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Abstract— Attenuation maps or measurements based on
the local attenuation coefficient slope (ACS) in quantitative
ultrasound (QUS) have shown potential for the diagnosis
of liver steatosis. In liver cancers, tissue abnormalities and
tumors detected using ACS are also of interest to provide
new image contrast to clinicians. Current phantom-based
approaches have the limitation of assuming a comparable
speed of sound between the reference phantom and
insonified tissues. Moreover, these methods present the
inconvenience for operators to acquire data on phantoms
and patients. The main goal was to alleviate these
drawbacks by proposing a methodology for constructing
phantom-free regularized (PF-R) local ACS maps and
investigate the performance in both homogeneous and
heterogeneous media. The proposed method was tested on
two tissue-mimicking media with different ACS constructed
as homogeneous phantoms, side-by-side and top-to-
bottom phantoms, and inclusion phantoms with different
attenuations. Moreover, an in vivo proof-of-concept was
performed on healthy, steatotic, and cancerous human liver
datasets. Modifications brought to previous works include:
1) a linear interpolation of the power spectrum in the log
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scale; 2) the relaxation of the underlying hypothesis on the
diffraction factor; 3) a generalization to nonhomogeneous
local ACS; and 4) an adaptive restriction of frequencies
to a more reliable range than the usable frequency range.
Regularization was formulated as a generalized least
absolute shrinkage and selection operator (LASSO),
and a variant of the Bayesian information criterion (BIC)
was applied to estimate the Lagrangian multiplier on the
LASSO constraint. In addition, we evaluated the proposed
algorithm when applying median filtering before and after
regularization. Tests conducted showed that the PF-R
yielded robust results in all tested conditions, suggesting
potential for additional validation as a diagnosis method.

Index Terms— Compression wave attenuation imaging,
local attenuation coefficient slope (ACS), quantitative ultra-
sound (QUS), regularization, system-independent tissue
characterization, ultrasound (US) attenuation coefficient
(AC) estimation.

I. INTRODUCTION

HEPATOCELLULAR carcinoma (HCC) is responsible
for between 85% and 90% of primary liver cancers

[1], [2], and they are the fourth most common cause of
cancer-related mortality [3]. The mortality rate of HCC is
increasing by 3% per year due to late diagnosis [4], [5].
Early detection of HCC is critical to increase the opportunity
for curative treatment and to improve survival. Ultrasound
(US) is used clinically for HCC surveillance due to its wide
availability, cost-effectiveness, and noninvasiveness compared
to other methods, such as biopsy, magnetic resonance imaging
(MRI), and computed tomography [6], [7]. However, US has
a lower sensitivity [8], [9] for detecting focal lesions, espe-
cially in the presence of concomitant liver steatosis, fibrosis,
or cirrhosis [10], [11]. To overcome this limitation, one may
extract additional information from US not available on the
B-mode, Doppler, or elastography images, such as attenuation
coefficient slope (ACS) maps estimated using quantitative US
(QUS) [12], [13], [14], [15].

QUS attenuation has been used in several clinical studies
to assess the degree of liver injury and specifically of liver
steatosis [16], [17], [18], [19]. This feature is used by radi-
ologists to detect and assess the severity of the fatty liver
disease. The accumulation of fat in the liver can progress to
fibrosis, cirrhosis, and eventually to HCC [20]. The presence
of moderate-to-severe liver steatosis constitutes a diagnostic
challenge as it may obscure tumors in attenuated portions of
the liver [21]. US attenuation is more economical than MRI
for screening and surveillance [22], mainly due to clinical
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successes of the controlled attenuation parameter (CAP) to
grade liver steatosis [17]. Notice that no images are produced
with the CAP parameter.

The loss of ultrasonic energy when an acoustic wave prop-
agates through soft tissues is referred to as ultrasonic attenu-
ation [23]; it is due to scattering and absorption (conversion
of ultrasonic to thermal energy) [24]. Clinicians performing
conventional B-mode assessment can detect attenuation quali-
tatively [25], [26]. The attenuation is related to the interaction
of propagating compression waves within tissues, resulting in a
decrease in the echo intensity along the wave propagation path,
loss in B-mode detectable image features, and shadowing [27].
While attenuation was traditionally considered an imaging
artifact, it can be leveraged as a specific feature with diagnostic
value [12]. Indeed, attenuation depends on the underlying
nature and structure of a tissue [28]. To clarify this concept,
several parameters can be defined as attenuation in the US
literature. The total attenuation coefficient (total AC) is defined
as the attenuation-to-depth ratio, which depends on intervening
tissues along the whole propagation path [12], [23]. The local
AC can be defined as the partial derivative of attenuation
with respect to depth, which depends on tissues at a given
position [29]. By assuming a linear dependency on frequency,
the slope of AC (ACS) is most often used in the literature
[23], [25], [30], [31], [32], [33], [34], [35].

Constructing attenuation images is an approach that can be
used to assist in the detection of lesions and abnormalities
of the liver. Popular methods to estimate ACS using clinical
US scanners in backscattering mode [15], [36], [37] are the
spectral difference [38], [39] and spectral shift [40] meth-
ods. Both spectral-based approaches estimate the local ACS
(dB cm−1 MHz−1) inside a prespecified region of interest
(ROI) [23]. The spectral difference method uses the reduction
of the echo signal power with depth to determine the local AC,
whereas the spectral shift method utilizes the downshift in the
center frequency of the backscatter echo with depth to obtain
frequency-dependent attenuation [15], [40]. The spectral log-
difference (SLD) method [23], [34] and a hybrid method [32]
are two other variants of these techniques.

With these methods, scattering properties (i.e., the backscat-
ter coefficient) are assumed to be constant over depth within
the ROI. Furthermore, to compensate for the US beam dif-
fraction and other system-dependent effects, such as gain,
filtering, and the piezoelectric acoustical transfer function at
emission and reception, echo signals from a reference phantom
whose acoustic properties are known (through calibration)
are required [41]. It is worth mentioning that these echo
signals must be acquired using the same equipment and system
settings as the clinical exam, and the speed of sound of
the reference phantom needs to be close to the one of the
acquired tissues’ samples [12], [23]. The ratio of power spectra
from tissues’ samples and reference phantom, at two different
depths, yields the local AC of the scanned organ at the
frequency and depth of interest [14]. The availability of a
well-calibrated reference phantom can, thus, be considered a
limitation of these methods [42].

Recent studies proposed system-independent methods as an
alternative for estimating local attenuation without the need
for a reference phantom [42], [43]. This strategy cancels

system-dependent effects using spectral normalization in adja-
cent frequency components and is known as the reference
frequency method (RFM). This method has some limitations,
such as the need for a predefined frequency range and a
large computing window (CW) (a square with side lengths of
2.5 cm), which make the use of this method limited to the case
of homogeneous media preventing cancer lesions detection.
Thus, a method is needed to overcome these limitations to
provide parametric maps for cancer diagnosis purposes. In our
preliminary study [43], reconstructions of attenuation images
using a system-independent method showed promising results
close to the ground truth (through-transmission substitution
method) [36], in the case of homogeneous and side-by-side
phantoms. This study provides additional validations with top-
to-bottom phantoms and is also focusing on differentiating
lesions with different attenuation and geometrical properties
than surrounding tissues. More specifically, we present the
development and validation of a phantom-free attenuation
mapping method with parametric regularization to reduce
image artifacts for applications in liver steatosis grading, and
liver cancer detection and characterization.

The remaining part of this article is organized as follows.
Section II introduces the theoretical framework and governing
equations for estimating the ACS. Section III describes exper-
imental configurations and acquisitions. Section IV presents
results acquired on phantoms with the phantom-free (PF)
and the SLD methods before and after regularization (R).
Section V discusses advantages and future directions, followed
by Section VI on conclusions.

II. THEORETICAL FRAMEWORK

The ACS can be evaluated using a methodology that
involves radio frequency (RF) data acquisition without the
need of acquiring RF signals from a reference phantom. The
method is based on spectra normalization at different frequen-
cies [43]. Specific contributions are: 1) a linear interpolation
of the power spectrum in the log scale; 2) the relaxation of
the underlying hypothesis on the diffraction factor within an
ROI; and 3) a generalization to nonhomogeneous local ACS.
Moreover, we provide a regularized local attenuation map
based on the selected ROI.

A. Power Spectrum Modeling

Within the ROI, a CW centered at depth z (cm) (the lateral
position is dropped in the equations for simplicity of notation)
is considered. The power spectrum S( f, z) at depth z of
backscattered RF signals in the time domain (xz(t)) after
removing the time gain compensation (TGC) of the US system,
which was automatically recorded as a function of depth, can
be computed as in the following equation:

S( f, z) = 〈|Xz( f )|2〉 (1)

where f (MHz) is the frequency, Xz( f ) is the Fourier trans-
form of xz(t) over a scan line centered at z, |Xz( f )| denotes
the complex modulus of Xz( f ), and 〈−〉 represents the aver-
aging operator over scan lines. Power spectra were estimated
by computing Fourier transforms of RF signals after applying
a rectangular window with zero padding and averaging over
25 adjacent scan lines (see [44]).
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The power spectrum can be modeled as a function of the
US frequency and depth according to previous studies [31],
[42] in the form of the following equation:

S( fi , zk) = G( fi )D( fi , zk)BSC( fi , zk)A( fi , zk) (2)

where S is the power spectrum as a function of frequency fi

(i is the frequency component index) and depth zk (k is the
depth index), G is the transducer’s response in transmit and
receive modes at a given frequency, D represents combined
effects of focusing, beamforming, and beam diffraction, BSC
(cm−1. sr−1) is the backscatter coefficient, and A is the
attenuation component, which is assumed to be in the form
exp(−4αtotal, zk zk fi ), where αtotal, zk (Nepers cm−1 MHz−1) is
the total ACS at depth zk , assuming a linear dependency with
frequency.

The first modification to [43] was to consider a Gaussian fit
in the log scale to power spectra for improving the robustness
of ACS maps. Next, according to [42], the power ratio
RS( fi , zk) (no unit) between adjacent frequency components
S( fi , zk) and S( fi−1, zk) can be expressed as

RS( fi , zk) = S( fi , zk)

S( fi−1, zk)

= G( fi )D( fi , zk)BSC( fi , zk)A( fi , zk)

G( fi−1)D( fi−1, zk)BSC( fi−1, zk)A( fi−1, zk)
.

(3)

We assume that beamforming and diffraction effects between
two adjacent frequencies fi and fi−1 are related linearly in the
form D( fi , zk) = ci D( fi−1, zk), where the unknown constant
of proportionality ci depends only on frequencies fi and fi−1.
With this assumption, (3) simplifies to

RS( fi , zk) = G( fi ) ci BSC( fi , zk)A( fi , zk)

G( fi−1)BSC( fi−1, zk)A( fi−1, zk)
. (4)

To obtain a linear equation, the natural logarithm is applied
to (4) yielding

log RS( fi , zk)

= log G( fi ) − log G( fi−1) + log BSC( fi , zk)

− log BSC( fi−1, zk) − 4αtotal, zk zk( fi − fi−1) + log ci .

(5)

By taking the difference in the expression log RS( fi , zk) at
two different depths zk and zr yet, at the same frequencies, the
terms for transmit and receive transducer’s responses and the
backscatter coefficient can be canceled from (5) by assuming
that BSC( fi , zk) = BSC( fi , zr ). Furthermore, upon consid-
ering the relation αtotal, zk zk = αtotal, zr zr + αlocal, z(zk − zr ),
where αlocal, z is the local ACS for a CW centered at depth z,
(5) yields after simplifications

log RS( fi , zk) − log RS( fi , zr )

= −4αlocal, z(zk − zr )( fi − fi−1). (6)

To lighten the notation in (6), the normalized ratio of power
spectra RSnor( fi , zk, zr ) is defined as

RSnor( fi , zk, zr ) = RS( fi , zk)/RS( fi , zr ). (7)

With this definition, (6) now reads as

log RSnor( fi , zk, zr ) = −4αlocal, z(zk − zr )( fi − fi−1). (8)

Fig. 1. Schematic of an ROI (black box), one CW (red box), and center
positions of CWs included in the blue box in dashed line. Overlaps of
CWs in lateral and axial positions are 70% and 75%, respectively.

Another modification to Gong et al. [42] was restricting
the frequency range within the usable frequency range (UFR)
as follows. First, the log-power spectrum ratio at a given
frequency f as a function of depth z was approximated by a
linear function −a( f )z + b( f ) using the line fitting described
in Section II-B. The frequency f∗ at which the y-intercept
b( f ) is maximal was selected. This procedure yielded the
frequency with the overall maximal power spectrum. The
quantity a( f∗) represents an approximate estimate of the local
ACS at frequency f∗ [see (2)]. The frequency range was then
restricted to those frequencies fi for which the ratio [obtained
from (8)] lies within 25% of a( f∗)

(1 − 0.25)a( f∗) ≤ log RSnor( fi , zk, zr )

−4(zk − zr )( fi − fi−1)
≤ (1 + 0.25)a( f∗). (9)

The final local ACS estimate was obtained by perform-
ing a linear regression on (8) within the obtained restricted
frequency range, which is ROI-dependent. Based on data
inspection, the frequency range turned out to be continuous.
This is a new alternative to the procedure that was proposed
by Gong et al. [42], where the frequency range was selected
by considering the top of the histogram of the estimated
parameter. The new method was applied to small CWs within
the ROI to obtain a local ACS map, as shown in Fig. 1. In this
illustrative example of an arbitrary ROI, the height and width
of CWs were approximately 8 mm (10 pulse lengths) × 7 mm
(25 scan lines), respectively, with 70% and 75% overlapping
in lateral and axial directions, respectively. These window
dimensions and overlaps remained constant for all results
presented in this study.

B. Line-Fitting Method

The purpose of this method is to find a linear relation
between the depth (z) and the logarithm of the power
spectra ratio (log RS). Under the random sample consensus
(RANSAC) approach, outlier values (i.e., points too far away
from the regression line) in experimental data are removed
from the line fitting [45]. The second issue is the boundary
between two different media in the tissues’ samples. In pres-
ence of two media, there might be two lines with different
slopes. It should be mentioned that points used for the line-
fitting method are denoted as inliers in the RANSAC approach.
The following algorithm, as displayed in Fig. 2, was used to
find the slope based on the number of points per line (inliers),
after outliers’ rejection.

In Fig. 2(a), we considered three possible cases to find
inliers. In the first case, there is no change in the
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Fig. 2. Algorithm for approximate estimation of the local ACS at a given frequency by line fitting the logarithm of power spectra ratio (log RS) at a
given frequency as a function of depth z. (a) Algorithm consists of finding inliers (i.e., the points to be considered for line fitting). (b) Slope of the fit
line on the inliers based on a RANSAC approach.

slope’s sign among fit lines through consecutive depths (zk).
If there is a single slope, which represents the case of a
homogenous sample with a single medium, then all points
are considered for line fitting. If there are two different
slopes, but with the same sign (second case), we assume
a piecewise linear curve consisting of two segments.
We chose the largest slope in absolute value, i.e., argmax
abs{(log RS(i + 1) − log RS(i))/(z(i + 1) − z(i))}, to deter-
mine the location of the change in segments. Inliers are then
the points belonging to the segment comprising the most
points. In the case of a tie, the first segment was selected
as a set of inliers. In the third case, there is a change in the
slope’s sign among fit lines through consecutive depths. As in
the second case, inliers are then the points of the segment
comprising the most points (taking the segment occurring first
in the case of a tie).

In Fig. 2(b), RANSAC line fitting was applied to selected
inliers, as in [45] and [46]. Two modifications were brought to
RANSAC’s original formulation. The first one is to examine
all combinations of two points instead of selecting randomly
two points, which is convenient due to the limited number
of points in this context (less than ten points based on the
size of segments; see Fig. 2). As for the second modification,
instead of considering an acceptable number of inliers based
on a fixed threshold and choosing a pair of points with the
maximal number of inliers, the selection of pairs of points
was based on both the number of inliers and the proximity of
other points to the fit line using no fixed threshold. Therefore,
all combinations of two points (i and j) among inliers were
being considered. An initial threshold (Tnew) was set such
that half of the remaining points were within the threshold.
As a result, at least half of the points (including the pair that
defined the line) have been considered inliers. This threshold
was updated by iterations on all combinations of two points
[M in Fig. 2(b)]. Finally, the line with the lowest threshold
that contained more than half of the points was selected as
the result of the line fitting.

C. Regularization

1) Linear Regression Formulation and Data Fidelity Term: In
the context of the regularization of parametric maps in which
each pixel represents a CW, a linear regression formulation of
the following form can be defined:

yr = Xrβr + εr (10)

where r denotes a CW and yr = (yr ( fi ))
NFreq

i=1 represents the
observed spectral data expressed at each frequency fi (MHz)
of the discretized UFR. Moreover, the matrix Xr represents
the model’s predictors, while βr corresponds to the vector of
regression coefficients. Here, εr is the residual noise, assumed
to be zero mean with variance σ 2. Assuming independent
identically distributed residual noise over all CWs, one is led to
the following data fidelity term (i.e., the residual “res,” which
expresses the least mean squared error (LMSE) between the
observed data and the fit model):

res(y, β) = 1

2

NCW∑
r=1

w2
r ‖yr − Xrβr‖2

2 (11)

where NCW is the number of CWs for parameters estimation,
wr is a positive weight assigned to the CW indexed by r , and
‖−‖2 denotes the �2-norm. The likelihood L(y|β, σ 2) is then
of the form: exp(−res(y, β)/σ 2).

The data fidelity term is detailed as follows in the case of
the proposed phantom-free local attenuation model, while this
term in the case of the SLD model used for comparison is
described in Appendixes. The observed spectral data are on
the left-hand side of (8) and are then given by (viewed as a
vector)

yr = (log RSnor( fi , zk, zk))
NFreq

i=1 . (12a)

The predictors’ matrix (a vector in this case) and the regression
coefficient (a scalar in this case) are then of the form

Xr = (−4(zk − zn)( fi − fi−1))
NFreq

i=1 , and (12b)

βr = αr,local. (12c)
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To determine the weights wr appearing in (11), we first solved
this LMSE problem with initial weights set to 1. Then, Fisher
tests [47] were applied to each underlying linear regression,
and the resulting p-values were adopted as weights in that
equation. In the case of a numerically vanishing p-value, it was
replaced by the small quantity 10−5.

2) Regularization Term: In the least absolute shrinkage and
selection operator (LASSO) framework, the �1-norm regular-
ization term imposed on linear regression coefficients β is of
the form [48]

reg1(β, λ) = λ

NCW∑
r=1

d∑
m=1

∑
s∈N(r)

∣∣βr,m − βs,m

∣∣ (13a)

where λ is the Lagrange multiplier (LM), which weights the
strength of the constraint with respect to the data fidelity term,
d = 1 for the phantom-free attenuation method or d = 2 for
the SLD attenuation model (see Appendix A), where d is
the number of model parameters being estimated, and N(r)
denotes the set of previous (adjacent) CWs to a given CW,
one along the axial direction and the other along the lateral
direction. This constraint favors naturally identical regression
coefficients on adjacent CWs and, hence, causes CWs to get
fused (i.e., to share the same regression coefficients). In the
LASSO formalism, (13a) may be recast in the form

reg1(β, λ) = λ‖Dβ‖1 (13b)

where D represents the constraint matrix, β = (βr ) is the
vector of regression coefficients, and || − ||1 denotes the
�1-norm. However, to address adjacent CWs belonging to dif-
ferent tissues, the links between adjacent CWs were assessed
based on Nakagami goodness-of-fit tests along axial and lateral
directions. Namely, the Kolmogorov–Smirnov goodness-of-fit
test [49] was applied to the data corresponding to the US echo
envelope encompassing the two adjacent CWs with Nakagami
distribution [50] as the underlying statistical model. When
the goodness-of-fit failed between two adjacent CWs (with a
confidence level of 0.1), the corresponding link was removed
in the constraint matrix D (i.e., the corresponding entry was
set to 0).

The corresponding prior on regression coefficients is of the
form: π(β|λ) = exp(−reg1(β, λ)). For a given LM value λ,
one seeks the vector of coefficients β̂(λ) that minimize the
corresponding energy functional

res ( y, β ) + reg1 (β, λ). (14)

Notice that, in principle, the LASSO constraint favors spar-
sity in differences of regression coefficients, even more so than
the �2-norm regularization constraint. From Tibshirani and
Taylor [48], the curve expressing res (y β̂(λ)) + reg (β̂(λ), λ)
as a function of λ can be described as a piecewise linear
curve based on finitely many values of λ, which are obtained
efficiently with the path algorithm [48]. In this work, we used
our own implementation of the path algorithm on MATLAB
(version R2018a, The MathWorks, Natick, MA, USA).

3) Model’s Selection: The Bayesian information criterion
(BIC) [51] yields, in the LASSO framework [48], the expres-
sion

BIC(λ) = −2 log L
(
y|β̂(λ), σ̂ 2) + C(λ) log N (15)

where L (y|β , σ 2) represents the likelihood of the data based
on parameters β and σ 2, β̂(λ) are the regression coefficients
based on the LM λ, σ̂ 2 is the maximum likelihood estimator
of the variance σ 2, N = dim(yr ) is the total sample size
in the linear regression problem, and C(λ) is the resulting
model’s complexity. In this work, C(λ) was considered as the
degrees of freedom df of the solution to (14) times the number
of windows within one CW, i.e., the number of depths zk

considered in (12a), since each coefficient βr intervenes on
these distinct windows, albeit with values already fused to a
single one. For the SLD attenuation method (see Appendixes),
C(λ) was taken as d f times 2 (i.e., the number of regression
coefficients). Thus, having fixed λ, hence β̂r (λ), one obtains
under stated hypotheses on the observed spectral data noise

σ̂ 2 = 1

N

NCW∑
r=1

w2
r

∥∥yr − Xr β̂r (λ)
∥∥2

2. (16)

This yields the log-likelihood term for some irrelevant additive
constants (const.)

−2 log L
(
y|β̂(λ), σ̂ 2

)
= N log

(
2πσ̂ 2) + 1

σ̂ 2

NROI∑
r=1

w2
r

∥∥yr − Xr β̂r (λ)
∥∥2

2

= N log res
(
y, β̂(λ)

) + const. (17)

According to (15)–(17), the BIC criterion is formulated as
choosing the value of λ that minimizes the BIC curve [51].
This is equivalent (as N tends to infinity) to choosing the
model (represented here by the fused CWs) for which the data
likelihood

∫
L (y|β)π (β|λ) dβ is maximal (notice that the

larger data likelihood corresponds to the smaller BIC value),
where π(β|λ) denotes the prior on regression coefficients
implied by the LM.

To favor a greater number of fused CWs within local
attenuation maps, we adopted in this work a “strong BIC”
criterion [31], [43], which is defined by selecting the largest
value of λ for which the condition BIC(λ) ≤ BIC(0) remains
valid. This is equivalent to selecting the model that offers the
same likelihood as the model without any regularization but
with as much regularization as allowed under this condition.
Thus, the LM was maximized to yield a BIC value no worse
than that of the maximum likelihood.

III. MATERIALS AND METHODS

A. Phantom Experiments’ Description

1) Phantoms Fabrication: Two media were made with a
mixture of agar [2% (w/w)], glycerol (10%), and graphite
powder (mixture #1, 4.5%; mixture #2, 12%) to investigate
the performance of ACS methods in the case of homogeneous
and heterogeneous samples [52]. Three categories of phantoms
with homogeneous, side-by-side, and top-to-bottom homoge-
neous media and heterogeneous samples with inclusions were
made using these two gel preparations.

a) Homogeneous, side-by-side, and top-to-bottom phantoms:
Two homogeneous phantoms were made using mixture #1
(model A) and mixture #2 (model B). A side-by-side phantom
(model C) was also made by cutting half of one homogeneous
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phantom in its mold after jellifying and pouring the other
mixture into the mold. The other orientations of model C (top-
to-bottom) in which mixture #2 was on top and mixture #1 at
the bottom resulted in model D and vice versa for model E.

b) Heterogeneous phantoms with inclusions: Inclusion phan-
toms with different characteristics were made into a single
container. Three cylindrical molds with diameters of 10, 15,
and 20 mm were glued to the bottom of the container. Each
cylindrical mold was made of acrylonitrile butadiene styrene
(ABS) and was fabricated by 3-D-printing (Dimension Elite,
Stratasys Inc., Eden Prairie, MN, USA). Mixture #1 was
poured into the container with ABS cylindrical molds in it,
and the molds were removed after jellification. The resulting
holes were filled with mixture #2.

2) Data Acquisition and Postprocessing: A Verasonics Van-
tage 256 scanner (Redmond, WA, USA) equipped with an
ATL L7-4 probe (Philips, Bothell, WA, USA) driven at 5 MHz
was used to perform US acquisitions. Coherent compounding
was done with 21 angles (−10◦ to 10◦), and 100 frames
were acquired for each phantom. The f-k migration method
was used for beamforming RF data [53]. To allow comparing
results obtained with the proposed PF attenuation method with
those of the SLD method using the same LASSO regulariza-
tion approach, acquisitions with the same settings were made
on a reference phantom (117GU-101 CIRS, Norfolk, VA,
USA). For the subset of results with the inclusion phantoms,
a median filter (MF) with a window size of 5 × 5 pixels
was applied on PF attenuation images to compare with results
using regularization.

3) Gold-Standard Attenuation Measurements: ACS ground-
truth values (dB cm−1 MHz−1) were estimated on pieces of the
same phantoms made with mixtures #1 and #2, using a planar
reflection method, with the same probe and system settings
as for acquisitions on gel samples [36]. A cubic piece of
each phantom was put onto a glass reflector in distilled water,
and attenuation was estimated by measuring the amplitude
difference of the US signal reflected by the glass plate, with
and without the sample in the path.

B. In Vivo Liver Data Description

Four human liver US datasets were used to test the effec-
tiveness of ACS methods. In vivo data included a healthy liver,
a steatotic liver, a liver with a primary HCC, and another
with metastatic cancer. Clinical protocols were approved by
the institutional review board of the Centre Hospitalier de
l’Université de Montréal. All recruited participants gave writ-
ten informed consent.

1) Nonalcoholic Fatty Liver Disease (NAFLD): Nonalcoholic
in vivo human liver datasets with different pathological con-
ditions were investigated in two participants. The MRI proton
density fat fraction (PDFF) was used to grade liver steato-
sis [54], [55]. The Achieva TX 3T MRI system (Philips
Healthcare, Best, The Netherlands) was used, and the protocol
consisted of using a two-channel body coil for transmission
and a 16-channel surface array coil for signal reception with a
3-D chemical-shift encoded multiecho gradient-echo sequence
using six echoes (mDixon Quant). The water/fat separation

was performed in the complex-domain using a multifrequency
spectral fat model and a T2∗ correction. A low flip angle was
used to avoid T1 bias. A liver biopsy was also available to
assess the whole spectrum of the disease. The first participant
had a histological steatosis grade of zero (S0) indicating the
absence of steatosis. The second patient had a steatosis grade 2
(S2) indicating moderate steatosis.

2) Liver Cancers: Two in vivo human liver cancers were
studied. The diagnosis was made using MRI as the reference
standard. One patient had a circular 15-mm HCC mass, and
the other one had one lesion corresponding to a colorectal liver
metastasis (oval mass of 20 × 49 mm).

3) Data Acquisition and Postprocessing: The same Verason-
ics US system as for phantom experiments was used to collect
30 frames of data for each liver using a curvilinear array
transducer (ATL C5-2, Philips) driven at 3.1 MHz. Coherent
compounding was done with 21 angles (−10◦ to 10◦) using
the f-k RF data migration [53]. The same probe and system
settings were used to acquire US data on a reference phantom
for the SLD method.

C. Parameter Settings of ACS Algorithms

For phantom experiments, all computations were done in
the Cartesian domain (x–z). To compare the performance of
the phantom-free regularization approach, the SLD method
was implemented according to our previous work [31], and
the equations are provided in Appendixes. The power spectra
of the proposed PF and SLD methods were averaged over
25 scan lines, each spanning ten pulse lengths on overlapping
windows. For in vivo liver datasets, computations were done
in the polar domain (r − θ ). To compare the performance
of ACS methods, all parameters were set to the same values
as for phantom experiments.

As an extra comparison for homogenous phantoms, the
RFM was used with a CW with a size equal to 2.5 × 2.5 cm
and within the range of frequency of 4–6 MHz in accordance
with [42]. No attenuation maps were provided for this method
because the size of the CW was much larger than for PF and
SLD methods.

D. Data Analysis

To compare experimental results on phantoms, biases were
calculated as the difference of mean values with the ground
truth. Also, the normalized root mean square errors (NRMSEs)
were computed as follows:

NRMSE = 1

x̄

√∑N
i=1 (xi − x̂i)

2

N
(18)

where x̄ represents the mean attenuation among N datasets, xi

is the ground-truth value at the i th position, and x̂i represents
the estimated value at the same position. For both biases and
NRMSEs, standard deviations (SDs) were also calculated.

The contrast-to-noise ratio (CNR) for AC maps in the case
of side-by-side, top-to-bottom, inclusion phantoms, and liver
cancers was computed as

CNR = |x̄m1 − x̄m2|√
σ 2

m1 + σ 2
m2

(19)
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TABLE I
COMPARISON OF BIASES, NRMSES, AND CNRS FOR ATTENUATION MAPS OF PHANTOMS CORRESPONDING TO MODELS A–E OBTAINED WITH

THE PROPOSED PF, SLD, AND RFM BEFORE AND AFTER REGULARIZATION (R)

where x̄ and σ are mean and SD of ACS values within
the medium #1 (m1) and medium #2 (m2), corresponding to
both tissues present or expected (i.e., either side-by-side or
top-to-bottom media, gel surrounding or within the phantom
inclusion, or liver parenchyma versus tumor, respectively).

A one-way analysis of variance (ANOVA) with repeated
measures was performed on mean values of the two ACS
methods evaluated on phantoms, with the presence or not
of regularization as the cofactor. In the case where the
Shapiro–Wilk normality test failed, the Friedman test was
used as the nonparametric analog. In these tests, the sample
size was 55, including ten homogeneous phantom acquisitions,
three side-by-side phantom acquisitions, six top-to-bottom
phantom acquisitions, and 36 inclusion phantom acquisitions.
For Centre National de la Recherche Scientifique (CNRS),
the sample size of the ANOVA test was 45 (homogenous
phantoms were excluded). The Sigmaplot software (version
11.0.0, Systat, Palo Alto, CA, USA) was used to perform
statistical analyses.

For in vivo NAFLD data, as there was no ground truth, the
comparison of ACS methods with and without regularization
was done by comparing mean values and coefficients of
variation (CV = SD/mean) within the ROI. For in vivo cancer
data, mean values and CNRs were used for comparison. The
positions of lesion and background tissues were found by an
expert radiologist based on MRI. CNRs for cancer data were
computed based on one rectangle within the lesion and two
rectangles within the liver parenchyma on top and bottom of
the lesion (see Fig. 8). One can compute a single CNR value
based on the whole rectangle. In order to compute the SD for
this value, two other CNRs values were also computed based
on two smaller rectangles within predefined rectangles. The
SDs were computed based on these three CNR values.

IV. RESULTS

A. Experimental Phantoms
Local ACS maps obtained with both PF and SLD methods

for models A–E are presented in Figs. 3 and 4. Maps without

Fig. 3. Local attenuation maps obtained with PF and SLD methods
for experimental phantoms with medium #1 (model A) and medium #2
(model B). The first and second rows show attenuation maps without
and with regularization (R), respectively. The bottom row presents the
comparison of mean ACS estimated with PF, PF-R, SLD, and SLD-R
methods for the two models. Green regions in the graphs of the bottom
row show means and SDs for ground-truth measurements with the planar
reflection method.

regularization are presented first and then compared with those
obtained with regularization (indicated with -R). In the bottom
row of Figs. 3 and 4, mean ACS values for different axial
positions are compared with ground-truth (±SD) measure-
ments obtained with the planar reflection method, which are
0.56 ± 0.07 dB cm−1 MHz−1 (for 4.5% graphite powder
concentration, medium #1) and 1.15 ± 0.10 dB cm−1 MHz−1

(for 12% concentration, medium #2), respectively.
Biases and NRMSE obtained by PF and SLD methods for

phantom models A–E are presented in Table I. The bias in dB
cm−1 MHz−1 for the first homogeneous phantom (model A)
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Fig. 4. Local attenuation maps obtained with PF and SLD methods
for experimental phantoms with side-by-side medium #1 on the right
and #2 on the left (model C), top-to-bottom medium #1 on the bottom
and #2 on the top (model D), and vice versa (model E). The first and
second rows show attenuation maps without and with regularization (R),
respectively. The bottom row presents the comparison of mean ACS
estimated with PF, PF-R, SLD, and SLD-R methods for the three models.
Green regions in graphs of the bottom row show means and SDs for
ground-truth measurements with the planar reflection method.

with three acquisitions was close in absolute value for PF,
phantom-free regularized (PF-R), SLD, SLD-R, and RFM
at −0.06 ± 0.03, 0.04 ± 0.07, −0.09 ± 0.06, −0.06 ±
0.05, and −0.15 ± 0.07, respectively. The same trends were
emphasized for the second more attenuating homogeneous
phantom (model B). Biases for the PF, PF-R, SLD, SLD-R,
and RFM were 0.26 ± 0.12, −0.07 ± 0.02, −0.32 ± 0.11,
−0.10 ± 0.05, and −0.23 ± 0.18, respectively. As indicated
in Table I, trends in favor of the PF-R method were confirmed
when analyzing NRMSEs. Results show that the PF-R method
yielded lower NRMSEs compared with SLD-R and RFM,
and those differences were emphasized without regularization
for SLD. The largest mean of biases and NRMSEs were
obtained with the SLD method that was used in this study
for comparison.

With side-by-side and top-to-bottom media (models C–E),
each based on three acquisitions, biases and NRMSEs were
smaller, similar, or higher than for homogeneous phantoms
(see Table I). Biases and NRMSEs obtained with the PF-R
method were generally less for both media. The PF-R had the
highest CNR compared to the other methods. Furthermore,
according to the bottom row of Fig. 4, the PF with regular-
ization made a distinct differentiation at the boundary of both
media, whereas the SLD method with regularization had a
smoother transition.

B. Phantoms With Inclusions

Local ACS maps given by PF and SLD methods, without
and with regularization, are presented graphically in the first
and second rows of Fig. 5, respectively. Inclusions are visually
emphasized with black dashed line circles on attenuation
maps. The PF method has smoother maps than the SLD
method, and inclusions are visually more detectable. After
regularization, inclusions are identifiable with both PF-R and
SLD-R methods. According to Table II, in the case of smaller

Fig. 5. Local attenuation maps for experimental phantoms with inclusion
diameters of 10, 15, and 20 mm with PF and SLD methods. The first
and second rows show attenuation maps without and with regularization
(R), respectively. The bottom row presents the comparison of mean ACS
estimated with PF, PF-R, SLD, and SLD-R methods for the three inclusion
sizes. Green regions in graphs of the bottom row show means and SDs
for ground-truth measurements with the planar reflection method.

inclusions of 10 and 15 mm diameters, the biases within
inclusions were larger, and the NRMSEs were less with the
PF method compared to SLD. On the other hand, the PF had a
better estimation of ACS outside inclusions (lower biases and
NRMSEs), i.e., within homogeneous regions of phantoms. For
the largest inclusion of 20 mm, the bias of the PF method is
higher than for the SLD method within the inclusion. However,
it is the other way around in the surrounding tissue. The
average of absolute bias values of both regions of phantoms
with the PF and PF-R methods is generally less than with the
SLD and SLD-R methods. The same trend was observed with
NRMSE values. After regularization, the bias and NRMSE
in all regions are decreased; PF-R with regularization had the
lowest mean biases and NRMSEs over all inclusion phantoms.
It shows that the regularization increased CNR values for both
PF and SLD methods. Higher CNRs were obtained for bigger
inclusions with the PF-R method. PF-R and SLD-R had similar
CNRs in the case of the 10-mm-diameter inclusion.

According to the bottom row of Fig. 5, the SLD-R method
has smoother transitions between the surrounding tissue and
the inclusion, thus reducing the lesion detectability but improv-
ing the size detection compared with the proposed method.
Differences tend to disappear for the larger inclusion of
20 mm. In general, ACS results with the proposed regularized
method (PF-R) are closer to ground-truth values.

Overall, the means of absolute biases from the 55 experi-
mental datasets, including homogeneous, side-by-side, top-to-
bottom, and inclusion phantoms, were 0.17 ± 0.06, 0.14 ±
0.05, 0.23 ± 0.07, and 0.20 ± 0.07 dB cm−1 MHz−1 (p <
0.001) for PF, PF-R, SLD, and SLD-R methods, respectively.
Mean NRMSEs of PF, PF-R, SLD, and SLD-R methods from
all 55 datasets were 41.7 ± 10.2, 32.9 ± 12.9, 76.0 ± 27.5, and
46.1 ± 19.4 % (p < 0.001), respectively. Also, the means of
CNRs from 45 experimental datasets, including side-by-side,
top-to-bottom, and inclusion phantoms, were 1.18 ± 0.49,
1.69 ± 0.95, 0.51 ± 0.21, and 1.37 ± 0.62 (p < 0.001)
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TABLE II
COMPARISON OF BIASES, NRMSES, AND CNRS FOR ATTENUATION MAPS OF PHANTOMS WITH INCLUSION DIAMETERS OF 10, 15, AND 20 MM

OBTAINED WITH THE PROPOSED PF AND SLD METHODS WITHOUT AND WITH REGULARIZATION (R)

Fig. 6. Local attenuation maps for experimental phantoms with inclu-
sions of 10, 15, and 20 mm using the PF, the same method after applying
an MF (PF and MF), the PF method with regularization (PF-R), and
results with PF-R and median filtering (PF-R and MF).

with PF, PF-R, SLD, and SLD-R methods, respectively. This
comparison shows that the PF method with regularization had
the lowest biases and NRMSEs, and highest CNRs.

The PF and PF-R methods were also investigated with
an MF; the biases and NRMSEs are provided in Table III.
Results with median filtering of ACS maps are given in Fig. 6.
According to Table III, the NRMSE for the PF method with
median filtering in both regions of phantoms are smaller in
comparison with the PF method (based on Table II), and
absolute values of biases are also smaller, except in the case
of the smallest inclusion (diameter of 10 mm). Moreover,
the PF with regularization has smaller biases and NRMSEs,
and also larger CNRs, compared with the median filtered PF
method. With median filtering on PF-R results, absolute values
of biases and CNRs are larger compared with the proposed
PF-R method, but NRMSEs are smaller.

C. In Vivo Human Livers

In this section, as for phantom experiments, the results of
PF and SLD methods are compared based on mean values and
CVs within tumors and surrounding tissues. Also, CNRs are

TABLE III
COMPARISON OF BIASES, NRMSES, AND CNRS FOR ATTENUATION

MAPS OF PHANTOMS WITH INCLUSION DIAMETERS OF 10, 15, AND

20 MM OBTAINED AFTER APPLYING AN MF ON RESULTS OF THE

PHANTOM-FREE METHOD (PF) OR PHANTOM-FREE METHOD

WITH REGULARIZATION (PF-R)

compared for attenuation maps obtained in the case of liver
cancers.

1) Nonalcoholic Steatohepatitis: The left columns of
Fig. 7(a) and (b) display the B-mode image and the ROI under
investigation (red box) for livers with MRI fat fractions of
0.61% and 15.01%, respectively. For the healthy liver, means
± SDs in dB cm−1 MHz−1 obtained for PF and SLD methods
are 0.45 ± 0.28 and 0.51 ± 0.47 without regularization, and
0.47 ± 0.20 and 0.67 ± 0.11 with PF-R and SLD-R, respec-
tively. The smallest variability was obtained with the SLD-R
method (CV of 16.4%). Similarly, local attenuation maps of
the steatotic grade 2 liver provided ACS values for PF and SLD
methods of 0.92 ± 0.19 and 1.14 ± 0.41 dB cm−1 MHz−1,
and after regularization, these values are 0.91 ± 0.08 and
1.06 ± 0.15 for PF-R and SLD-R, respectively. The PF-R
method resulted in the smallest CV (8.8%), but differences
in mean values are small.

2) Liver Cancers: Local attenuation maps without regular-
ization estimated by PF and SLD methods for the human
liver with HCC cancer are shown in the top row of Fig. 8(a).
The detection and diagnosis of the lesion based on MRI were
visually registered on US images. Yellow boxes on B-mode
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Fig. 7. ACS results for two in vivo human NAFLD datasets with MRI-
determined PDFFs of 0.6% (corresponding to a histological grade S0)
[(a) woman of 25 years old] and 15.0% (corresponding to a histological
grade S2) [(b) woman of 52 years old], respectively. For each participant,
the B-mode image and the ROI (yellow box) under investigation are
presented, along with local attenuation maps within the ROI for PF and
SLD methods (without and with regularization in the first and second
rows, respectively).

images show the position of the ROI within the liver, which
includes the lesion.

For CNR computations in Fig. 8, the position of the lesion
and liver parenchyma on attenuation maps is displayed with
black and white dashed-line rectangles, respectively. Means ±
SDs in dB cm−1 MHz−1 and CNRs obtained for PF, PF-R,
SLD, and SLD-R methods are provided in Table IV.

The lesion could be deduced from the ACS map produced
by the PF method (a localized spot with high attenuation),
but, in the case of the SLD method, several scattered areas
with varying attenuations could be suspected as being a lesion.
After regularization [see the bottom row of Fig. 8(a)], the
lesion is visible on the PF map as a homogeneous area with
the highest attenuation, but detectability on the regularized
SLD map is less apparent. This could be also deduced from
computed CNRs.

Both PF-R and SLD-R methods underestimated the size of
the tumor compared with the B-mode counterpart. Maximum
ACS values within the ROI containing the HCC lesion are
1.41 and 1.37 dB cm−1 MHz−1 for PF-R and SLD-R methods,
respectively. The position of the maximum AC within the map
did not coincide between methods.

Fig. 8(b) shows the second in vivo human liver dataset
corresponding to metastatic liver cancer. Maps produced by

Fig. 8. Results for two in vivo human liver datasets with cancer:
(a) liver HCC in the right lobe of a 55-year-old man and (b) colorectal liver
metastasis in the left lobe of a 67-year-old woman. For each participant,
the B-mode image is presented on the left with the identified ROI (yellow
box) including the lesion. Right: local attenuation maps with PF and
SLD methods without (top row) and with regularization (bottom row).
The lesion positions are indicated with red dashed lines. The lesion and
parenchyma tissue regions used for computing CNRs are indicated with
black and white dashed-line rectangles, respectively.

the PF method whether regularization was used or not allow
to clearly detect a lesion with high attenuation in the middle of
the ROI, whereas detectability is more difficult on SLD maps.
Maximum ACS values within the ROI with PF-R and SLD-R
methods are 1.74 and 1.29 dB cm−1 MHz−1, respectively.
The PF-R method had the highest CNR compared to other
methods.

V. DISCUSSION

In this work, we demonstrated the theoretical basis for esti-
mating local ACS without the need for a calibration phantom
in the context of heterogeneous media, thus extending the
work of Gong et al. [42], which was considering homogeneous
structures. We also integrated the proposed PF method into a
theoretical framework yielding regularized local ACS maps.

A method such as the SLD can be quite cumbersome
for clinical trials because a phantom acquisition is necessary
after the clinical US exam using the same probe and system
settings. As mentioned, the proposed method was inspired by
the RFM of Gong et al. [42], with the following novelties:
a linear interpolation of the power spectrum in the log scale
was used, the underlying hypothesis on the compression wave
US probe diffraction factor was relaxed, a generalization
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TABLE IV
COMPARISON OF MEANS AND CNRS FOR ATTENUATION MAPS OF TWO IN VIVO HUMAN LIVER DATASETS WITH CANCER. (A) LIVER HCC IN THE

RIGHT LOBE OF A 55-YEAR-OLD MAN. (B) COLORECTAL LIVER METASTASIS IN THE LEFT LOBE OF A 67-YEAR-OLD WOMAN. MEANS AND CNRS

ARE COMPUTED BASED ON RECTANGLE AREAS WITHIN THE LESION AND PARENCHYMA TISSUES

to heterogeneous local ACS was made, and an adaptive
restriction on usable frequencies was implemented to con-
sider a more reliable range than the usual −20-dB frequency
range. Moreover, the framework of the regularization scheme
proposed in our preliminary reports [31], [43] was better
documented and also implemented in the framework of the
SLD method. We could demonstrate equivalent or even smaller
biases and NRMSEs than the classical SLD method on the in
vitro dataset and equivalent or larger CNRs on the in vivo
liver data. The addition of regularization to both proposed PF
and classical SLD methods further allowed the appreciation of
the performance of the phantom-free algorithm. Furthermore,
applying an MF could also further reduce image variability, but
it showed limitations in the case of small inclusion phantoms
as filtering blurred boundaries. The overall procedure for
constructing local ACS maps in this work is schematized in
Fig. 9.

ACS estimates on both homogeneous and heterogeneous
tissues represented a specific challenge, rarely addressed in
the scientific literature [30]. The implementation of strategies
listed in Fig. 2 allowed for obtaining promising phantom and
proof-of-concept clinical results. Results based on the PF-R
method on homogeneous, side-by-side, and top-to-bottom
phantoms indicated that the proposed method could estimate
ACS close to ground-truth values, and in all cases, NRMSEs
decreased with regularization, which allowed differentiating
visually the two media. CNRs also increased with regulariza-
tion. The comparison of PF with the SLD algorithm showed
that the proposed method had a better prediction at the border
between the two media. Producing phantoms with top-to-
bottom designs was of particular interest as it could mimic
the more attenuating superficial thick layer of fat in patients
with obesity (model D) or the accumulation of low-attenuating
fluid in the liver of patients with ascites (model E).

The performance of the proposed method for detecting
lesions in experimental phantoms with diameters varying
from 10 to 20 mm was also investigated. Results showed that
the proposed method could detect all lesions. Regularization
increased the CNRs by reducing variances in both the inclu-
sion and its surrounding. Since the CNR depends on mean
values and variances within the inclusion and surrounding
tissues, we do not expect a trend of CNR with the inclusion’s
size. This can be observed in the values reported in Table II.

We also examined the influence of an MF on attenuation
maps of the PF method without and with regularization.
The regularization had lower biases and NRMSEs compared

with simple median filtering. Applying filters on regularized
attenuation maps could further improve results due to the
smoothening effect on ACS maps and increase in CNRs, which
is a common task in image processing [56]. Notice that, in the
case of small inclusions, an MF can increase the bias and blur
boundaries, which are not desirable.

The proposed method was also tested on two in vivo human
NAFLD data. Results obtained were in the range of values
reported in the literature [57], [58], [59]. The proposed method
provided smaller variability than SLD for each clinical case.
Coefficients of variation showed reduction after regularization.
Differences between both datasets in terms of local ACS
were observed, and the liver with a steatosis grade 2 showed
a higher attenuation. This is in line with recent clinical
reports using clinical systems where ACS could correlate
with the MRI-PDFF or biopsy staging. According to recent
works, attenuation had increasing trends with higher steatosis
grades [60], [61]. Therefore, this method may be utilized as a
biomarker for the diagnosis of liver steatosis.

Finally, the proposed method was evaluated in the case of
two in vivo human livers with cancer. Lesions were detectable
with both PF and SLD methods with regularization. The higher
AC on liver images of patients with secondary cancer than
primary HCC (as seen in Fig. 8) was also recently observed in
therapeutic US applications; in this report, however, no atten-
uation images were provided [62]. Notice that, in Fig. 8,
shadowing below the lesion’s areas is not visible despite the
high local ACS values within these two lesions reported in
Table IV. We believe that this might be due to the small size
of the lesions and also to multiangle plane wave compounding
(one may expect posterior shadowing for a highly attenuating
lesion with conventional clinical scanner’s imaging) [63].

To the best of our knowledge, ACS imaging has not yet been
used for detecting and characterizing liver cancer. In addition
to the fact that the proposed method does not use a reference
phantom for ACS estimation, our proof of concept on liver
cancer datasets is opening the opportunity to use this new
imaging contrast for the diagnosis of liver cancer.

One of the limitations of this work is that only one compu-
tation window size was considered to reconstruct attenuation
maps for both PF and SLD methods. There is always a
tradeoff between resolution and accuracy of estimation. Hence,
additional studies are needed to find the optimum CW’s
size for a specific clinical application without affecting too
much the resolution of attenuation maps. There are also other
types of regularization that may improve the reconstruction
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Fig. 9. Summary of the proposed procedure for constructing local ACS maps with PF and PF-R methods on in vitro and in vivo data.

of parametric maps [34], [35]. Moreover, the size of CWs
could affect the Nakagami model, especially in the case of long
CWs. Also, overlapping of CWs could prevent the assumption
of independent identically distributed residual noise to hold
although it is common to make this assumption in the case of
overlapping windows [34], [64]; this potential issue should be
investigated in future studies. Furthermore, although the power
spectrum of backscattered RF signals is assumed approxi-
mately Gaussian in many medical US applications [65], there
are nonetheless cases where this assumption would not hold.
However, other models could be adopted to fit power spectra
[66], an avenue that could be investigated in future studies.

Finally, based on obtained in vivo results, the proposed
method may certainly provide additional information to clin-
icians for the diagnosis of liver steatosis and detection of
suspected cancerous lesions visible on the B-mode US. The
ultimate goal would be to improve the detection of HCC in
the early stages when it is not visible on B-mode images.

VI. CONCLUSION

A method, inspired by the work of Gong et al. [42], was
presented for estimating local ACS based on the frequency
and depth normalization without the need for a calibration
phantom. The proposed method was tested on homogeneous,
side-by-side, top-to-bottom, and heterogeneous phantoms with
inclusions. Also, the performance of the proposed method was
assessed in the case of four in vivo human livers consisting
of one normal case, one stage 2 steatotic liver, one liver
with a primary HCC, and one with a secondary metastatic
cancer. The proposed method uses a linear interpolation of
the power spectrum in the log scale, the relaxation of the
underlying hypothesis on the wave diffraction factor, and an
adaptive restriction of frequencies to a more reliable range
than the usual −20-dB UFR. Moreover, a generalization to
nonhomogeneous local ACS has been proposed. Furthermore,
a regularization procedure, which was formulated as a gen-
eralized LASSO, and a variant of the BIC were applied to
estimate the Lagrangian multiplier on the LASSO constraint.
It was shown that applying regularization overall improved
local ACS maps. In future works, further validation on larger
in vivo datasets should be conducted, and the performance of
the proposed method with different beamforming approaches
should also be investigated.

APPENDIX A

The data fidelity term and the constraint matrix of
Section II-C are explained in the case of the SLD model in this
appendix. Let us recall that, in the SLD method, one considers
two nonoverlapping windows within the CW at proximal and
distal depths z p and zd , respectively. Attenuation factors at
depths z p and zd , for either samples or the reference phantom,
are of the form

A
(

f, z p
) = exp

(−4αtotalz p f
)

(A-1a)

A( f, zd) = exp
(−4

(
αtotalz p + αlocal
z

)
f
)

(A-1b)

where αtotal and αlocal denote the total and local ACSs,
respectively, and 
z = zd − z p. Furthermore, one assumes
that backscatter coefficients at two depths within an ROI
are proportional, which, under the Gaussian scattering model,
means that the effective scatterers’ radius remains fixed within
the ROI, but the acoustic concentration might vary [15]. One
then computes the relation [15]

log
PSS

(
f, z p

)
PSS( f, zd)

− log
PSref

(
f, z p

)
PSref( f, zd)

= 4
αlocal
z f + const

(A-2)

where 
αlocal is the difference in local ACS between samples
and the reference phantom. Thus, the observed spectral data
on the left-hand side of (A-2) are

yr =
(

log
PSS

(
f, z p

)
PSS( f, zd)

− log
PSref

(
f, z p

)
PSref( f, zd)

)NFreq

i=1

. (A-3a)

The predictors’ matrix and regression coefficients are finally
of the form

Xr = (
4 fi
zr 1

)NFreq

i=1 (A-3b)

βr = (
βr,1 βr,2

)T
(A-3c)

βr,1 = 
αr,local. (A-3d)

The weights wr in (11) were kept to 1.
Since, in the case of the SLD model, the vector of regression

coefficients has dimension d greater than 1 (d = 2), its
components might be of different orders of magnitude. Thus,
the �1-norm regularization term in (13a) was replaced with

reg1(β, λ) = λ

NCW∑
r=1

d∑
m=1

am

∑
s∈N(r)

∣∣βr,m − βs,m

∣∣ (A-4a)
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TABLE V
COMPARISON OF RFM AND PF METHODS ON TWO HOMOGENEOUS

PHANTOMS AND INVESTIGATION OF THE EFFECT OF

EACH MODIFICATION

where am , m = 1, 2, are the weights of the regression
coefficients. The LMSE problem was first solved without
regularization, and then, the weights were set to

a1 =
1‖(βr,1+αref)‖1

1‖(βr,1+αref)‖1

+ 1‖(βr,2)‖1

(A-4b)

a2 =
1‖(βr,2)‖1

1‖(βr,1+αref)‖1

+ 1‖(βr,2)‖1

(A-4c)

where (βr,1, βr,2) denotes the initial LMSE solution. In partic-
ular, sum up to 1, the terms in (A-4a) are now of comparable
order of magnitude.

APPENDIX B

In this section, the comparison between RFM and the
proposed method is provided by considering each modification
brought to the RFM (see the impact of each step implementa-
tion in Table V). As mentioned in [42] and [67], the RFM has
been used only in the case of a homogeneous medium, and a
square computation window of about 2.5 cm side length was
considered.

The most important innovations in our work can be sum-
marized into the following features: 1) the smaller CW’s size;
2) the UFR; 3) the log-scale Gaussian fit; 4) the adaptive
frequency subrange of the UFR; and 5) the modified RANSAC
line fitting.

In the initial state of the method [42], the CW was a square
with sides of 2.5 cm, and the frequency range was fixed
between 4 and 6 MHz. With this configuration in Table V,
the RFM had a good estimation of attenuation on the first
phantom (bias of −0.15) but a larger underestimation on the
second phantom (bias of −0.23).

In the second state (condition A), the CW size was
decreased (as in our implementation of PF and SLD meth-
ods). It can be observed that the RFM failed with such a
small window’s size, and even the estimated attenuation for
medium #2 was less than for medium #1, which should
be the opposite trend. In the third state (condition A + B),
by changing the frequency range used in RFM (4–6 MHz)
to the UFR, the biases for both phantoms decreased, and

the attenuation estimated for medium #2 was slightly higher
than medium #1, but the biases were still large. In the fourth
state (conditions A + B + C), a log scale Gaussian fit was
applied to the previous improvements. It can be observed that,
although the bias for medium #2 was increased, the difference
in estimated attenuation for the two media was nevertheless
larger. In the fifth state (conditions A + B + C + D),
by considering the adaptive frequency range within the URF,
the biases were much smaller in both cases, and the trend of
estimated attenuations was correct in both media. For the final
improvement considered with the proposed method (the sixth
state, conditions A + B + C + D + E), by adding the proposed
modified RANSAC line-fitting criterion, the biases were much
reduced.

We also considered comparing the RFM and the proposed
method with regularization. However, it was not applicable
with the large CW size recommended by Gong et al. [42],
[67] due to a resulting lack of memory, as this implies several
subwindows. Nonetheless, regularization was performed on
the RFM with small CWs (state 2). The resulting absolute
biases were larger than those obtained with the proposed
method either with or without regularization.
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