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ABSTRACT:
The two-dimensional homodyned K-distribution has been widely used to model the echo envelope of ultrasound

radio frequency (RF) signals in the field of medical ultrasonics. The main contribution of this work is to present a

theoretical framework for supporting this model of the echo envelope and statistical models of the RF signals and

their Hilbert transform in the case in which the scatterers’ positions may be dependent. In doing so, the law of large

numbers, Lyapounov’s central limit theorem, and the Berry-Esseen theorem are being used. In particular, the pro-

posed theoretical framework supports a previous conjecture relating the scatterer clustering parameter of the homo-

dyned K-distribution to the packing factor W, which is related to the spatial organization of the scatterers, appearing

in statistical physics or backscatter coefficient modeling. Simulations showed that the proposed modeling is valid for

a number of scatterers and packing factors varying by steps of 2 from 1 to 21 and 1 to 11, respectively. The proposed

framework allows, in principle, the detection of the structural information taking place at a scale smaller than the

wavelength based solely on the statistical analysis of the RF signals or their echo envelope, although this goal was

previously achieved based on the spectral analysis of ultrasound signals. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

The homodyned K-distribution was introduced by

Jakeman et al. as a generalization of the K-distribution1 in

the context of weak scattering.2,3 Applications of this statis-

tical distribution have appeared in several fields, including

optical propagation through turbulent media, microwave sea

echo, land clutter, synthetic aperture radar imaging, and

medical ultrasonics; see the references in Destrempes et al.4

However, this work is focusing on its applications in medi-

cal ultrasonics. The two-dimensional (2D) homodyned K-

distribution was introduced in ultrasound imaging by Dutt

and Greenleaf.5 Since then, the homodyned K-distribution

has been adopted as a general statistical model for the echo

envelope of ultrasound radio frequency (RF) signals by sev-

eral research groups; see the references in Destrempes and

Cloutier.6 Meanwhile, the one-dimensional (1D) K-

distribution was proposed as a model for the absolute value

of the RF ultrasound signals by Bernard et al.7

The homodyned K-distribution has one scaling parameter

(the mean intensity, herein denoted l) and two shape parame-

ters: the scatterer clustering parameter, herein denoted by a,

and the coherent-to-diffuse signal ratio,5 which is denoted by

k. The shape parameter k is related to the diffuse-to-total sig-

nal power ratio8 1=ðjþ 1Þ as j ¼ k2=2 and the coherent

component9 e of the homodyned K-distribution as e2

¼ lk2=ðk2 þ 2Þ. Whereas a physical interpretation of the

parameters e2 and l [and, hence, parameter 1=ðjþ 1Þ
¼ ðl� e2Þ=l] was proposed in Destrempes et al.,8 a physical

interpretation of the shape parameter remained to be devel-

oped. It has been mentioned that the parameter a is equal to

the average number hNi of scatterers per resolution cell.5,10

However, the results of a study on fatty duck livers11 sug-

gested that this parameter might also depend on the spatial

organization of scatterers within the tissue. More precisely, in

a recent work,6 we conjectured that parameter a can be inter-

preted as hNi=W, where W is the packing factor introduced by

Twersky.12 The latter quantity arises from the statistical phys-

ics of fluids13 and may be defined as Var[N]/hNi, where N is

the number of molecules (or scatterers, depending on the

application in mind) within a given volume (one resolution

cell in the context of ultrasound imaging). See Destrempes

and Cloutier6 for a list of references on applications in ultra-

sound backscattering of red blood cells. In the previous work,8

an empirical relation between the isotropic diameter of aggre-

gates D and parameter 1=ðjþ 1Þ was obtained on in vitro
data. Although parameter D is empirically related14 to the

packing factor W, it is nevertheless interesting to aim at a

direct theoretical relation between W and parameter a.
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To reach a physical interpretation of the statistical

parameters of the echo envelope, one needs a generic model

of the RF signals. In particular, a model for the point process

of scatterers has to be considered. In Shankar,15 a derivation

of the homodyned K-distribution was obtained (although

this distribution was called a generalized K-distribution,

which is not be be confused with the distribution bearing

that name in Jakeman and Tough3) based on the assumption

of independent scatterers. The same assumption was

adopted in Chen et al.16 But as previous works12,17–19 have

shown, this hypothesis is not valid, generally speaking. To

address this difficulty, we had previously adopted4,8,9,20 the

formalism of Jakeman et al.,2,3 where the scattering medium

is viewed as a continuous medium that is discretized, yield-

ing phasors related to local inhomogeneities in the scattering

properties. In this work, we have considered directly the

more general hypothesis of possibly correlated scatterers.

The main goal of this study was to develop the underly-

ing theory to the preliminary results presented in Destrempes

and Cloutier6 For this purpose, we closely examined the

generic model of RF signals by Chen et al.,21 which allowed

the expression of the explicitly related phasors upon applying

the strong law of large numbers, where each scatterer was

randomly uniformly sampled, yielding sample (backscatter-

ing) points. We considered the stochastic process of the sam-

ple points in which the positions of scatterers and, hence,

sample points, may be correlated. Inspired by the Jakeman

and Tough3 model, which relies on a generalization of the

central limit theorem, we considered Lyapounov’s version of

the central limit theorem22 in which the random variables are

not necessarily identically distributed. This theorem was

applied on partial sums of the phasors within small nonover-

lapping cubes that cover one resolution cell. Inspired by

Billingsley,22 the case in which the partial sums are depen-

dent (whenever the scatterers are correlated) was addressed

by comparing this process with the process in which the

partial sums are (formally) independent through the

Kolmogorov distance between these two processes.

Furthermore, the latter (formal) process was compared to a

normal distribution based on Lyapounov’s constant22 and its

relation to the Kolmogorov distance using an explicit ver-

sion23 of the Berry-Esseen theorem. The triangle inequality

of the Kolmogorov distance then allowed us to assess the

hypothesis of a normal distribution for the underlying sto-

chastic physical process (before applying the absolute value)

using the Kolmogorov-Smirnov goodness-of-fit test.24 The

implications on the Hilbert transform of the RF signals and

their echo envelope was also developed. More generally, we

considered a decomposition of the analytic signal into two

components, denoted herein as Xu and Yu, in such a way that

the former component may be modeled with a 1D homo-

dyned K-distribution and the latter may be modeled with a

K-distribution. The numerical simulations showed that the

hypothesis of a 1D homodyned K-distribution is viable for

the absolute value of the RF signals and their Hilbert trans-

form and, therefore, for the 2D homodyned K-distribution

model of their echo envelope. The simulations were

performed with values of hNi and W, varying from 1 to 21

and 1 to 11, respectively.

This work is related to the inverse scattering theory. An

overview of this field of research is presented in the review

article of Colton and Kress.25 In the special case of acousti-

cal compressive waves and impenetrable scatterers (i.e.,

obstacles), one may consider the Helmholtz equation for the

velocity potential with the sound-soft (homogeneous

Dirichlet) boundary condition and Sommerfeld radiation

condition.25 Given an incident plane wave, one is interested

in the scattered wave and its far field patterns at various

observation and incident directions. One is then lead to the

inverse scattering problems, such as the existence of a solu-

tion and uniqueness of the obstacle knowing the far field

patterns for given incident directions and at given wave

numbers, assuming boundedness of the scatterer and con-

nectivity and sufficient smoothness of its boundary. Several

other inverse scattering problems have been investigated,

including the sound-hard (homogeneous Neumann) bound-

ary condition on obstacles, penetrable objects (i.e., inhomo-

geneities within a surrounding medium) for both isotropic

and anisotropic materials.25 Furthermore, inverse scattering

problems have been considered in fields other than acoustics,

notably in electromagnetism,26–29 mentioning only a few

recent articles. Inverse scattering problems were also studied

in the context of locally rough surfaces,30 phaseless scatter-

ing data motivated by imaging of nanoscale structures and

biological cells,31 elastic scattering with phaseless data,32

moving point source,33 and deep learning approaches34 to

mention only a few recent works.

In this study, acoustically penetrable scatterers are

implicitly considered [i.e., Eqs. (4.1)–(4.3) in Colton and

Kress25] as in Twersky,12 i.e., an inhomogeneous medium,

in this case, isotropic and absorbing. This framework is con-

sistent with Eq. (8.1.14) in Morse and Ingard,35 noticing that

this reference treats the Helmholtz equation for the pressure

field rather than the velocity potential as in Colton and

Monk;36 see Pierce.37 The scatterers are viewed as the set of

points (assumed to be a compact set) where the refractive

index36 differs from one as a result of a difference in the

mass density and compressibility from the surrounding

medium. Recall that the refractive index at a position r is

defined as the square of the ratio c0=cðrÞ, where c0 and cðrÞ
denote the speed of sound in the ambient medium and at

position r, respectively; it is assumed that cðrÞ ¼ c0 for r

sufficiently large.36 We have assumed the Born approxima-

tion under weak scattering, as in the work of Chen et al.21 in

ultrasonics. The received signals in the far field are consid-

ered at several wave numbers, corresponding to the trans-

ducer’s frequency bandwidth, combining several incident

directions, according to the probe’s design.

II. BACKGROUND ON ACOUSTICAL PHYSICS

A. Physical model of ultrasound signals

We adopt a convention that is consistent with previous

works.21,35,38,39 The position of the observation point (i.e.,
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the center of the transducer’s surface) is herein denoted r0.

The position of the center of the scattering volume is

denoted r, whereas r0 represents the position of an arbitrary

point within the scattering volume. Moreover, the unit direc-

tion vector of the incident wave is denoted bi, whereas the

lateral and elevation unit direction vectors are denoted bl andbe, respectively. In this framework, the origin of the coordi-

nate system can be fixed arbitrarily. But for the sake of sim-

plicity, we take the origin of the coordinate system as the

center of the transducer’s surface (so, r0 ¼ 0) and its axes to

correspond with the unit vectors bl; be, and bi. With this con-

vention, we will drop in the sequel any mention of r0 in the

notation. See Fig. 1(a) for a schematic illustration of the

notation.

We consider a homogeneous ambient medium with

constant compressibility j0 (Pa�1), mass density q0 (Kg/

m3), and speed of sound c0. We let the scattering medium

(including the scatterers and their ambient medium) have

variable compressibility jðrÞ and variable mass density

qðrÞ. The fractional variation in the compressibility and

mass density38 within the scattering volume are then defined

as cjðrÞ ¼ jðrÞ=j0 � 1 and cqðrÞ ¼ 1� q0=qðrÞ, respec-

tively. We set cðrÞ ¼ cjðrÞ � cqðrÞ, herein called the frac-

tional variation in tissue acoustic properties.

In the context of insonification of the tissues with a

transducer whose active elements are larger than the acous-

tic wavelength k, the incident pressure wave at the angular

frequency x is of the form of Eq. (2) in Chen et al.,21

bPinðr0 jxÞe�ixt ¼ P0ðxÞDTðr0 jxÞe�ixt; (1)

where P0ðxÞ denotes the characteristic pressure amplitude

(Pa) at the transducer’s surface and DTðr0 jxÞ is the radia-

tion pattern (no units) at transmission. See, also, Eq. (8) in

Ng et al.39 We assume that the incident wave behaves as a

plane wave, rbPinðr0 jxÞ � bPinðr0 jxÞðikbiÞ, where k ¼ x=c0

¼ 2p=k is the wave number.

To take into account the acoustic attenuation due to the

absorption and scattering, one considers the total attenuation

coefficient38 at the depth z0 ¼ jbi � rj (cm). Notice that under

linear dependency in the frequency of the total attenuation

coefficient, one has aðr;xÞ ¼ a0ðrÞf , where a0ðrÞ is the

total attenuation coefficient slope (ACS; Np cm�1 MHz�1)

and f ¼ x=ð2pÞ denotes the frequency (MHz). We assume

that the observation point is far away from the scattering

volume (far field assumption). Then, one has the following

expression for the average pressure (Pa; i.e., total force per

unit surface) exerted on the transducer’s surface at the

reception:

P0ðxÞe�aðrÞxz0=p ik

2jSj

ð
V

DRðr0 jxÞcðr0ÞDTðr0 jxÞd3ðr0Þ; (2)

where jSj is the area of the transducer’s surface and

DTðr0 jxÞ is the radiation pattern (no units) at reception. See

Eq. (15) in Chen et al.,21 where the equation is presented

without the attenuation coefficient. In the sequel, we denote

as Dðr0 jxÞ the product DRðr0 jxÞDTðr0 jxÞ.
The received RF signal RFðr; tÞ (V) is then equal to

ð1
�1

HðxÞe�aðrÞxz0=p ik

2jSj

ð
V

Dðr0 jxÞcðr0Þd3ðr0Þe�ixtdx; (3)

where HðxÞ ¼ P0ðxÞTRðxÞBðxÞ (V s), TRðxÞ is the acous-

toelectric transfer function (V/Pa) of the transducer’s ele-

ments at reception, and BðxÞ is a bandpass filter applied to

the received electrical signal. Observe that this expression

is valid after canceling the time-gain compensation

(TGC).40

FIG. 1. (a) The coordinate system in use. The (x, y, z)-system has an origin located at the center of the transducer’s surface and its axes are parallel to the

unit vectors ðbi;bl;beÞ, which are defined with respect to the imaging plane—axial, lateral, and elevation directions, respectively. The vectors r and r0 indicate

the positions of the center of the scattering volume and an arbitrary point within the scattering volume, respectively. (b) The schematic illustration of the

spherical scatterers within a scattering volume together with uniformly distributed sample points within each scatterer is shown.
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Applying Fubini’s theorem, one recasts Eq. (3) in the

formð
V

ð1
�1

HðxÞe�aðrÞxz0=p ik

2jSjDðr
0 jxÞe�ixtdxcðr0Þd3ðr0Þ: (4)

Under the far field assumption, one may use the approxi-

mate form39 of RFðr; t ¼ 2z=c0Þ,ð
V

hðr0 � rÞ cos ð2~kcðz0 � zÞ þ uÞcðr0Þd3ðr0Þ; (5)

where hðx; y; zÞ represents the effective point spread func-

tion (PSF) of the acoustic system and ~kc is the nominal

wave number, both of which take into account the down-

shifting resulting from the attenuation factor41 e�aðrÞxz0=p.

Here, the angle u is called the phase shift. The PSF is

assumed to be proportional to a Gaussian-shaped function

e�x2=2~r2
x�y2=2~r2

y�z2=2~r2
z , where the lateral, elevation, and axial

variances ~r2
x ; ~r2

y , and ~r2
z , respectively, are expressed in the

spatial domain. The value u ¼ 0 means that the transmitted

pressure field (at the surface of the transducer) along the

axial direction is of the form pðtÞ cos ðxctÞ, where p(t) is a

Gaussian-shaped function, and u ¼ p=2 means that it is of

the form pðtÞ sin ðxctÞ.
We, thus, obtain the following expression for the (modulated)

analytic complex signal sðr; t ¼ 2z=c0Þ ¼ RFðr; t ¼ 2z=c0Þ
þiHðRFðr; t ¼ 2z=c0ÞÞ, where H denotes Hilbert’s trans-

form, and its approximate form isð1
0

HðxÞe�aðrÞxz0=p ik

jSj

ð
V

Dðr0 jxÞcðr0Þd3ðr0Þe�ixtd x

�
ð

V

hðr0 � rÞe2i~kcðz0�zÞþiucðr0Þd3ðr0Þ: (6)

This expression may be recast as

RFðr; t ¼ 2z=c0Þ þ iHðRFðr; t ¼ 2z=c0ÞÞ
¼ Xuðr; t ¼ 2z=c0Þ þ iYuðr; t ¼ 2z=c0Þ
� �

eiu; (7)

where Xuðr; t ¼ 2z=c0Þ and Yuðr; t ¼ 2z=c0Þ are, therefore,

approximated, respectively, asð
V

hðr0 � rÞ cos ð2~kcðz0 � zÞÞcðr0Þd3ðr0Þ; (8a)ð
V

hðr0 � rÞ sin ð2~kcðz0 � zÞÞcðr0Þd3ðr0Þ: (8b)

To find out the phase shift u, one may consider the

response of the acquisition system to a wire located at the

focal point and parallel to the elevation direction, i.e., Eq.

(6) when a single scatterer is located at the focal position r0.
Then, summing up the analytic complex signal over a seg-

ment of length equal to the axial resolution and centered at

the focal point yields a complex number of the form eiu after

normalization by its complex modulus. One can then com-

pensate for this phase shift by multiplying the modulated

analytic signal with e�iu, which yields the complex signal

Xu þ iYu of Eq. (7). The real and imaginary parts of this

resulting complex signal will then be of the form of Eqs.

(8a) and (8b), respectively, in the case of the single scatterer.

This property will then hold in the presence of an arbitrary

configuration of scatterers.

B. Power spectrum of RF signals

The power spectrum PSðr;xÞ (V2 s2) is defined as the

average over the scanlines of the complex modulus

squared of the Fourier transform of the received RF sig-

nals. Based on the cross-correlation theorem in Fourier

analysis, one obtains the following approximate decompo-

sition for the power spectrum in Chen et al.,21 Eqs. (18)

and (19):

HðxÞj2e�2aðrÞxz0=pBSCðr; kÞ bDðr;xÞ: (9)

Here, the backscatter coefficient (m�1 sr�1) at position r of

the resolution cell is defined as an ensemble average [Eq.

(7) in Insana et al.38]

BSCðr; kÞ ¼ k4

16p2jVj

ð
V

cðr0Þe2ik̂i�r0d3ðr0Þ
���� ����2

* +
; (10)

where jVj is the volume of one resolution cell at depth z0,

and

bDðr;xÞ ¼ 2p
kjSj

� �2ð
V

jDðr0 jxÞj2d3ðr0Þ (11)

is the diffraction factor (m sr) at position r, which depends

on beamforming [Eq. (18) in Chen et al.21] See Yu and

Cloutier18 for a description of the structure factor size esti-

mator (SFSE) model that relates the backscatter coefficient

with the packing factor.

Let us mention that the ensemble average of the RF sig-

nal has a Fourier transform whose squared complex modulus

jhcRFðr;xÞij2 is approximately equal to

jHðxÞj2e�2aðrÞxz0=pBSCcohðr; kÞ bDðr;xÞ; (12)

where the coherent backscatter coefficient BSCcohðr; kÞ is

defined as

k4

16p2jVj

ð
V

hcðr0Þe2ik̂i�r0 id3ðr0Þ
���� ����2: (13)

See de Monchy et al.42 for further results on the coherent

component of ultrasound signals.

III. THE RF SIGNALS VIEWED AS STOCHASTIC
PROCESS

A. Assumptions

We now consider an ensemble of N scatterers, where N
is viewed as a discrete random variable. We assume that the
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positions of the scatterers are distributed according to a sto-

chastic point process, possibly other than a homogeneous

Poisson process, thus, allowing (statistical) dependency

between the scatterers’ random positions. Next, we sample

within each scatterer (indexed with i) Mi random points,

herein, called sample backscattering points or sample points

for short, according to a homogeneous Poisson process

(within each scatterer). We let the discrete variables Mi be

independent Poisson variables with the same mean and vari-

ance equal to M0. We, therefore, obtain an overall ensemble

of N0 ¼
PN

i¼1 Mi sample (backscattering) points, which are

henceforth distributed according to a point process, possibly

other than a homogeneous Poisson point process. See Fig.

1(b) for a schematic illustration of sample points within the

spherical scatterers.

We denote r01; r02;…r0N0
as the positions of the sample

points. We let jVnj denote the volume jVs;ij of a single scat-

terer divided by Mi (assuming that the nth sample point

located at position r0n belongs to the ith scatterer). We set

cn ¼ cðr0nÞ and define an ¼ jVnjcn. The factor jVnj arises

from the (strong) law of large numbers, as explained briefly

after Eq. (15), rather than a subdivision of each scatterer

into Mi disjoint physical pieces.

Then, substituting the function andðr0 � r0nÞ into Eq.

(3), one obtains the random variable,

bn ¼ an

ð1
�1

HðxÞe�aðrÞxz0=p ik

2jSjDðr
0
n jxÞe�2ikzdx; (14)

where we used the change of variable z ¼ c0t=2. Next, one

has an approximation for the fractional variation in the tis-

sue acoustic properties function,

cðr0nÞ �
XN0

n¼1

andðr0 � r0nÞ: (15)

This yields the following stochastic process for RFðr; t
¼ 2z=c0Þ and its approximation based on Eq. (5),

XN0

n¼1

bn �
XN0

n¼1

anhðr0n � rÞ cos ð2~kcðz0n � zÞ þ uÞ: (16)

Notice that Eq. (16) follows from Eq. (3) by the strong law

of large numbers because the sample points are uniformly

distributed within each scatterer. Indeed, the inner integralÐ
VDðr0 jxÞcðr0Þd3ðr0Þ in Eq. (3) may be expressed as the

sum of the corresponding integrals over the volume cover-

ing each scatterer. For each term (corresponding to the ith
scatterer), as 1 ¼ jVs;ijjVs;ij�1

and jVs;ij�1
is the probability

density function (PDF) of the uniform distribution on the

scatterer, the law of large numbers allows replacing the term

with the (random) average jVs;ijð1=MiÞ
PMi

�¼1 Dðr0n� jxÞ
cðr0n� Þ, where r0n� ; � ¼ 1;…;Mi, are the positions of the

sample points within the scatterer.

Because the scatterers within one resolution cell con-

tribute most to the received signals at a given position r, we

may assume that N0 represents the total number of sample

(backscattering) points within the resolution cell centered at

r. Note that we found it more convenient in the proposed

theoretical framework to sample points within each scatterer

rather than sampling points over the entire scattering vol-

ume, in which case, some of the points would fall into the

ambient medium rather than within the scatterers.

B. Interpretation of parameter a

Under the above hypotheses on the discrete random var-

iables N and Mi, i ¼ 1;…;N, the average number of sample

backscattering points is equal to hN0i ¼ hNiM0. Observe

that conditional to N, N0 is a Poisson distribution of mean

and variance equal to NM0. Furthermore, based on the

notion of the packing factor12,13 W, one has Var½N� ¼ WhNi,
where hNi is the average number of scatterers within one

resolution cell.

We now show that the variance of N0 is asymptotic to

WhNiM2
0 and N0 may be modeled with a negative binomial

distribution NBinða; pÞ, defined as in Jakeman and Tough,3

for which the parameter a is equal to

a ¼ hNi
W

: (17)

Under the above assumptions, the average number of sample

points is equal to hN0i ¼ h
PN

i¼1 Mii ¼ hNiM0. Moreover,

one may compute the variance of the number of sample

points, where M0 � 0, as

Var N0½ � ¼
XN

i¼1

Mi

 !2* +
� hNi2M2

0

� ðhNi þ hNðN � 1Þi � hNi2ÞM2
0 ¼ WhNiM2

0:

(18)

Now, from Eq. (54) in Frank and Smith,43 the discrete distri-

bution with maximal entropy (viewed as the most probable

distribution) among the ones with mean hNiM0 and variance

WhNiM2
0 is the negative binomial distribution defined as in

Destrempes and Cloutier,9

NBinðN0 j a; pÞ ¼
CðN0 þ aÞ
N0!CðaÞ ð1� pÞN0 pa: (19)

Notice that Eq. (54) in Frank and Smith43 may be applied as

long as Var½N0� > hN0i, i.e., whenever WM0 > 1, which

holds for M0 � 0 given any W > 0. Furthermore, in Eq.

(19), one has the limit values

p ¼ hN0i
Var N0½ �

¼ hNiM0

WhNiM2
0

�!
M0!1

0; (20a)

a¼ 1

ð1�pÞ
hN0i2

Var N0½ �
¼ 1

ð1�pÞ
hNi2M2

0

WhNiM2
0

�!
M0!1

hNi
W
; (20b)

where we have used Secs. 2.1.3 and 8.7.1 in Rice.44 Note

that NBinðN0 ¼ 0 j a; pÞ ¼ pa, which converges to zero as

M0 tends to infinity.
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An important issue is then to settle what is exactly

meant by the (effective) resolution cell. This issue will be

discussed below.

C. Central limit theorem for the RF signals

We set an ¼ bn � hbni and we introduce the random

variables Bn ¼ M0bn and An ¼ Bn � hBni ¼ M0an. We con-

sider the following parameters (see step 2 below):

�l ¼ hNihB1i; �s2 ¼ hNi2hA1A2i: (21)

We now show that conditional to N, and for large values of

M0, the random variable b ¼
PN0

n¼1 bn has a PDF that may

be approximated with a 1D normal distribution,

Nðb j �l; ðN=hNiÞ�s2Þ: (22)

It follows that its absolute value X ¼ j
PN0

n¼1 bnj has a PDF

that may be modeled with a 1D Rice distribution [see Eq.

(4) with n ¼ 1 in Destrempes and Cloutier9]

PRice;d¼1ðX j j�lj; ðN=hNiÞ�s2Þ: (23)

For this purpose, we consider N0 sample backscattering

points within a scattering volume V, which encompasses

one resolution cell. We consider the random variables bn, n
¼ 1,…,N0, appearing in Eq. (16). We assume, as in Sec.

III A, that N0 ¼
PN

i¼1 Mi, where N is the number of scatter-

ers and Mi is the number of sample points within the ith
scatterer and Mi is a discrete Poisson variable with mean

(and hence, variance) equal to M0. It follows that conditional

to N, the variable N0 is a Poisson variable of mean equal to

NM0. We let hNi denote the average number of scatterers

(per resolution cell).

Step 1. We partition a rectangular box R circumscribing

V into M disjoint cubes Cm (m ¼ 1,…,M) of the same dimen-

sions. We assume that each cube contains Nm sample back-

scattering points such that N0 ¼
PM

m¼1 Nm. We set

Um ¼
X

rn2Cm

bn �
* X

rn2Cm

bn

+
; (24)

where the average is over all realizations of the point pro-

cess, thus, allowing the variables Mi to fluctuate, but condi-

tional to a fixed number of scatterers N. We then define the

random variable

U ¼
XN0

n¼1

bn �
*XN0

n¼1

bn

+
¼
XM

m¼1

Um: (25)

By definition, one has hUmi ¼ 0. We assume that the

random variables Um are almost mutually independent (in a

sense, which is made precise below). This assumption seems

reasonable provided that the correlation length between the

sample backscattering points is smaller than the diameter of

the cubes whilst ignoring the boundary conditions for the

adjacent cubes.

For this purpose, we consider M independent variables

U0m, for m ¼ 1,…,M, each one distributed as Um. We then

define the random variable

U0 ¼
XM

m¼1

U0m: (26)

In view of Lyapounov’s theorem (Theorem 27.3 in

Billingsley22), we wish to verify Lyapounov’s condition

[Eq. (27.16) in Billingsley22]. We define

s2 ¼
XM
m¼1

E jU0mj2
� �

; (27)

where E½�� denotes the ensemble averaging operator h�i in

this context. We consider for d > 0 Lyapounov’s constant,

defined as

LM;d ¼
XM

m¼1

E jU0mj2þd
h i

s2þd
: (28)

To demonstrate that the random variable U0=s is close to the

standard normal variable Nð0; 1Þ, the proposed strategy is

to provide an estimate for Lyapounov’s constant in Eq. (28)

in the case where d ¼ 1 and then resort to a sharp version23

of the Berry-Esseen theorem for a bound on the

Kolmogorov distance between these two random variables.

Provided LM;1 is small, one may then conclude that U0=s is

close to the standard normal variable Nð0; 1Þ. Henceforth,

provided U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½U�

p
and U0=s are close distributions, we

may conclude that U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½U�

p
is close to the standard nor-

mal variable Nð0; 1Þ.
Step 2. We compute, conditional to N,XN0

n¼1

bn

* +
¼ NM0hb1i ¼ l; (29a)

Var U½ � ¼
XN0

n¼1

bn �
XN0

n¼1

bn

* + !2* +
� ðNM0Þ2ðhb1b2i � hb1i2Þ ¼ s2; (29b)

where we are taking large values of M0. We also consider

the following parameters:

�l ¼ hNiM0hb1i; (30a)

�s2 ¼ ðhNiM0Þ2ha1a2i: (30b)

We notice that, on average, over all of the values of N, the

differences between l and �l, and between s2 and ��s2, where

� ¼ N=hNi, are equal to zero. Thus, we content that l and

s2 may be replaced with �l and ��s2, respectively. Consider

that the average difference between s2 and �s2 is equal to

WhNiðM0Þ2ha1a2i, which certainly cannot be ignored. We

notice that Eqs. (30a) and (30b) amount to the two expres-

sions in Eq. (21) based on the following two lemmas.
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Lemma 1: The negative binomial distribution

NBinðN0 j a; pÞ may be viewed as the compound Poisson-

gamma distribution,ð1
0

PoissonðN0 jM0kÞGðk j a;WÞdk (31a)

¼
ð1

0

PoissonðN0 j hNiM0�ÞGð� j a; 1=aÞd�: (31b)

Proof: From Ref. 45 one has the Poisson-gamma com-

pound representation,

NBinðN0ja;pÞ¼
ð1

0

PoissonðN0jkÞGðkja;ð1�pÞ=pÞdk: (32)

With the change of variable k ¼ M0k
0, the right-hand side of

this expression is equivalent toð1
0

PoissonðN0 jM0k
0ÞGðM0k

0 ja;ð1�pÞ=pÞM0dk0: (33)

But, one has GðM0k
0 ja;ð1�pÞ=pÞM0¼Gðk0 ja;ð1�pÞ=ðM0pÞÞ

and limM0!1ð1�pÞ=M0p¼hNi=a¼W. We, thus, obtain Eq.

(31a). The change of variable k¼hNi� then yields Eq. (31b).

Therefore, in Eq. (31a), the random variable k repre-

sents the number N of scatterers within one resolution cell

(not to be confused with the wavelength), whereas M0 is

the average number of sample points per scatterer.

Henceforth, in Eq. (31b), the random variable � represents

N=hNi.
Lemma 2: Given the Poisson distribution with mean k,

one has limk!1Poissonðn j kÞ ¼ 0. Moreover, one hasP1
n¼1 n�1Poissonðn j kÞ � 1=k, as k tends to infinity.

Proof: For the first statement, notice that by definition,

one has Poissonðn ¼ 0 j kÞ ¼ e�k. For the second statement,

we define the function f ðkÞ ¼
P1

n¼1 n�1Poissonðn j kÞ and

observe that this function satisfies the following linear dif-

ferential equation with constant coefficients f ðkÞ þ f 0ðkÞ
¼ ð1� e�kÞ=k. Indeed, performing term by term differentia-

tion, one obtains

f 0ðkÞ ¼ 1

k

X1
n¼1

kn

n!
e�k � f ðkÞ: (34)

The general solution is of the form f ðkÞ ¼ cðkÞe�k, where

cðkÞ ¼
Ð
ðek � 1Þ=k d k. With the help of the software

Mathematica (Wolfram Research, Inc., Champaign, IL, ver-

sion 11.3), we obtained the solution f ðkÞ ¼ ðc0 þ EiðkÞ
�log kÞe�k for some constant c0, where Ei denotes the

exponential integral function, i.e., the principal value of the

integral �
Ð1
�k e�t=tdt. Also, with the help of the software

Mathematica, we computed

lim
k!1

ðc0 þ EiðkÞ � log kÞe�k

1=k
¼ 1: (35)

Step 3. To realize the above strategy proposed in step 1,

we first compute the Kolmogorov distance qðF;F0Þ

¼ supxjFðxÞ � F0ðxÞj, where F(x) and F0ðxÞ are the cumula-

tive functions of the random variables U=s and U0=s, respec-

tively. We assume an estimate

qðF;F0Þ � �: (36)

Note that an estimate can be obtained from two samples of

the variables U and U0 by using the empirical variance on

the samples for s ¼ Var½U� and s ¼ Var½U0�. Next, we con-

sider an estimate of Lyapounov’s constant,

LM;1 ¼

XM

m¼1

E jU0mj3
� �

XM

m¼1

E jU0mj2
� � !3=2

� L1: (37)

Such an estimate can be obtained from a sample of the vari-

ables U0m used to compute U0.
Step 4. We now deduce the theoretical consequences of

conditions (36) and (37).

Theorem 1. Assume that condition (37) holds. Then,

one has

qðF0;UÞ � C0L1; (38)

where qðF0;UÞ ¼ supxjF0ðxÞ � UðxÞj is the Kolmogorov dis-

tance between the cumulative functions F0ðxÞ and UðxÞ
¼ 1=

ffiffiffiffiffiffi
2p
p Ð1

�1 e�u2=2du of the random variables U0=s and

Nð0; 1Þ, respectively. Here, C0 is an absolute constant

known to be less than 0.5583.

Proof: This follows directly from the Berry-Esseen the-

orem and the estimate of C0 appearing in Ref. 23.

Corollary 1: Assume conditions (36) and (37) hold.

Then, one has an upper bound

qðF;UÞ � �þ C0L1: (39)

Proof: Inequality (39) follows directly from condition

(36) and Theorem 1 using the fact that the Kolmogorov dis-

tance satisfies the triangle inequality.

D. Distribution of the absolute value of the RF signals

Summing up over all of the values of the discrete ran-

dom variable N, we, thus, obtain the distribution

X1
N¼1

PRice;d¼1ðX j j�lj; ðN=hNiÞ�s2ÞProbðN=hNiÞ; (40)

which may be approximated withð1
0

PRice;d¼1ðX j j�lj; ��s2ÞGðw j a; 1=aÞd �; (41)

where we used Lemma 1 and Gðwja; hÞ denotes the gamma

distribution with the shape parameter a and scale parameter

h. After the change of variable w ¼ a�, one obtains
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ð1
0

PRice;d¼1ðX j j�lj; ðw=aÞ�s2ÞGðw j a; 1Þdw: (42)

But, because a ¼ hNi=W, one has �s2=a ¼ WhNihA1A2i.
Moreover, one has j�lj ¼ hNihB1i. We, therefore, obtain the

following compound distribution:ð1
w¼0

PRice;d¼1ðX j eRF; r
2
RFwÞGðw j a; 1Þdw; (43)

where we set

eRF ¼ hNijhB1ij; r2
RF ¼ WhNihA1A2i: (44)

Equation (44) turns out to represent the homodyned K-

distribution of dimension one with parameters eRF; r2
RF, and

a [Eq. (13) with n ¼ 1 in Destrempes and Cloutier9) for the

absolute value of the RF signal,

jRFðr; t ¼ 2z=c0Þj � PHK;d¼1ðX j eRF; r
2
RF; aÞ: (45)

Considering the absolute value of the Hilbert transform

HðRFÞ of the RF signal, one obtains, for the same reasons, a

homodyned K-distribution of dimension one. The same

argument applies to both signals Xu and Yu appearing in

Eqs. (8a) and (8b) (taking into account the form of the trans-

mitted pressure field). In particular, one has the following

distribution for the absolute value of the component Xu:

jXuðr; t ¼ 2z=c0Þj � PHK;d¼1ðX j eXu ; r
2
Xu
; aÞ: (46)

We now show that eYu ¼ 0. Substituting cðr0Þ
� andðr0 � r0nÞ, where an ¼ jVnjcn, into Eq. (8b) yields

the approximation bn � anPðr0n � rÞ sin ð2~kcðz0n � zÞÞ for the

component Yu. Furthermore, assuming the symmetry of the

PSF with respect to the plane through the point located at

position r that is normal to the incident wave direction, one

obtains hbni � hanPðr0n � rÞ sin ð2~kcðz0n � zÞÞi ¼ 0. It fol-

lows that eYu ¼ limM0!1hNiM0hbni ¼ 0.

Thus, the absolute value of the component Yu of the

analytic signal is actually distributed according to a

K-distribution of dimension one [Eq. (8) with n ¼ 1 in

Destrempes and Cloutier9]

jYuðr; r0; t ¼ 2z=c0Þj � PK;d¼1ðY j r2
Yu
; aÞ: (47)

As 1D homodyned K-distributions are involved in this con-

text, one obtains the mean intensity values lXu
¼ e2

Xu
þ r2

Xu
a

and lYu
¼ r2

Yu
a (Theorem 4 with n ¼ 1 in Destrempes and

Cloutier9).

IV. THE ANALYTIC COMPLEX SIGNAL AND ITS
ENVELOPE VIEWED AS STOCHASTIC PROCESSES

A. Assumptions

For the reasons explained in Sec. II A, we find it conve-

nient to perform demodulation around the nominal center

frequency ~f c. This choice is innocuous because the echo

envelope does not depend on demodulation. Similar to Eq.

(14), we consider the random vector corresponding to a sin-

gle scatterer located at position r0n,

bn�2an

ð1
0

HðxÞe�aðrÞxz0=p ik

2jSjDðr
0
n jxÞe�2iðk�~kcÞzdx: (48)

Based on the tissue function approximation equation (15),

this yields the stochastic process for sðr; t ¼ 2z=c0Þe2i~kcz,

XN0

n¼1

bn �
XN0

n¼1

anhðr0n � rÞe2i~kcz0nþiu: (49)

We introduce the random variables an ¼ bn � hbni; Bn

¼ M0bn, and An ¼ Bn � hBni ¼ M0an. We consider the fol-

lowing parameters:

�l ¼ hNihB1i; �s2 ¼ 1

2
hNi2hA1

�A2i: (50)

B. Demodulated analytic signal

It is shown in this subsection that conditional to N,PN0

n¼1 bn � h
PN0

n¼1 bni can be viewed as a random vector

with uncorrelated real and imaginary parts with the same

variance.

Substituting cðr0Þ � andðr0 � r0nÞ, where an ¼ jVnjcn,

into Eq. (6) yields after demodulation around the nominal

center frequency,

bn � anhðr0n � rÞe2i~kcðz0n�zÞþiu

 �

e2i~kcz; (51)

where h denotes the PSF and u represents the phase shift as

explained in Sec. II A. The random vector a ¼
PN0

n¼1 bn

�h
PN0

n¼1 bni may, thus, be recast in the form

ðAþ iBÞðcos ð2~kczÞ þ i sin ð2~kczÞÞ; (52)

where the two factors are viewed as independent random

variables, the former depending only on the scatterers’

acoustical properties and their relative positions to the geo-

metric center of a resolution cell, whereas the latter depends

only on the position of the resolution cell’s geometric cen-

ter. Given a function f(z) of the axial coordinate z, we let

Eloc;z½f ðzÞ� denote its average along the axial direction over

an interval centered at z of length equal to an effective axial

resolution ~‘z (described explicitly below). With the conven-

tion that E½w� ¼ Eloc;z½hwi�, one then computes E½jReðaÞj2�
as

hA2iEloc;z cos2ð2~kczÞ
� �

þ hB2iEloc;z sin2ð2~kczÞ
� �

� 2hABiEloc;z cos ð2~kczÞ sin ð2~kczÞ
� �

: (53)

This simplifies to ðhA2i þ hB2iÞðn=2Þ, provided that the

effective axial resolution ~‘z is taken of the form ðn=2Þ~kc,
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where n denotes a positive integer, since 2~kcðn=2Þ~kc ¼ 2pn.

Similarly, one computes E½jImðaÞj2� as

hA2iEloc;z sin2ð2~kczÞ
� �

þ hB2iEloc;z cos2ð2~kczÞ
� �

þ 2hABiEloc;z sin ð2~kczÞ cos ð2~kczÞ
� �

; (54)

which is equal to E½jReðaÞj2� under the same assumptions.

Last, one may compute E½ReðaÞImðaÞ�:

�hABiEloc;z sin2ð2~kczÞ
� �

þ hABiEloc;z cos2ð2~kczÞ
� �

; (55)

which cancels out to zero under the above assumptions.

C. Effective resolution cell

From the argument presented in Sec. IV B, one needs

ðn=2Þ~kc 	 ‘z, where ~kc is the effective wavelength, i.e.,

depending on the total attenuation and the scanner’s set-

tings. Hence, ‘z is replaced with an effective axial

resolution,

~‘z ¼
n

2
~kc; n ¼ d2‘z=~kce: (56)

In the lateral and elevation directions, we consider the actual

resolutions ‘x and ‘y, respectively.

Based on a Gaussian-shaped PSF hðx; y; zÞ, i.e., propor-

tional to e�x2=2r2
x�y2=2r2

y�z2=2~r2
z , the surface of the effective

resolution cell at �20 dB is the ellipsoid with the equation

2ðx2=2r2
x þ y2=2r2

y þ z2=2~r2
z Þ ¼ log 100. One, thus, obtains

the resolutions ‘x=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 100
p

rx; ‘y=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 100
p

ry,

and ~‘z=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 100
p

~rz. The volume of one effective reso-

lution cell is then equal to j ~V j ¼ ð~‘z=‘zÞ 
 jVj, where jVj is

the volume of the resolution cell itself.

Furthermore, to be consistent with Eq. (7) in Chen et al.,16

in the case of a single scatterer per unit volume, one would

obtain a�2ð
Ð Ð Ð

h2ðx;y;zÞdxdydzÞ2=
Ð Ð Ð

h4ðx;y;zÞdxdydz,

which is equal to 2
ffiffiffiffiffiffi
2p
p

rx

ffiffiffiffiffiffi
2p
p

ry

ffiffiffiffiffiffi
2p
p

~rz, whereas

j ~V j¼ ð4p=3Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 100
p

Þ3rxry~rz. Because 2ð2pÞ3=2=

ð4=3Þpðlog100Þ3=2�0:7609, one obtains the interpretation

a � 0:7609
 m ~V

W
¼ 0:7609


~‘z

‘z

 !

 mjVj

W
; (57)

which amounts to a volume bV ¼ 0:7609
 ~V .

D. Central limit theorem for the analytic signal

It is now shown that the stochastic process
PN0

n¼1 bn

conditional to N may be modeled with a Gaussian distribu-

tion of mean �l and isotropic variance with both components

equal to ðN=hNiÞ�s2,

Nðb j �l; ðN=hNiÞ�s2I2
2Þ; (58)

where I2
2 denotes the 2
 2 identity matrix.

Conditional to N, one has

XN0

n¼1

bn

* +
� NM0hb1i ¼ l: (59)

Next, based on Eqs. (53)–(55), the diagonal components of

the isotropic variance matrix Var½a�, where a ¼
PN0

n¼1 bn

�h
PN0

n¼1 bni, are each equal to s2 ¼ 1
2

Eloc;z½hjaj2i�, which in

turn is equal to 1
2
hjaj2i because the complex modulus of

e2i~kcz is equal to one. By the stationarity of the point process

of the sample backscattering points, for large values of M0

and conditional to N, one computes

1

2
hjaji2 ¼ 1

2

XN0

n¼1

bn �
XN0

n¼1

bn

* +�����
�����
2* +

� 1

2
ðNM0Þ2ha1�a2i ¼ s2: (60)

Similar to step 2 of Sec. III C, we consider the following

parameters:

�l ¼ hNiM0hb1i; �s2 ¼ 1

2
ðhNiM0Þ2ha1�a2i: (61)

We observe that, on average, over all of the values of

N, the differences between l and �l and s2 and ��s2, where

� ¼ N=hNi, are equal to zero. Thus, we are replacing l and

s2 with �l and ��s2, respectively. We notice that the expres-

sions in Eq. (61) amount to the two expressions in Eq. (50)

based on Lemma 2. It remains to show that both real and

imaginary parts of a are close to a Gaussian distribution

with the mean and variance equal to zero and s2, respec-

tively. But this hypothesis is reasonable for the reasons

explained in Sec. III C.

E. Echo envelope distribution

From Eq. (6), one deduces the following approximation:XN0

n¼1

bn

* +
�hN0ihanhðr0n�rÞe2i~kcðz0n�zÞþiuie2i~kcz; (62)

where an ¼ jVnjcn. It follows that h
PN0

n¼1 bni has a constant

amplitude and random phase equal to 2~kcz, which is uni-

formly distributed. From there it follows that the complex

modulus of the right-hand side of Eq. (49), A ¼ j
PN0

n¼1 bnj,
may be modeled with a 2D Rice distribution [Eq. (4) with n
¼ 2 in Destrempes and Cloutier9]

PRice;d¼2ðA j j�lj; ðN=hNiÞ�s2Þ: (63)

Summing up over all of the values of the discrete variable

N, we, hence, obtain the distributionX1
N¼1

PRice;d¼2ðA j j�lj; ðN=hNiÞ�s2ÞProbðN=hNiÞ: (64)

This distribution may be approximated with the compound

distribution,
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ð1
0

PRice;d¼2ðA j e; r2wÞGðw j a; 1Þd w; (65)

where we set

e ¼ hNijhB1ij; r2 ¼ 1

2
WhNihA1

�A2i: (66)

This is the 2D homodyned K-distribution [Eq. (13) with n
¼ 2 in Destrempes and Cloutier9]

jsðr; t ¼ 2z=c0Þj � PHK;d¼2ðA j e; r2; aÞ; (67)

with parameters e, l ¼ e2 þ 2r2a.

Notice that the three distributions in Eqs. (46), (47), and

(67) share the same parameter a, given by Eq. (17).

It is now shown that l ¼ lXu
þ lYu

; e2 ¼ e2
Xu

, and

r2 ¼ ðr2
Xu
þ r2

Yu
Þ=2. From Eq. (7) and because jeiuj ¼ 1,

one obtains

hjsðr;r0; tÞj2i¼ hjXuðr;r0; tÞj2iþhjYuðr;r0; tÞj2i; (68)

which proves the first identity. Furthermore, one obtains the

relation

jhsðr; r0; tÞij2 ¼ jhXuðr;r0; tÞij2þ jhYuðr;r0; tÞij2: (69)

From there, it follows that e2 ¼ e2
Xu
þ e2

Yu
. One then deduces

the second identity by equating l ¼ e2 þ 2r2a with

lXu
þ lYu

¼ e2
Xu
þ r2

Xu
aþ e2

Yu
þ r2

Yu
a ¼ e2 þ ðr2

Xu
þ r2

Yu
Þa.

But from above, one also has that eYu ¼ 0.

V. NUMERICAL EXAMPLE

A. Materials and methods

To investigate the validity of the two conditions (36)

and (37) with reasonably small values of � and L1, we have

performed simulations of the scatterers with variable levels

of spatial clustering.

As in Destrempes et al.,4 we considered a resolution

cell (based on an ellipsoid shape) with a semiprincipal axis

in the beam direction measuring ‘z=2 ¼ 0:2180 mm and the

two other semiprincipal axes measuring ‘x=2 ¼ ‘y=2

¼ 0:4856 mm, thus, yielding a volume of jVj
¼ 0:2153 mm3. Moreover, we adopted a center frequency fc
¼ 10 MHz and speed of sound c0 ¼ 1540 m/s, yielding a

wave number of kc � 40:8 mm�1 and a wavelength of

kc ¼ 0:1458. The effective axial resolution was equal to
~‘z=2 ¼ 0:2310 mm. Assuming a Gaussian-shaped PSF of the

form stated in Sec. IV C and the surface of the effective

resolution cell defined at �20 dB, we obtained rx ¼ 0:2263;
ry ¼ 0:2263, and ~rz ¼ 0:1076. We used these values in

Eqs. (8a) and (8b), using Eq. (15). Moreover, we adopted

an � Nð0; 1Þ in these equations. The effective resolution

cell was embedded into a rectangular box R of dimension

ð5
 0:2310Þ 
 ð5
 0:2310Þ 
 ð2
 0:2310Þmm3.

The number N of scatterers per effective resolution cell

was varied from 1 to 21 by steps of 2, whereas the packing

factor W varied from 1 to 11 by steps of 2. The expected

scatterer clustering parameter, which is equal to a ¼ N=W,

thus, varied from 1/11 to 21. For the purpose of simulating

the scatterers, the circumscribing rectangular box was cov-

ered with Mc ¼ 15
 15
 6 nonoverlapping small cubes,

each one with side length d ¼ 0:2310=3 mm. The desired

number of scatterers was, therefore, equal to Np ¼ N

jRj=j ~V j. Then, within each of these small cubes, the num-

ber of scatterers was sampled according to a negative bino-

mial distribution with mean t ¼ Np 
 d3=jRj and variance

equal to Wt, if W > 1, and according to a Poisson distribu-

tion of mean t, if W ¼ 1. As the sampling on each small

cube was performed independently from the other cubes,

within the volume encompassed by the Mc nonoverlapping

cubes, one obtains a number of scatterers with a mean value

equal to Mct and variance equal to WMct (variances of inde-

pendent random variables add up). Henceforth, within the

rectangular box, one obtains a number of scatterers with a

mean equal to Np and variance equal to WNp as desired. The

positions of the scatterers were simulated in this fashion

until their number was actually equal to Np. Furthermore,

the number of uniformly distributed sample points within

each spherical scatterer was sampled with a Poisson distri-

bution of mean M0 ¼ 30, where we adopted a scatterer’s

radius of 2.75 lm (as for human red blood cells). For this

purpose, we used the algorithm for sampling uniformly

within a three-dimensional (3D) ball mentioned in Harman

and Lacko.46 The random variable U could then be calcu-

lated based on Eq. (25) using either the cosine or sine func-

tions as in Eqs. (8a) and (8b) evaluated with Eq. (15).

The rectangular box circumscribing the effective reso-

lution cell was partitioned into 5
 5
 2 cubes (M ¼ 50),

each one with a side length equal to 0.2310. The same pro-

cedure as above was applied independently to each of these

M cubes. In doing so, the number of scatterers within each

of the M cubes was simulated until the total number was

equal to Np. Uniform sampling within each spherical

scatterer could then be performed as above. The random

variable U0 was then calculated based on Eq. (26) using

either the cosine or sine functions. We implemented the sim-

ulation procedure on the platform MATLAB (The

MathWorks, Natick, MA, version 2018a).

For each pair of values (N,W), Nsamp ¼ 500 samples of

the variables U and U0 were simulated in this fashion using

either the cosine or sine functions. The Kolmogorov dis-

tance � between the variables U=s and U0=s, where we took

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½U�

p
and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 Var½U0m�

q
[see Eqs. (27) and

(29b) in Sec. III C], was estimated with the MATLAB func-

tion “kstest2” (ignoring the output p-value). The value of L1

was estimated from the Nsamp samples of the variables

U0m; m ¼ 1;…;M. The combination q0 ¼ �þ C0L1 was

then viewed as an upper bound for the Kolmogorov distance

between U=s and the standard normal distribution.

We then applied the Kolmogorov-Smirnov goodness-

of-fit test to assess whether the random variable U=s is dis-

tributed according to the standard normal distribution. For

J. Acoust. Soc. Am. 150 (5), November 2021 François Destrempes and Guy Cloutier 3553

https://doi.org/10.1121/10.0007047

https://doi.org/10.1121/10.0007047


this purpose, we used a confidence level of 0.05. In the

case of this hypothesis test, the p-value is equal to

Probð
ffiffiffiffiffiffiffiffiffiffiffi
Nsamp

p
DNsamp

> q0Þ, where DNsamp
represents the

Kolmogorov-Smirnov statistic. One uses its asymptotic

expression ProbðK > q0Þ ¼ 1� Lðq0Þ (for large values of

Nsamp), where K is the Kolmogorov distribution24 with

known cumulative distribution L. We implemented the cal-

culation of the p-value as 1� ProbðDNsamp
< q0=

ffiffiffiffiffiffiffiffiffiffiffi
Nsamp

p
Þ

using the efficient algorithm of Marsaglia et al.47 For this

purpose, we used the package48 “kolmim” of the statistical

software R (R Foundation for Statistical Computing,

Vienna, Austria, version 3.3.2).

B. Results

As shown in Figs. 2(a) and 2(b), conditions (36) and

(37) were satisfied with the variable values of � and L1 using

either Eq. (8a) or Eq. (8b), respectively. The resulting linear

combination q0 ¼ �þ C0L1 is also displayed in Fig. 2. The

resulting p-values for the standard normal distribution

hypothesis were all above 0.85 (in fact, above 0.99 for most

of them). Thus, the Kolmogorov-Smirnov tests succeeded,

which shows that the hypothesis U=s � Nð0; 1Þ is valid

under the tested conditions.

VI. DISCUSSION AND CONCLUSION

In this work, the statistical modelings of the RF signals,

their Hilbert transform, and the echo envelope were pre-

sented. Notably, we have addressed the scenario of possibly

spatially correlated scatterers, unlike what was previously

done in the literature in the context of ultrasound signals sta-

tistical modeling. The proposed theoretical framework

allowed the deduction of 1D or 2D homodyned K-

distribution models for the RF signals or the echo envelope,

respectively. In particular, a physical interpretation of the

homodyned-K scatterer clustering parameter a could be

derived in this framework, which is related to the packing

factor appearing in quantitative spectral analysis.

The special case of the K-distribution was previously

proposed to model the absolute value of the RF signals in

Bernard et al.7 Here, we have generalized this model to take

into account a possibly nonvanishing coherent component.

However, notice that in the case of a phase shift of u ¼ p=2

in the emitted signal of Eq. (7), the case of a K-distribution

does apply. The phase shift u, which is a characteristic of

the emitted signal and was considered in Sec. II A, is crucial

in decomposing the analytic signal RFþ iHðRFÞ in the

form ðXu þ iYuÞeiu as in Eq. (7), where Xu is distributed

according to a 1D homodyned K-distribution, whereas Yu is

distributed according to a 1D K-distribution.

In Eq. (17) of Chen et al.,16 in the case of several inde-

pendent scatterers, it is shown that parameter a is expected

to be the same for both of the RF signals and their echo

envelope, which is consistent with the proposed theoretical

framework, under which the three distributions in Eqs. (45),

(47), and (67) share the same parameter a.

In the presence of specular reflection, due to the pres-

ence of scatterers larger than the wavelength, Secs. 8.3 and

8.4 in Morse and Ingard35 suggest that the demodulated ana-

lytic complex signal will be of the form espe�i~kcz, which

implies that a constant hespi has to be added to the coherent

component of the 2D homodyned K-distribution.

Furthermore, in the case where the phase shift u is equal to

zero, one may assume that the Hilbert transform of the RF

signals is distributed according to a K-distribution even in

the presence of specular reflection but otherwise not.

Notice that the in-phase/quadratic (IQ) signal is obtained

by performing demodulation around the center frequency fc
rather than the nominal center frequency ~f c, the latter resulting

from the usual downshifting due to the ultrasound attenuation

caused by the intervening tissues. However, this choice does

not affect the echo envelope because the latter is the modulus

of the (modulated or not) analytic complex signal.

Nonetheless, we chose demodulation around the nominal cen-

ter frequency for the purpose of expressing the analytic signal

in a form that is amenable to the proposed statistical modeling.

Indeed, after demodulation around the center frequency and

FIG. 2. (a) The goodness-of-fit results on simulations of Nsamp ¼ 500 samples of the variables U and U0 using Eqs. (8a) and (15) with M ¼ 50. � is the esti-

mate for the Kolmogorov distance qðF;F0Þ between U=s and U0=s as computed with the empirical distance between U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½U�

p
and U0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½U0�

p
; C0L1

denotes the upper bound for the Kolmogorov distance qðF0;UÞ between U0=s and Nð0; 1Þ, as computed with the left-hand side of the condition Eq. (37); the

combination q0 ¼ �þ C0L1 is then an upper bound for qðF;UÞ. (b) The results are shown similarly when using Eqs. (8b) and (15).
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compensation of the phase shift in the transmitted voltage, one

obtains the two components in Eqs. (8a) and (8b), and the

second component is distributed according to a 1D K-

distribution.

Note that different values of W are achievable for a

given number density of randomly (but possibly non-uni-

formly) positioned scatterers because the spatial correlation

between the scatterers’ positions may occur in a stochastic

point process at various degrees. It follows that the tissue

characterization may be reached through estimates of W or a
as these two stochastic parameters yield a signature of the

tissues scatterers’ spatial organization. It is noteworthy that

both parameters reveal information on the scatterers’ organi-

zation at a scale (possibly much) smaller than the

wavelength.

We have not pursued the case of periodically spaced

scatterers in this work, but nevertheless the notion of the

packing factor was considered as a means of quantifying the

scatterers’ spatial organization. Future works could also

include this feature, although it does not seem to be as cru-

cial as other aspects in view of the clinical applications.

In our previous work,6 we had tested the conjectured

interpretation a ¼ mjVj=W on simulated ultrasound images.

In the current study, we have refined this interpretation by

considering a product of two factors 0.7609 and ~‘z=‘z [cf.

Eq. (57)], where ~‘z=‘z > 1, thus, allowing for an adjustment

depending on the data. Whereas the second factor is

imposed by the condition of uncorrelated real and imaginary

parts of the analytic signal, the first factor follows from the

consideration of Chen et al.,16 albeit this work was devel-

oped under the hypothesis of independent scatterers. In a

future study, we intend to validate our choice of this con-

stant in the context of clustered scatterers based on simu-

lated ultrasound images.

In future works, it would be interesting to study the

effect of post-processed filtering on the remaining parame-

ters of the homodyned K-distribution, which, in principle,

could allow the picking up of information on the backscatter

coefficient at different frequencies and characteristic

changes in the spectral slope depending on the scatterers’

properties, number density, and spatial organization.

The approach based on sample backscattering points,

which is presented in Sec. III A is akin to the sampling

methods25 for solving inverse scattering problems, notably

the linear sampling method of Colton and Kirsch49 and the

factorization method of Kirsch.50 It would be exciting to

investigate the approach presented in this study in the field

of electromagnetic scattering or any other scattering phe-

nomena such as those mentioned in the Introduction.
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