
(0.46, 
0.70)

0.53 
(0.44, 
0.63)

0.53 
(0.44, 
0.63)

0.49 
(0.46, 
0.51)

0.53 
(0.44, 
0.63)

S0 or S1  
(n = 29) vs  
S2 or S3  
(n = 23)

0.64 
(0.54, 
0.74)

0.67 
(0.56, 
0.78)

0.65 
(0.53, 
0.77)

0.60 
(0.46, 
0.73)

0.72 
(0.60, 
0.84)

0.76 
(0.64, 
0.87)

0.73 
(0.62, 
0.83)

0.71 
(0.61, 
0.81)

0.60 
(0.46, 
0.73)

0.57 
(0.43, 
0.71)

0.63 
(0.50, 
0.75)

0.66 
(0.52, 
0.79)

S2 or lower  
(n = 40) vs  
S3 (n = 12)

0.71 
(0.55, 
0.86)

0.81 
(0.67, 
0.95)

0.64 
(0.48, 
0.80)

0.71 
(0.56, 
0.87)

0.69 
(0.53, 
0.84)

0.72 
(0.57, 
0.88)

0.63 
(0.46, 
0.79)

0.69 
(0.54, 
0.85)

0.54 
(0.39, 
0.68)

0.52 
(0.43, 
0.60)

0.60 
(0.43, 
0.76)

0.64 
(0.49, 
0.80)

Note.—Each letter from A to F denotes a different reader in order of experience from least experienced, and 1 and 2 denote the reading 
session. Hepatic steatosis grades are classified as none (grade S0), mild (S1), moderate (S2), and severe (S3). Values reported are the areas 
under the receiver operating characteristic curve (AUCs) for each individual reading, with 95% CIs in parentheses.
* Parentheses indicate the numbers of patients in each dichotomized steatosis class.

Table 4: Diagnostic Performance and Accuracy of Deep Learning for Grading Hepatic Steatosis on B-Mode US Images

Steatosis Grade  
Classification and Set  
(n = 199)* AUC† Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%)
S0 vs S1 or higher
 Independent test set  

 (n = 8 vs n = 22)
0.98 (0.98, 0.99) 88 (962/1099) 98 (172/175) 89 (1134/1274) >99 (962/965) 56 (172/309)

 Reader set  
 (n = 12 vs n = 40)

0.85 (0.83, 0.87) 79 (1920/2441) 78 (262/336) 79 (2182/2777) 96 (1920/1994) 33 (262/783)

S0 or S1 vs S2 or S3
 Independent test set  

 (n = 21 vs n = 9)
0.67 (0.64, 0.70) 67 (362/541) 58 (423/733) 62 (785/1274) 54 (362/672) 70 (423/602)

 Reader set  
 (n = 29 vs n = 23)

0.73 (0.71, 0.75) 76 (917/1214) 58 (912/1563) 66 (1829/2777) 58 (917/1568) 75 (912/1209)

S2 or lower vs S3
 Independent test set  

 (n = 24 vs n = 6)
0.66 (0.63, 0.69) 74 (215/291) 54 (531/983) 59 (746/1274) 32 (215/667) 87 (531/607)

 Reader set  
 (n = 40 vs n = 12)

0.67 (0.64, 0.69) 82 (488/592) 47 (1034/2185) 55 (1522/2777) 30 (488/1639) 91 (1034/1138)

Note.—Unless otherwise specified, data in parentheses are numbers of images. Hepatic steatosis grades as represented as none (grade S0), 
mild (S1), moderate (S2), and severe (S3). AUC = area under the receiver operating characteristic curve, NPV = negative predictive value, 
PPV = positive predictive value.
* Parentheses indicate the numbers of patients in each dichotomized steatosis class.
† Data in parentheses are 95% CIs.
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Figure 3: Class activation maps (CAM) for (A) correctly classified and (B) incorrectly classified images during the cross- 
validation procedure. Red areas are the most relevant regions of the image for the model’s prediction. Hepatic steatosis grades are 
classified as none (grade S0), mild (S1), moderate (S2), and severe (S3). Representative images for the three dichotomizations of 
hepatic steatosis grades (S0 vs S1 or higher, S0 or S1 vs S2 or S3, and S2 or lower vs S3) are displayed from left to right: B-mode 
US image, class activation map, and class activation map overlaid on B-mode image. True-positive images are in, from top to bottom, 
a 46-year-old female patient with S2, 46-year-old female patient with S2, and 60-year-old male patient with S3. False-positive im-
ages are in, from top to bottom, a 46-year-old female patient with S0, 67-year-old female patient with S1, and 55-year-old female 
patient with S2.
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repositories. These results support the need to conduct further 
multicenter studies to validate deep learning models for hepatic 
steatosis screening with use of B-mode US.
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