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Abstract: Chronic inflammation is associated with higher risk of cardiovascular disease (CVD) in peo-
ple living with HIV (PLWH). We have previously shown that interleukin-32 (IL-32), a multi-isoform
proinflammatory cytokine, is chronically upregulated in PLWH and is linked with CVD. However,
the mechanistic role of the different IL-32 isoforms in CVD are yet to be identified. In this study,
we aimed to investigate the potential impact of IL-32 isoforms on coronary artery endothelial cells
(CAEC), whose dysfunction represents a major factor for atherosclerosis. Our results demonstrated
that the predominantly expressed IL-32 isoforms (IL-32β and IL-32γ) have a selective impact on the
production of the proinflammatory cytokine IL-6 by CAEC. Furthermore, these two isoforms induced
endothelial cell dysfunction by upregulating the expression of the adhesion molecules ICAM-I and
VCAM-I and the chemoattractants CCL-2, CXCL-8 and CXCL-1. IL-32-mediated expression of these
chemokines was sufficient to drive monocyte transmigration in vitro. Finally, we demonstrate that
IL-32 expression in both PLWH and controls correlates with the carotid artery stiffness, measured
by the cumulated lateral translation. These results suggest a role for IL-32-mediated endothelial cell
dysfunction in dysregulation of the blood vessel wall and that IL-32 may represent a therapeutic
target to prevent CVD in PLWH.

Keywords: HIV; inflammation; cardiovascular disease; IL-32; arterial stiffness; endothelial cell
dysfunction; CCL-2; CXCL-8; CXCL-1

1. Introduction

Life expectancy of people living with HIV (PLWH) has been greatly enhanced with
anti-retroviral therapy, ART [1,2]. However, long-term health management is strictly
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needed as PLWH are aging and are exposed to age-associated comorbidities. For instance,
10% of PLWH worldwide are now over the age of 50, whereas in US and Canada, the aging
population represents 50% of PLWH [3]. This natural biological aging is further associated
with inflammation and chronic activation of the immune system in PLWH even under ART,
which accelerates the development of multiple comorbidities such as cancer, neurological,
and cardiovascular diseases [4–6]. In this regard, arterial dysfunction is known to be
involved in cardiovascular diseases including hypertension, stroke and heart disease [7,8].
The development of dysfunctional arterial endothelium with age contributes to a number
of hemodynamic changes in the body by increasing large artery stiffness, oscillatory shear
stress and resistant arterial tone [9].

At the cellular level, endothelial dysfunction leads to an increase in CXCL-8 and
CCL-2 chemokine secretion and increased expression of the adhesion molecules ICAM-I
and VCAM-I [10,11]. Among these, CCL-2 is a strong chemoattractant that guides monocyte
trafficking to the inflamed arteries and combined with CXCL-8 they play a role in firm
adhesion of monocyte into the endothelium [12]. Meanwhile, upregulation of the adhesion
molecules ICAM-I and VCAM-I promotes slow rolling, firm adhesion and migration of
monocytes through the endothelium [13]. This endothelial dysfunction phenotype increases
extravasation and subendothelial accumulation of monocytes that can differentiate into
macrophages and give rise to the pathogenic foam cells [14,15]. Along with the endothelial
dysfunction, elevated levels of IL-1β, IL-6 and TNF-α inflammatory cytokines contribute
to atherosclerotic plaque formation and cardiac irritability [10,16,17]. IL-6 and TNF-α have
been directly correlated with obstructive coronary artery disease (CAD) along with IL-32
that was shown to be highly expressed in the coronary artery endothelium in people with
CAD [18,19].

IL-32 is a pro-inflammatory cytokine produced by immune and nonimmune cells and
is expressed in at least 10 different isoforms (α, β, γ, δ, D, ε, θ, ζ, η, and small/sm, generated
by alternative splicing) [20–22]. We and others have shown that plasmatic IL-32 levels are
upregulated in PLWH even under ART treatment [23,24]. We further demonstrated that
specific IL-32 isoforms (IL-32 α, β, and ε in women but IL-32 D and θ in men living with
HIV) were associated with carotid artery and coronary artery subclinical atherosclerosis,
respectively [25,26]. These observations warranted further studies to dissect the roles of
IL-32 isoforms in mechanisms underlying the development of CVD in PLWH. Herein, we
aimed to investigate the impact of exogenous IL-32 isoforms on the dysfunction of coronary
artery endothelial cells (CAEC) and carotid artery stiffening, and to identify their profile of
key cytokines and chemokines secretion in response to IL-32 activation.

2. Materials and Methods
2.1. The Study Participants

The current study included PLWH (n = 60) and control (n = 53) individuals participat-
ing in the Canadian HIV and Aging Cohort Study (CHACS). The CHACS cohort follows
longitudinally PLWH and controls for the development of cardiovascular diseases where
subclinical atherosclerosis is measured using a cardiac computed tomography (CT) scan
with injection of contrast media and defined by the presence of atherosclerotic plaque
(plaque+) in the coronary arteries [27].

2.2. Cells

Primary Human Coronary Artery Endothelial Cells were obtained from Creative
Bioarray (Shirley, NY, USA). Cells were maintained in culture in Human Coronary Artery
Endothelial Cell Medium (Creative Bioarray, Shirley, NY, USA) and experiments were
conducted between passage 5 to 10.

2.3. Flow Cytometry Analysis

Flow cytometry analysis was used to study the expression of adhesion molecules on
CAEC using BD FACSAria (BD Biosciences, San Jose, CA, USA). Staining was performed
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with 1 million CAEC cells detached with Accutase (STEMCELL, Vancouver, CAN) in 4%
Fetal Bovine Serum (FBS) in PBS. Cell surface staining was performed with fluorochrome-
conjugated antibodies from Biolegend (San Diego, CA, USA); Alexa Fluor 700 Mouse
anti-Human CD54 (Clone HA58, Cat # 353126), APC Mouse anti-Human CD106 (Clone
STA, Cat # 305810) and FITC Mouse anti-Human CD31 (Clone WM59, Cat # 303104).

2.4. Cell Stimulation

CAEC were stimulated with 500 ng/mL of IL-32 isoforms α (RND Systems Minneapo-
lis, MN, USA Cat # 3040-IL-050), β (Cat # 6769-IL-025) and γ (Cat # 4690-IL-025/CF) at
90% cell confluence. Cells were incubated for 3 h, 12 h or 72 h at 37 °C with 5%CO2 as
appropriate and as described in the Figure legends. All stimulations were done in the
presence of Polymyxin B (inhibitor of the lipopolysaccharide LPS) at 1 µg/mL.

2.5. ELISA

IL-10, IL-18, IL-6, TNF-α, IL-1β, CCL-2, CXCL-1, CXCL-8, ICAM-I and VCAM-I were
quantified using commercially available ELISA kits (R&D Systems, Minneapolis, MN, USA
Cat # DY217B-05, DY318-05, DY406-05, DY210-05, DY201-05, DY279-05, DY275-05, DY208-
05, DY720-05 and DY809-05, respectively) as per the manufacturer’s recommendations in
CAEC supernatant.

2.6. Quantitative Reverse Transcription Assays (RT-qPCR)

Total RNA was isolated from CAEC using the RNeasy plus mini kit (QIAGEN,
Toronto, ON, CAN. Catalog No. 74134) as per the manufacturer’s protocol. Primers
sets for the quantification of the different genes were as follows: CXCL-1 (Forward
5′- AACCGAAGTCATAGCCACAC-3′and reverse 5′- GTTGGATTTGTCACTGTTCAGC-
3′) [28], CXCL-8 (Forward 5′- GACCACACTGCGCCAACAC-3′ and reverse 5′- CTTCTCCA
CAACCCTCTGCAC-3′) [29], CCL-2 (Forward 5′-CAGCCAGATGCAATCAATGC-3′ and re-
verse 5′- TGGAATCCTGAACCCACTTCT-3′) [30], ICAM-I (Forward 5′-GGCCGGCCAGCT
TATACA-3′ and reverse 5′-TAGACACTTGAGCTCGGGCA-3′) [31] and VCAM-I (Forward
5′-TCAGATTGGAGACTCAGTCATG-3′ and reverse 5′-ACTCCTCACCTTCCCGCTC-3′) [31].
Primers used for the IL-32 isoforms quantification can be found in supplementary material in
our previous publication [22]. The IL-32 isoforms quantification assays were carried out using
one-step SYBR Green quantitative real-time PCR on RNA from PBMCs isolated from the
study participants and extracted using the RNeasy plus mini kit from Qiagen as per the manu-
facturer’s protocol. RT-qPCR was performed on a LightCycler 480 II (Roche, Mississauga, ON,
CAN) apparatus using QIAGEN (Toronto, ON, CAN) reagents (RNase-Free DNase Set (50);
Cat. No. 79254). Real-time RT-qPCR was performed using 25ng RNA per reaction. Gene
expression was normalized to the housekeeping gene β-glucuronidase. RT-qPCR data were
analyzed with the ∆CT method using the housekeeping gene β-glucuronidase as an internal
reference as we previously described [22].

2.7. Transwell Assay

Negatively selected monocyte (STEMCELL, Vancouver, BC, CAN Cat #19058) migra-
tion was carried out in a 3 µm transwell insert (CELLTREAT, Pepperell, MA, USA. Cat #
230631) by placing the monocytes in the upper chamber while placing the supernatants
from IL-32 isoform-stimulated CAEC in the lower chamber for 3 h with or without antago-
nists for CXCR2 (TOCRIS, Toronto, ON, CAN. Cat # 2725) and CCR2 (TOCRIS, Toronto,
CAN. Cat # 2517). Transwell membranes were stained with DAPI (Sigma, Saint-louis, MO,
USA Cat # D9542) for cell nucleus and imaged with a Zeiss microscope with Z-stack. Auto-
matic cell counting was performed using FIJI (NIH, ImageJ2, v1.8.0_172) macro developed
by the cell imaging facility of the CRCHUM.
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2.8. Carotid Artery Ultrasound Imaging and Image Analysis

Ultrasound imaging and image analysis have been carried as described in our previous
work [32]. Ultrasound acquisitions were performed between October 2015 and October
2017. Arterial walls of left and right common and internal carotids were assessed in this
study; 4 cine-loops were thus acquired for each participant. Longitudinal views of each
vessel were acquired with an Aixplorer system (SuperSonic Imagine, Aix-en-provence, FRA)
using a 256-element linear array probe (SuperLinear™ SL15-4) at 7.5 MHz. Participants
were asked to hold breath during acquisitions. The frame rate was set to 50 frames
per s, and cine-loops of raw US radiofrequency data were recorded for approximately
5 s. Examinations were performed by a vascular technologist with more than 20 years
of experience.

2.9. Statistical Analysis

Data were analyzed using GraphPad Prism 8 (GraphPad software, San Diego, CA,
USA) and SAS 9.4 (SAS Institute, Cary, NC, USA). Non-parametric Kruskal–Wallis and
Dunn’s subtests were used to analyze more than 2 groups for the same variable whereas
Mann-Whitney non-parametric analysis was used to compare two groups for the same vari-
able. Linear regression was used for multivariable analysis, adjusting for age, Framingham
risk score, body mass index, and LDL and HDL cholesterol levels. Differences between
groups were considered statistically significant at values of p < 0.05 with two-tailed analysis.

3. Results
3.1. IL-32 Isoforms Exhibit a Differential Impact on Cytokine Production by the Primary Coronary
Artery Endothelial Cells

We first aimed to determine whether IL-32 isoforms would upregulate the production
of inflammatory cytokines by the primary CAEC based on our previous observations
on both CD4 T-cells and monocytes where IL-32 isoforms induce multiple inflammatory
mediators [24]. We tested the production of key cytokines involved in CVD such as
IL-6, TNF-α, IL-1β and IL-18 as well as the anti-inflammatory cytokine IL-10 in CAEC
supernatant by ELISA following 72 h of stimulation with IL-32 isoforms. We observed that
IL-32β and γ, but not IL-32α, significantly upregulated the production of the inflammatory
cytokine IL-6 (p < 0.0001 and p = 0.0095, respectively) compared to the non-stimulated
conditions (Figure 1A, left panel). In contrast to what we observed on other cell types [24],
CAEC did not upregulate any other inflammatory cytokines such as TNF-α, IL-1β or IL-18
in response to IL-32 isoforms (Figure 1B), or even to LPS stimulation (data not shown),
suggesting that CAEC are not a source for these inflammatory cytokines. Interestingly,
we observed that IL-32β, and to a lesser extent IL-32γ, decreased the production of the
anti-inflammatory cytokine IL-10 in CAEC (Figure 1A, right panel, p = 0.0011 for IL-32β).
These results demonstrated that, in contrast to the impact of IL-32 isoforms on T-cells and
monocytes where they induce a number of inflammatory cytokines [22,24,26], endothelial
cells respond to IL-32 isoforms by increasing the expression of the CVD-associated cytokine
IL-6 and decreasing the atheroprotective cytokine IL-10.

3.2. IL-32 β and γ Induce Coronary Artery Endothelial Cell Dysfunction

Given the prominent role of IL-6 in endothelial cell dysfunction [33] and the specific
upregulation of IL-6 by CAEC in response to IL-32 as shown above, we aimed to determine
the impact of the IL-32 isoforms on the typical endothelial dysfunction markers ICAM-I
and VCAM-I [34]. We quantified these adhesion molecules at the RNA level by RT-qPCR
in CAEC following a 12h stimulation with IL-32 isoforms α, β or γ. We observed that
IL-32β and γ significantly upregulated ICAM-I (p = 0.0028 and p = 0.0303, respectively)
and VCAM-I (p = 0.0016 and p = 0.0383, respectively) RNA expression compared to non-
stimulated cells (Figure 2A). The upregulated RNA expression of ICAM-I and VCAM-I
was associated with significantly increased levels of their secreted proteins quantified
by ELISA in the supernatants of CAEC following 72 h stimulation with IL-32β and γ
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(ICAM-I; p = 0.0053 and p = 0.0068, respectively, and VCAM-I; p < 0.0001 and p = 0.0001,
respectively, Figure 2B). Furthermore, the expression of ICAM-I and VCAM-I on the cell
surface (a feature associated with the recruitment of leukocytes to the inflammatory sites)
was assessed by flowcytometry following 72 h stimulation under the same conditions.
In line with the RNA transcription and secreted protein data, IL-32β and γ significantly
upregulated ICAM-I (p < 0.0001 and p = 0.0005, respectively) and VCAM-I (p < 0.0001
and p = 0.0007, respectively) on the surface of CAEC compared to non-stimulated cells
(Figure 2C). Taken together, these results suggest that IL-32 isoforms β and γ, but not α,
induce cell dysfunction in CAEC.

Figure 1. IL-32 isoforms exhibit differential impact on coronary artery endothelial cell’s cytokine
production. (A) Modulation of IL-6 and IL-10 proteins in supernatants from CAEC following
stimulation with IL-32α, β and γ for 72 h (500 ng/mL, n = 10). (B) TNF-α, IL-18 and IL-1β proteins
in supernatants from CAEC following stimulation with IL-32α, β and γ for 72 h (500 ng/mL, n = 10).
Dots on the graphs represent experimental replicates from CAEC. Data analyzed with the non-
parametric test Kruskal-Wallis and Dunn’s subtest. NS: non-stimulated. ns: non-significant.
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Figure 2. Coronary artery endothelial cell dysfunction markers are upregulated by IL-32 isoforms β
and γ but not α. (A) Analysis of ICAM-I (CD54) and VCAM-I (CD106) RNA expression, normalized
to the housekeeping gene β-glucuronidase, in primary CAEC showing their increased relative
expression following 12 h stimulation with IL-32β and γ but not α (500 ng/mL, n = 6). (B) Analysis
of ICAM-I and VCAM-I expression in CAEC supernatants following stimulation with IL-32α, β
and γ for 72 h (n = 10). (C) Upper panels: Representative Flow cytometry data showing the gating
strategy on CAEC live cells and overlapping histograms for ICAM-I and VCAM-I on the cell surface
following stimulation with IL-32α, β and γ for 72 h (500 ng/mL). Lower panels: Analysis of ICAM-I
and VCAM-I surface expression from n = 10 treatments (10 experimental replicates from CAEC).
Data analyzed with the nonparametric test Kruskal-Wallis and Dunn’s subtest. NS: non-stimulated.
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3.3. IL-32 β and γ Increase Chemokine Production in Coronary Artery Endothelial Cells

Expression of the adhesion molecules ICAM-I and VCAM-I, which are involved in
leukocyte recruitment by endothelial cells, further suggests that IL-32 isoforms might
also impact the chemokine production in CAEC, which together (adhesion molecules and
chemokines) would enhance the leukocyte recruitment potential of these cells to the site
of inflammation. To this end, we evaluated the expression of key chemokines known
to be involved in leukocytes chemotaxis, namely, CCL-2, CXCL-1, and CXCL-8 [35–38].
These chemokines were first quantified by RT-qPCR following a 12 h stimulation with
IL-32 isoforms. Similar to the CAEC dysfunction markers, we observed that IL-32β and
γ significantly upregulated the RNA expression of CCL-2 (p < 0.0001 and p = 0.0012 re-
spectively), CXCL-1 (p = 0.0001 and p = 0.0023 respectively) and CXCL-8 (p < 0.0001 and
p = 0.0028, respectively) compared to the non-stimulated condition or IL-32α-stimulated
cells (Figure 3A). The protein expression of these chemokines was further assessed in
CAEC supernatant by ELISA following 72 h stimulation with IL-32 isoforms. Of note,
all experiments were carried out in the presence of the endotoxin inhibitor Polymyxin B,
which did not significantly impact the CAEC response to IL-32 isoforms, while completely
diminishing the impact of LPS stimulation that was used at a similar concentration to IL-32
isoforms (500 ng/mL) (Supplemental Figure S1). Under these experimental conditions, we
observed that IL-32β and γ upregulated CCL-2 (p < 0.0001 and p = 0.0132, respectively),
CXCL-1 (p < 0.0001 and p = 0.0198, respectively) and CXCL-8 (p = 0.030 and p = 0.066
(marginally significant), respectively) compared to the non-stimulated or IL-32α- stimu-
lated cells (Figure 3B). These results suggested a specific effect of IL-32β and γ to induce
chemokines’ expression by CAEC, which would potentially increase their capacity to attract
immune cells.

Figure 3. Cont.
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Figure 3. IL-32 β and γ increase chemokine production in coronary artery endothelial cells.
(A) Analysis of CCL-2, CXCL-1 and CXCL-8 RNA expression, normalized to the housekeeping
gene β-glucuronidase, in CAEC following 12 h stimulation with IL-32α, β and γ (500 ng/mL, n = 10).
(B) Analysis for the production of CCL-2, CXCL-1 and CXCL-8 proteins in CAEC supernatants follow-
ing stimulation with IL-32α, β and γ for 72 h (500 ng/mL, n = 10 experimental replicates from CAEC).
Data analyzed with the non-parametric test Kruskal-Wallis and Dunn’s subtest. NS: non-stimulated.

3.4. IL-32 β- and γ-Induced Chemokines Drive Monocyte Transmigration towards
CAEC Supernatants

Since CCL-2 and CXCL-8 are known to be potent monocyte chemoattractants [36], we
hypothesized that CAEC stimulated with IL-32 isoforms would increase their potential
to recruit monocytes. We assessed the transmigration of primary monocytes towards the
supernatant of CAEC stimulated with IL-32 isoforms α, β and γ in transwell assays and
the total migrated cells were counted by imaging (DAPI stain was used to identify the
migrated cells on the transwell membranes). We observed that supernatant from IL-32β-
and γ-stimulated CAEC significantly attracted higher numbers of monocytes (p = 0.0005
and p = 0.0141, respectively) compared to the non-stimulated cells (Figure 4A). To ensure
this effect was specific and related to the upregulation of CCL-2 and CXCL-8 by IL-32 iso-
forms, we pre-treated the monocytes with the antagonists RS504393 and SB225002, which
target CCR2 (CCL-2 receptor) and CXCR2 (CXCL-8 receptor), respectively, before running
the transwell assay. Under these conditions, we observed a significant decrease in the
number of transmigrating monocytes compared to the non-treated cells (IL-32β: p = 0.0018
for CXCR2 antagonist and p = 0.0051 for CCR2 antagonist, IL-32γ: p = 0.0045 for CXCR2
antagonist and p = 0.0078 for CCR2 antagonist, Figure 4B). Of note, the use of CXCR2 antag-
onist showed a modest but significant impact on the non-stimulated and IL-32α-stimulated
supernatants (p = 0.0039 and p = 0.0003, respectively), likely driven by the inhibition of
the spontaneous CXCL-8 production by CAEC as could be seen in Figure 3B. Intriguingly,
the use of either CCR2 or CXCR2 antagonists in the IL-32-stimulated conditions strongly
diminished the monocyte migration to levels close to the non-stimulated cells. However,
earlier studies demonstrated that monocyte migration by these chemokines (CCL-2 and
CXCL-8) and chemokine receptors (CCR2 and CXCR2) are highly interdependent through
a synergistic mechanism involving the activation of ERK1/ERK2 pathways and intracellu-
lar calcium signaling [39]. These studies demonstrated that CXCL-8 largely enhances the
chemoattraction potential of CCL-2 [39]. Therefore, inhibition of CCL-2 in our assays would
likely diminish the monocytes migration as expected, but additionally, CXCL-8 inhibition
would, on its turn, diminish the synergistic effect for CCL-2-mediated migration as well.
Taken together, these results suggest that IL-32-induced expression of the chemokines
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CCL-2 and CXCL-8 has the potential to significatively and specifically increase monocyte
recruitment by coronary artery endothelial cells.

Figure 4. IL-32 β- and γ-induced chemokines drive monocyte transmigration toward CAEC super-
natants. (A) Left panels: Representative fluorescent microscope images for monocytes attached to the
lower side (surface facing the lower chambers) of the transwell membrane. Nuclei stained with DAPI
on the transwell membranes. Right panel: Analysis for the numbers of migrated cells towards the
CAEC supernatant stimulated with IL-32α, β and γ (n = 7). (B) Analysis for the impact of pre-treating
monocytes with the antagonists of either CCR2 or CXCR2 prior to exposure to supernatants from
CAEC non-stimulated or stimulated with the IL-32α, β and γ isoforms (n = 7). Dots on the graphs
represent experimental replicates from CAEC. NS: non-stimulated. ns: non-significant.
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3.5. IL-32 Expression Is Associated with Carotid Artery Wall Stiffness

Since we had established the functional link between IL-32 and endothelial cell’s
dysfunction and cytokine/chemokine production, we further aimed to investigate whether
IL-32 expression in vivo might be correlated with arterial diseases. Accordingly, we quanti-
fied the IL-32 isoforms α, β, γ, D, ε and θ (isoforms for which have established RT-qPCR
assays [22,25,26]) from both PLWH (n = 60) and controls (n = 53) (Table 1), and studied
their correlation with arterial stiffness determined by cumulated lateral translation in the
common carotid artery (CLT-CCA) that is measured by ultrasound noninvasive vascular
elastography (NIVE) [32]. CLT-CCA represents the cyclic translation motion, during pul-
sation, of the arterial wall along the longitudinal vessel axis. Consistent with our earlier
observations [22,25,26], all IL-32 isoforms that were tested (α, β, γ, D, ε and θ) were signif-
icantly upregulated in PBMCs from PLWH compared to controls (p < 0.0001, p < 0.0001,
p < 0.0001, p = 0.0049, p = 0.0001 and p < 0.0001, respectively) (Figure 5A). Interestingly, the
levels of IL-32 isoforms (α, β, γ, D, ε and θ) negatively and significantly correlated with
cumulated lateral translation in the common carotid artery (CLT-CCA) from the controls
(p = 0.042, p = 0.017, p = 0.018, p = 0.019, p = 0.009 and p = 0.03, respectively, Figure 5B).
These associations remained statistically significant after adjustment for age, Framingham
risk score, body mass index, and LDL and HDL cholesterol levels, with the exception of
isoforms α and D which became marginally significant (p = 0.09 and p = 0.06, respectively).
In PLWH, no significant correlation was observed between IL-32 and CLT-CCA when we
analyzed the total population of PLWH (Supplemental Figure S2A). However, the negative
significant correlations with IL-32 isoforms in PLWH were only observed in the CLT-CCA
measures within the upper quartiles (n = 30) but not the lower quartiles (n = 30) (p = 0.015,
p = 0.029, p = 0.024 for IL-32γ, D and ε, respectively, and marginally significant for isoforms
α, β and θ with p = 0.054, p = 0.071 and p = 0.061, respectively) (Figure 5C). In further
analyses adjusted for age, Framingham risk score, body mass index, and LDL and HDL
cholesterol levels, the associations between IL-32 and CLT-CCA strengthened and were
statistically significant for all isoforms except for θ (p = 0.09). These results were intriguing
given the higher levels of IL-32 isoform expression in PLWH compared to the controls.
However, when we stratified PLWH by age for the upper and lower CLT-CCA quartiles,
we observed that individuals within the lower quartile of CLT-CCA (more arterial stiffness)
were older compared to individuals within the upper CLT-CCA quartiles (individuals
with less diseased arteries) (Supplemental Figure S2B, left panel). Of note, this effect that
was not observed within the controls, where individuals within the upper (n = 27) and
lower (n = 26) CLT-CCA quartiles had similar ages (Supplemental Figure S2B, left panel).
These results demonstrated that the association between IL-32 expression and arterial
stiffness was only observed in the relatively younger but not the older PLWH, even with
the significant correlation between IL-32 and aging (Supplemental Figure S2B, right panel).
These results also suggested that IL-32 may accelerate co-morbidities such as vascular dis-
eases in PLWH at an earlier age; however, advanced biological aging remains a dominant
mediator/predictor for the deterioration of the arterial functions.

Table 1. Demographic and clinical parameters of study participants. Numbers are shown in
Mean ± SD. N/A: non-applicable. NA: Non-available.

Variable Controls PLWH p Value

Number of participants (Female/Male)
Age (Years)

53 (5/48)
55.9 ± 8.32

60 (1/59)
57.6 ± 7.63 NS

Predicted 10 years Framingham Risk score
(number of individuals with available data)

11.08 ± 4.63
(50/53)

11.12 ± 6.77
(58/60) NS

D-dimer (mg/L)
(number of individuals with available data)

0.301 ± 0.107
(18/53)

0.292 ± 0.155
(39/60) NS

Body Mass Index (BMI)
(number of individuals with available data)

27.11 ± 4.83
(17/53)

24.98 ± 4.49
(48/60) 0.034
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Table 1. Cont.

Variable Controls PLWH p Value

LDL–C (mmol/L)
(number of individuals with available data)

3.16 ± 0.77
(51/53)

2.86 ± 1.06
(55/60) 0.017

HDL–C (mmol/L)
(number of individuals with available data)

1.38 ± 0.39
(53/53)

1.24 ± 0.33
(58/60)

0.056
(NS)

Duration of infection (Years) N/A 17.68 ± 7.9
Duration of ART (Years) N/A 14.36 ± 6.8

Viral load (Log10 copies/mL) N/A 1.6 ± 0.01
Nadir CD4 count (cells/mm3) N/A 215 ± 161

CD4 count (cells/mm3) NA 595 ± 228
CD4/CD8 ratio NA 0.9 ± 0.43

Figure 5. Cont.
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Figure 5. Association between IL-32 expression and carotid artery wall stiffness. (A) Increased
expression of IL-32 isoforms in PBMCs from PLWH compared to controls (n = 60 and n = 53, respec-
tively). IL-32 RNA levels were normalized to the housekeeping gene β-glucuronidase. (B) Correlation
between IL-32 expression and carotid artery cumulative lateral translation (CLT) within the common
carotid artery (CCA) from controls (n = 53). (C) Same as in B from PLWH participants (shown
is association between IL-32 and CLT data from the upper quartiles, n = 30). Dots on the graphs
represent data from individual participants in the CHACS cohort. CLT: Cumulated lateral translation
in common carotid artery. CTL: Controls.

4. Discussion

IL-32 is known to be upregulated in multiple inflammatory conditions associated
with increased risk for the development of cardiovascular diseases, such with chronic viral
and bacterial infections, inflammatory bowel disease and chronic obstructive pulmonary
disease [40–43]. Previous studies including ours demonstrated that IL-32 is persistently
upregulated in both cells and plasma from people living with HIV and is associated with
the presence of coronary artery and carotid artery atherosclerosis [23,25,26,44]. However,
whether IL-32 contributes to the pathogenesis of atherosclerosis is not clear. In the current
study, we assessed the impact of IL-32 isoforms on endothelial cell functions and cy-
tokines/chemokines expression as it relates to inflammation and recruitment of leukocytes.
We demonstrated that specific exogenous IL-32 isoforms (IL-32β and γ) have the potential
to impact coronary artery endothelial cells leading to their dysfunction and recruitment of
monocytes, two conditions linked with the development of atherosclerosis [45,46]. We first
assessed CAEC pro-inflammatory cytokine production for IL-6, TNF-α, IL-18 and IL-1β,
which are four important players for the development of cardiovascular diseases [47–49]
together with the anti-inflammatory cytokine IL-10. Interestingly, only IL-6 was upregu-
lated by IL-32β and γ as these CAEC do not produce either TNF-α, IL-18 or IL-1β, even in
response to LPS. IL-6 is considered to be an upstream inflammatory cytokine that is associ-
ated with endothelial dysfunction (mediating the upregulation of the leukocytes’ adhesion
molecules ICAM-I and VCAM-I) and subclinical atherosclerosis [33,50] and therefore, its
production by CAEC in response to IL-32 β and γmay represent one of the mechanisms by
which IL-32 contributes to coronary artery dysfunction and inflammation. To validate this
hypothesis, we investigated the dysfunction of CAEC following IL-32 β and γ stimulation
by measuring their expression of ICAM-I and VCAM-I. ICAM-I and VCAM-I were both
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upregulated at the RNA level as well as at the protein level on cell surface. ICAM-I and
VCAM-I have been shown to be removed from the endothelial cell surface by proteolytic
cleavage and shedding as a control mechanism to limit the effect of the inflammatory
process [51] and high levels of plasmatic ICAM-I and VCAM-I have been shown to directly
correlate with atherosclerosis [52]. This phenotype was also induced by IL-32 in the current
study and indicated that IL-32β and γ induce the upregulation of typical dysfunction
biomarkers in CAEC. However, it remains unclear whether this mechanism is directly
mediated by IL-6 and how IL-6 may signal in the context of endothelial cells in vitro.

On top of being dysfunction markers, cell-associated ICAM-I and VCAM-I play a role
in the slow rolling and firm adhesion of monocytes to the arterial endothelium and initiation
of atherosclerosis [52,53]. The upregulation of these adhesion receptors by IL-32 isoforms
suggests a potential role for IL-32 in recruitment of immune cells and the contribution
to the pathogenesis of atherosclerosis. Indeed, not only IL-32 isoforms upregulate the
adhesion receptors but also increase the expression of a number of chemoattractants,
namely, CCL-2, CXCL-1 and CXCL-8 at the RNA and protein levels. CCL-2, the prototype
of chemoattractants, and CXCL-8 are both known to be strong mediators of monocyte and
macrophage chemotaxis/recruitment, firm-adhesion and infiltration to the inflammation
site [12,54]. The induction of these chemokines further highlights the potential role of
IL-32 in the pathogenesis of atherosclerosis given the high expression of this cytokine in
the atherosclerotic lesions [19]. Indeed, under the in vitro conditions that we employed
in the current study, the IL-32-mediated expression of both CCL-2 and CXCL-8 by the
coronary artery endothelial cells was sufficient to induce monocytes’ recruitment in a
specific manner demonstrated by the CCR2 and CXCR2 antagonists (ligands of CCL-2 and
CXCL-8, respectively). Monocytes play a crucial role in atherosclerosis by infiltrating the
atherosclerotic lesions, differentiating into macrophages and forming inflammatory foam
cells [55–57]. Given these effects, we suggest an inflammatory role for IL-32β and γ on
endothelial cells leading to their dysfunction and release of both inflammatory cytokines
and chemokines, which might promote arterial inflammation and monocyte recruitment
to the atherosclerotic sites. The deleterious effects of chronic upregulation of IL-32 and IL-
32-mediated chemokine expression may also expand beyond atherosclerosis. For instance,
CCL-2 was recently shown to mediate early seeding of the HIV reservoir by recruiting a
unique subset of CCR2/5+ CD4+ T-cells which become infected and form a significant
reservoir for latent infection [58]. Similar studies were also reported on CXCL-1 (an IL-
32 induced chemokine) on the enhancement of HIV replication [59]. Moreover, CXCL-8,
another IL-32-induced chemokine, was shown to be upregulated in the plasma, serum and
brain of PLWH presenting neurocognitive impairment [60].

While the current study as well as studies by other groups highlighted the role of IL-32
isoforms β and γ as proinflammatory [61], the role of IL-32α is not clearly established in the
literature. In previous studies, the anti-atherosclerotic potential of IL-32αwas demonstrated
as it inhibits endothelial inflammation and vascular smooth muscle cell activation [62]. In
line with these observations, our earlier studies suggested an anti-inflammatory role of
IL-32α as it induces IL-10 expression in activated T-cells [22,24]. In the current study we
further observed a tendency for IL-32α to decrease the production/secretion of ICAM-I and
CXCL-8 compared to the other IL-32 isoforms. However, this effect did not reach statistical
significance under the current experimental conditions. While our study was focused on
the effect of exogenous IL-32 that mimics the circulating IL-32 proteins, it was also shown
that intracellular IL-32 could induce the production of ICAM-I, IL-6 and CXCL-8 in HUVEC
endothelial cells in response to IL-1β [63]. However, in the current study, IL-32 mediated
these effects without the need for IL-1β, which suggests the independent role of IL-32 on
endothelial inflammation and dysfunction.

The arterial endothelium plays a critical role in maintaining a healthy vascular
tone [64]. Changes in the endothelium functions may lead to arterial stiffness [65,66]
and contribute to CVD and heart failure (HF) [67]. On the other hand, IL-32 was recently
reported to be upregulated in HF, with higher levels of IL-32 upon initial myocardial infarc-
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tion predicting lower probability of HF-free status for a period of 2 years [68]. This aligns
with our own observations on the negative association between the expression of IL-32
isoforms in blood from either PLWH or controls and the common carotid artery health
marker cumulated lateral translation. Of note, we have recently shown that PLWH, when
compared with controls, have lower lateral translation of common and internal carotid
artery walls, measured with ultrasound elastography, which indicates increased vessel
wall stiffness [32]. This was further accompanied with increased prevalence of carotid
artery atherosclerotic plaques [32]. The negative associations between IL-32 isoforms and
the arterial lateral translation further support the deleterious role of this inflammatory
cytokine on the cardiovascular system. Meanwhile, this association was only observed
in the relatively younger individuals of PLWH compared to the older population, which
suggests that other inflammatory mediators may also play similar roles during the aging
process. For instance, earlier studies demonstrated that inflammatory factors such as IL-6,
hsCRP and D-dimers tend to remain higher in PLWH, even after HIV-RNA is suppressed
by therapy [69] and that cytokines such as IL-6 are increased with aging [70]. Under this
complex inflammatory condition, which characterizes the aging process of PLWH com-
pared to the general population [71], it might be difficult to observe clear associations with
and discern the disease progression to one single inflammatory mediator such as IL-32.

One limitation for the current study was the failure to integrate sex and gender into
our analysis of association between IL-32 expression and arterial stiffness. However, this
was not possible as the carotid artery stiffness measures were carried out on participants
from the Canadian HIV and Aging Cohort Study (CHACS), which is mainly a cohort
of men with a very limited number of women participants [27]. Of note are our recent
studies on two independent cohorts, the CHACS and the Women Interagency HIV Study
(WIHS Cohort), which demonstrated that CVD-associated IL-32 isoforms are differentially
expressed in men versus women living with HIV [25,26]. Therefore, future studies are
warranted to explore these differences in larger cohorts integrating both men and women.

Another limitation of the current study is that we only tested three IL-32 isoforms
at the functional level (IL-32α, β and γ) out of the 10 known IL-32 isoforms (α, β, γ,
δ, D, ε, θ, ζ, η, and small/sm) [21,22], as these were the only commercially available
isoforms. It thus remains unclear whether the rest of the IL-32 isoforms may complement,
counteract, or simply play a redundant role on endothelial functions and carotid artery
stiffening. Of note, our recent studies demonstrated that both IL-32α and β are upregulated
in peripheral blood mononuclear cells in women living with HIV and are associated
with carotid artery subclinical atherosclerosis [25]. While IL-32α seems to play an anti-
inflammatory function by inducing IL-10 expression, IL-32β is highly inflammatory and
induces multiple proinflammatory cytokines such as IL-6, TNF-α IL-1β, and IL-18 in T-cells
and monocytes [21,26]. However, IL-32β represented the dominantly expressed isoform
in individuals with subclinical atherosclerosis, which suggests that IL-32β-associated
functions are the prevalent ones, at least in blood [25,26]. In line with our data, earlier
studies also demonstrated that IL-32 is upregulated in the coronary artery endothelium from
individuals with coronary artery disease, and that both IL-32β and γ are the dominantly
expressed isoforms in the atherosclerotic arterial vessel wall [19,72]. Therefore, we believe
that the functional data on IL-32β and γ presented in the current study are of clinical
relevance and suggests a model in which persistent upregulation of IL-32 isoforms in
PLWH is directly linked with vascular endothelial dysfunction and continuous recruitment
of monocytes and other leukocytes, likely through IL-6-mediated mechanisms. Therefore,
IL-32 may represent a potential therapeutic target to limit CVD in PLWH.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15030700/s1, Figure S1: Impact of Polymyxin B on CAEC. CXCL-1
expression by CAEC following stimulation with IL-32 isoforms (500 ng/mL) or LPS (500 ng/mL) in
the presence or absence of Polymyxin B. Left panel: CXCL-1 levels in pg/mL. Right panel: Percentage
of change (increase or decrease) in CXCL-1 expression for each condition (Non-stimulated NS,
IL-32a-, IL-32b-, IL-32g- and LPS-stimulated cells) from the left panel generated by the ratio between
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Polymyxin B treated to untreated condition. NS: nonstimulated. Figure S2: (A) Association between
IL-32 expression and carotid artery wall stiffness in the total PLWH population. (B) Age comparison
within the lower (Q1) and upper (Q3) quartiles of CLT-CCA of PLWH (n = 30 per quartile) and
controls (n = 27 for Q1 and n = 26 for Q3), Left panels. Right panel: correlations between total
IL-32RNA from PLWH (n = 60, left panel) and controls (n = 53, right panel) and age. Q1: First quartile,
Q3: Third quartile. CLT: Cumulated lateral translation in common carotid artery.
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