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Abstract— Ultrasound vascular strain imaging has
shown its potential to interrogate the motion of the vessel
wall induced by the cardiac pulsation for predicting
plaque instability. In this study, a sparse model strain
estimator (SMSE) is proposed to reconstruct a dense strain
field at a high resolution, with no spatial derivatives, and a
high computation efficiency. This sparse model utilizes the
highly-compacted property of discrete cosine transform
(DCT) coefficients, thereby allowing to parameterize
displacement and strain fields with truncated DCT
coefficients. The derivation of affine strain components
(axial and lateral strains and shears) was reformulated into
solving truncated DCT coefficients and then reconstructed
with them. Moreover, an analytical solution was derived
to reduce estimation time. With simulations, the SMSE
reduced estimation errors by up to 50% compared with
the state-of-the-art window-based Lagrangian speckle
model estimator (LSME). The SMSE was also proven to be
more robust than the LSME against global and local noise.
For in vitro and in vivo tests, residual strains assessing
cumulated errors with the SMSE were 2 to 3 times lower
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than with the LSME. Regarding computation efficiency, the
processing time of the SMSE was reduced by 4 to 25 times
compared with the LSME, according to simulations, in vitro
and in vivo results. Finally, phantom studies demonstrated
the enhanced spatial resolution of the proposed SMSE
algorithm against LSME.

Index Terms— Affine-based model strain, discrete cosine
transform, high temporal and spatial resolutions, opti-
cal flow, sparse representation, ultrasound elastography,
principal strains.

I. INTRODUCTION

VASCULAR ultrasound strain imaging has shown its
potential to extract the motion of the vessel wall caused

by the cardiac pulsation for the purpose of trying predicting
carotid artery plaque instability [1]. Currently, window-based
methods are widely used to estimate two-dimensional (2-D)
strain maps from radiofrequency (RF) datasets, using either
image amplitude [2]–[6] or phase information [7]–[10].
Specifically, pre- and post-motion images are divided into
overlapping windows. Assuming that motions of pixels within
a window are the same, window-based methods locally
derive mean displacements and/or strains within that window.
However, there is a trade-off among window parameters,
quality of a strain image and computation efficiency. A small
window size with a large overlap are desired for a better
resolution at the cost of a high computational load. A large
overlap nevertheless introduces worm artifact filtering [11],
[12]. On the other hand, a small window size results in larger
estimation variances.

An alternative way is to globally estimate pixel-wise
motions in a region of interest (ROI) instead of using
overlapping windows. To our knowledge, no pixel-based
algorithms were proposed for vascular ultrasound elastogra-
phy. Some approaches have been developed for quasi-static
elastography [13]–[18], Doppler vector flow [19], myocardial
motion tracking [20], [21] and computer vision [22].
Usually, one formulates pixel-based motion estimations as
an optimization problem, where a cost function incorporating
a data term and a regularization term is minimized. Sparse
representations of motion fields were also introduced into
motion estimators [23]–[25], where dense motions can be
recovered using the compressed sensing theory [26] with
a small portion of all samples. However, these models
only consider displacement or velocity fields. Additional
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gradient operations on displacement fields are required when
strain fields are imperative. To reduce estimation variance,
a least-squares strain estimator (LSQSE) [27] or a low-pass
digital differentiator [28] is commonly used to determine
derivatives of displacement fields by considering multiple
points instead of two points. However, there is a trade-off
between variance, strain contrast and resolution [27], [28].

Affine model-based estimation could circumvent the
limitation of derivative operations but remains into the
category of window-based methods [6], [10], [29]. An
optical-flow-based Lagrangian speckle model estimator
(LSME) including an incompressibility constraint was
proposed to obtain robust strain estimates in the context
of vascular elastography [6]. A performance evaluation of
the LSME and of an affine phase-based estimator (APBE)
was also conducted showing the superiority of the LSME
[10]. Although some of aforementioned pixel-based methods
[13], [16] have considered axial or lateral strain estimations,
shear strains are still not assessed. To our knowledge,
a pixel-wise vascular strain estimator with an affine model
considering all strain components without spatial derivatives
on displacements has not yet been proposed.

Computation efficiency is another issue that needs to
be addressed. Computation time of window-based methods
depends on the window size and on the level of overlap.
Specifically, the computation time of a whole motion field
corresponds to the sum of the time required to locally perform
successive window computations. To reduce the computation
load, all pixels inside a ROI can be used to solve the
dense motion field globally. However, this usually requires to
optimize iteratively a cost function until convergence, which
also impacts computation time. Rivaz’s group proposed to
convert the optimization problem into solving a sparse linear
system of equations using a computationally efficient iterative
algorithm [17]. However, the proposed method is still based
on displacement estimates. Recently, an effort was made to
change the iterative optimization into a least squares scheme
to obtain analytic solutions of vector Doppler flow maps [30].
This strategy was adapted here for vascular strain imaging.

In this study, we propose to parameterize strain fields
using a sparse representation based on discrete cosine
transform (DCT) coefficients, allowing to directly derive
strains without explicit gradient operations. This parameterized
implementation also enables strains to be solved analytically
using a least squares scheme. The proposed vascular
sparse model-based strain estimator (SMSE) is providing
high-resolution pixel-wise affine strain estimates with high
accuracy and high computation efficiency compared with the
LSME implementation.

II. ALGORITHM DESCRIPTION

The proposed algorithm is within the framework of the
Horn-Schunck (HS) optical flow method. Unlike HS that only
considers a smoothness constraint, a nearly incompressibility
regularization term was also introduced into the cost function
to improve lateral strain estimation. Moreover, motion fields
were parameterized with a truncated discrete cosine basis.
This sparse representation was formulated to solve strain

fields using a least squares method instead of an optimization
problem, as in the HS algorithm. The pixel-based solution
is providing axial, lateral and shear strain components
simultaneously.

A. Cost Function With Smoothness and Nearly
Incompressibility Constraints

1) Data Term: The cost function consists of data and
regularization terms. The data term is from the optical flow
constraint equation, which implies that the intensity between
two consecutive images is not changing,

IxUx + IyUy + It = 0, (1)

where Ix , Iy are the spatial gradient of the image intensity,
It denotes the temporal gradient of the image intensity, and
Ux , Uy are the unknown lateral and axial displacements.
Spatial and temporal gradient operations on the image intensity
in the optical flow method can induce variance due to the
discontinuity of the image intensity. One can apply a low-pass
filter on the image prior to the optical flow estimation to reduce
variance but at the expense of the bias. In this study, we did not
use any filtering operations but simply the central difference
to obtain image gradients. In Eq. (1), there are two unknown
variables. Therefore, additional constraints need to be added
to overcome the ill-posed problem.

2) Smoothness Constraint: Horn and Schunck proposed a
classical first-order optical flow smoothness constraint [22].
It assumes the object undergoes rigid motions to minimize
the square magnitude of the gradient displacement field �U =
(Ux , Uy), namely ( ∂Ux

∂x )
2+( ∂Ux

∂y )
2+(

∂Uy
∂x )

2+(
∂Uy
∂y )

2
. However,

the motion of a fluid flow also exhibits divergence and
vorticity. In [31], a second-order divergence-curl smooth-
ness was used to allow for a more physically meaningful
smoothness regularization for fluid-like conditions. Likewise,
motions in biological tissues are complex and include not
only translations, but also rotations and non-rigid deformations
(compression or expansion). Thus, the curl-related rotation,
and divergence-related compression (expansion) should be
regularized. In [32], [33], the second-order smoothness con-
straint was generalized and decomposed into the first-order
derivative of divergence and curl of the optical flow field as

α
∥∥∥∇div �U

∥∥∥2 + β
∥∥∥∇curl �U

∥∥∥2
, where div �U = ∂Ux

∂x + ∂Uy
∂y ,

curl �U = − ∂Ux
∂y + ∂Uy

∂x , ∇ (•) represents the sum of the gradi-

ents of components, and ‖•‖2 is the L2 norm. When α = β,
this constraint is equivalent to the second-order smoothness

given by:
(

∂2Ux
∂x2

)2+
(

∂2Ux
∂y2

)2+
(

∂2Ux
∂x∂y

)2+
(

∂2Ux
∂y∂x

)2+
(

∂2Uy
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)2
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∂y2

)2
+
(

∂2Uy
∂x∂y

)2
+
(

∂2Uy
∂y∂x

)2
. The advantage of this second

order smoothness constraint is that it favors the smoothness of
the divergence and curl of the flow field. In fact, the divergence
and curl quantify the flow compression and rotation, respec-
tively, which are dominant in flow motion representations of
biological tissues. Here, we incorporated this second-order
smoothness constraint that is tailored towards complex flow
fields [34], [35] into the cost function. Thus, the regularized
cost function including the data term of Eq. (1) and the
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second-order smoothness constraint is defined as:

min
Ux ,Uy

{
(IxUx + IyUy + It )

2 + λs

((
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)2

+
(
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∂y2

)2

+
(

∂2Ux

∂x∂y

)2

+
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∂y∂x

)2

+
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∂2Uy

∂x2
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+
(

∂2Uy

∂y2

)2

+
(

∂2Uy

∂x∂y

)2

+
(

∂2Uy

∂y∂x

)2)}
, (2)

where λs is a regularization parameter to control the influence
of the smoothness constraint.

3) Nearly Incompressibility Constraint: No volume change is
experienced in incompressible materials under small defor-
mations. Some biological tissues can be considered as nearly
incompressible [34]; this is the case of human arteries [36].
In the field of ultrasound strain imaging, arterial tissue
incompressibility was used to improve the quality of strain
estimations [6], [10], [37]. Assuming 2-D plane strain,
a null divergence of the displacement field �U is considered,
i.e. div �U = ∂Ux

∂x + ∂Uy
∂y = 0. Upon this assumption, the lateral

strain is constrained to be the negative of the axial strain,
as used in [6]. In the current study, we integrated instead this
incompressibility constraint into Eq. (3) to obtain an additional
regularization term to constrain the divergence close to zero:

min
Ux ,Uy

{
(IxUx + IyUy + It )
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,

(3)

where λd is a regularization parameter to modulate the
influence of the incompressibility constraint. Contrary to the
implementation of [6], this regularization term does not impose
tissue incompressibility, but constrains it into the cost func-
tion to obtain a nearly incompressible condition. This soft
constraint avoids an ill-conditioned problem when forcing the
divergence to zero. A similar quasi incompressibility constraint
was utilized for the registration of magnetic resonance (MR)
tissue images [34], [38], and for Doppler flow and tissue
Doppler mapping [30], [39], [40]. It is used for the first
time into the framework of an optical-flow-based non-invasive
vascular elastography method.

To find suitable displacement fields minimizing Eq. (2),
one can solve Euler-Lagrange equations, which is a typi-
cal variational problem. A detailed solution description can
be found in [22]. In the current study, displacement fields
were parameterized with a truncated discrete cosine basis
(see Section II-B). The minimization problem was rewritten
as a linear least squares problem.

B. Sparse Representation and Reconstruction
of the Strain Field

1) Discrete Cosine Representation: In this study, the
displacement field used in the minimization of Eq. (3)

was expressed with type-II discrete cosine basis functions
written as:
Ux (x, y) =

Mt∑
m

Nt∑
n

cx
m,n cos

(
km

x (2x + 1)
)

cos
(

kn
y (2y + 1)

)

Uy (x, y) =
Mt∑
m

Nt∑
n

cy
m,n cos (km

x (2x + 1)) cos (kn
y (2y + 1)),

(4)

where km
x = m

2M π , kn
y = n

2N π , with the grid size (M, N)
in lateral and axial directions, and (Mt , Nt ) being the size of
the truncated discrete cosine basis (i.e., Mt ≤ M , Nt ≤ N).
Section III-E justifies the choice of Mt and Nt . In Eq. (4),
cx

m,n and cy
m,n are the DCT coefficients of the lateral and

axial displacement components. In [23], it was verified that
the representation of an optical flow vector is sparse in
wavelet or DCT domains. The motivation for using DCT
is its property of energy compaction [41], which allows to
reconstruct images from a small number of DCT coefficients
instead of all coefficients of dimensions (M, N) (see an exam-
ple of a DCT frequency decomposition of a principal minor
strain map in Fig. S1 of supplementary materials). Thus, this
property of the DCT sparse representation enables improving
the computation efficiency for reconstructing motion fields by
using only DCT coefficients with significant magnitudes.

Once the motion field is represented by sparse basis
functions, the motion estimation problem becomes an opti-
mization problem regarding the coefficients. In [24] and [25],
the optical flow field was encoded into sparse representation
and recovered from much fewer pixels using the compressed
sensing theory by imposing a sparsity constraint on coeffi-
cients. In the next section, we propose an alternative by using
truncated DCT coefficients with which the solution to the
optimization problem in Eq. (3) can be derived in a direct
way instead of an iterative process.

Another advantage of parameterized representations of
motion fields is that strain fields can be represented by DCT
basis transformations, which avoid to explicitly compute deriv-
ative of noisy estimated displacements. Specifically, once DCT
coefficients are resolved, strain components are represented by
a combination of estimated DCT coefficients and DCT basis
transformations, as shown here:

Sx x = ∂Ux

∂x
=

Mt∑
m

Nt∑
n

cx
m,n(−2km

x ) sin(km
x (2x + 1))

× cos (kn
y (2y + 1))

Sxy = ∂Ux

∂y
=

Mt∑
m

Nt∑
n

cx
m,n(−2kn

y) cos (km
x (2x + 1))

× sin (kn
y(2y + 1))

Syy = ∂Uy

∂y
=

Mt∑
m

Nt∑
n

cy
m,n(−2kn

y) cos (km
x (2x + 1))

× sin (kn
y(2y + 1))

Syx = ∂Uy

∂x
=

Mt∑
m

Nt∑
n

cy
m,n(−2km

x ) sin (km
x (2x + 1))

× cos (kn
y (2y + 1)), (5)
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where Sx x , Sxy , Syy , Syx are lateral strain, lateral shear,
axial strain and axial shear, respectively. Cartesian strain
components were combined and represented as principal minor
and major strain tensors, εmin , εmax , where:

εmin,max= Sx x + Syy

2
±
√(

Sx x − Syy

2

)2

+
(

Sxy + Syx

2

)2

.

(6)

2) Regularized Weighted Least Squares Estimation: The
proposed algorithm is capable of reconstructing dense dis-
placement and strain fields at each pixel of an image of size
M × N . A strain field of a down-sampled image can also
be computed with less computational complexity. Since the
displacement field was parameterized with the discrete cosine
basis, the cost function in Eq. (3) should be expressed in terms
of DCT coefficients and the minimization problem formulated
as a solution of a system of linear equations, as explained
below.

Let c =
[
cT

x , cT
y

]T
be a column vector with length 2Mt Nt ,

where cx = [· · · , cx
m,n, · · · ]T and cy = [· · · , cy

m,n, · · · ]T are
the DCT coefficients of lateral and axial displacement fields,
respectively. To parameterize the cost function in terms of c,
all pixels in the ROI are considered and then the data term, and
smoothness and nearly incompressibility constraints, are repre-

sented in matrix form, respectively. Let U =
[
UT

x , UT
y

]T
rep-

resent the displacement field, where Ux = [· · · , Ux , · · · ]T and
Uy = [· · · , Uy, · · ·

]T are column vectors of lateral and axial
displacements with lengths M N , respectively. By defining B
as a discrete cosine transform matrix with size M N × Mt Nt ,
and {B}i,Mt n+m = cos (km

x (2xi + 1)) cos (kn
y (2yi + 1)), where

i indicates the pixel index, the displacement fields as shown
in Eq. (4) can be expressed in matrix form as Ux = Bcx and
Uy = Bcy.

Let
{
Iof,x

}
i,i = Ix (xi , yi ),

{
Iof,y

}
i,i = Iy(xi , yi ), and{

Iof,t
}

i,i = −I t (xi , yi ) be diagonal matrices with size M N ×
M N containing image gradients of all pixels, where the
subscript “of” stands for optical flow. Considering abovemen-
tioned displacements Ux and Uy, the data term as shown in
Eq. (1) is then written as Iof,xBcx+Iof,yBcy−Iof,t , which can
be represented in matrix form as:

Dof Bof c−Iof ,t , (7)

where Dof = [
Iof ,x Iof ,y

]
with size M N × 2M N , and

Bof =
[

B 0
0 B

]
.

The cost function of Eq. (3) introduced a nearly incompress-
ibility constraint to govern a 2-D divergence-free displacement
field. Since the displacement field U is expressed as Ux = Bcx
and Uy = Bcy, the divergence of U can be represented
by a combination of first-order derivative transformations of
B and c. Specifically, let Bx = Ḋx B and By = ḊyB be
first-order derivatives of B in lateral and axial directions,
respectively, where Ḋ stands for the first-order derivative oper-

ator. Thus, the nearly incompressibility constraint, ∂Ux
∂x + ∂Uy

∂y ,
is presented as Ḋx Bcx+ḊyBcy when considering the full

displacement field. Using Bx = Ḋx B and By = ḊyB, the
nearly incompressibility constraint becomes

Bdc, (8)

where Bd = [Bx By
]
.

Likewise, the second-order smoothness constraint,(
∂2Ux
∂x2

)2 +
(

∂2Ux
∂y2

)2 +
(

∂2Ux
∂x∂y

)2 +
(

∂2Ux
∂y∂x

)2 +
(

∂2Uy

∂x2

)2
+(

∂2Uy

∂y2

)2
+
(

∂2Uy
∂x∂y

)2
+
(

∂2Uy
∂y∂x

)2
, can also be represented

as a linear combination of second-order derivative
transformations of B and c. Specifically, the second-order
smoothness constraint in terms of displacement
fields, Ux= Bcx and Uy= Bcy, can be represented
as D̈x xBcx+D̈yyBcx+D̈xyBcx+D̈yxBcx+D̈x x Bcy+D̈yyBcy+
D̈xyBcy+D̈yxBcy in terms of B and c. Let B∗ =
D̈x xB + D̈yyB + D̈xyB + D̈yx B, where D̈ stands for the
second-order derivative operator applied on pixel coordinates.
Thus, the second-order smoothness constraint is:

Bsc, (9)

where Bs = [B∗ B∗ ].
By introducing above matrix representations of the data

term, nearly incompressibility term and smoothness term into
the cost function (Eq. (3)), the minimization problem can be
rewritten as:
min

c

{(
Dof Bof c−Iof,t

)T (Dof Bof c−Iof,t
)+ λs (Bsc)T (Bsc)

+ λd (Bdc)T (Bdc)
}

, (10)

where T denotes the matrix transposition. To get the solution
c, we can combine terms using the distributive property of
the cost function after straightforward matrix calculations, and
let its partial derivative regarding c be equal to zero. Then,
the minimization problem is reformulated into a linear system:

Ac = b, (11)

where A = (
Dof Bof

)T (Dof Bof
) + λd BT

d Bd + λsBT
s Bs , and

b = (Dof Bof
)T Iof,t . A is a matrix with size 2Mt Nt ×2Mt Nt

and b is a column vector with size 2Mt Nt × 1.
Since a truncated discrete cosine basis was used, the size

of A was significantly reduced from 2M N × 2M N to
2Mt Nt × 2Mt Nt . The small size allows to derive a solution
to Eq. (11) using direct methods instead of iterative meth-
ods, such as the successive over-relaxation method used in
[17]. Mathematically, there is a unique solution when matrix
A is full-rank. In practice, A could be rank-deficient or
ill-conditioned due to noisy measurements. In our implemen-
tation, the addition of small values from matrices BT

d Bd and
BT

s Bs , which are regulated with λd and λs, into the elements of
the matrix

(
Dof Bof

)T (Dof Bof
)

helped to avoid the ill-posed
or ill-conditioned problem. In this study, we used the Matlab
function “mldivide.m” to solve Eq. (11). It returns an exact
solution when A is full-rank and a least squares solution when
A is rank-deficient.

In addition, above least squares estimation on a motion field
is usually sensitive to outliers, which are associated with viola-
tion of the optical flow constraint given by Eq. (1). To avoid it,
a weighted least squares was performed to assign low weights
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to outliers after the first least squares estimation. The weights
were expressed as w = 1

1+R , where R = |IxUx + IyUy + It | is
the absolute value of residuals of the optical flow equation to
evaluate the estimation bias of each sample. Applying weights
on each sample, the final estimation of DCT coefficients ĉ was
solved as:

ĉ =
(

ÂT Â
)−1

ÂT b̂, (12)

where Â = (Dof Bof
)T W

(
Dof Bof

)+λd BT
d Bd+λsBT

s Bs , b̂ =(
Dof Bof

)T W and W is a weight matrix with size M N ×M N ,
whose column elements are w.

C. Algorithm Implementation

The proposed algorithm consisted of 7 steps:
- Step 1: Segment manually the vascular wall on a middle

frame of an RF image sequence to generate a ROI. The
ROI on remaining frames was propagated using an automatic
segmentation algorithm [42] that allowed tracking translation
motion and small changes in ROI boundary at given frames.

- Step 2: Normalize the RF image sequence with the
maximum value of image intensities.

- Step 3: Choose pixels inside the ROI generated in Step
1 to do calculation.

- Step 4: Build vectors and matrices in Eq. (11) using Eqs
(7), (8), and (9), and solve the least squares system of Eq. (11)
to obtain DCT coefficients c.

- Step 5: Introduce DCT coefficients c estimated in Step
4 into Eq. (4) to compute displacement fields.

- Step 6: Compute W with the displacement field from
the previous step. With computed weights W, solve DCT
coefficients ĉ using Eq. (12).

- Step 7: Introduce DCT coefficients ĉ into Eq. (5) to
compute principal strain components using Eq. (6).

III. SIMULATIONS AND EXPERIMENTS

A. Simulations

A carotid artery model was created using COMSOL
Multiphysics (Structural Mechanics Module, version 3.5,
COMSOL, France) whose geometry was described in [43].
A soft necrotic core (elasticity modulus E = 10 kPa) and
four calcified inclusions (E = 5000 kPa) were embedded
in a medium (E = 600 kPa) mimicking a fibrous plaque.
All plaque components were considered nearly incompressible
(Poisson’ ratio = 0.4995). To avoid rigid motions of the
model, a soft (E = 1 Pa) and compressible layer (Poisson’s
ratio = 0.001) of 1 mm thickness was added on the outer layer.
This artificial outer contour was anchored and was not consid-
ered in the strain analysis. The density of randomly distributed
scatterers included in the vascular model was 100 per resolu-
tion cell to ensure fully developed speckle [44]. In this study,
the resolution cell volume was defined as a cubic whose size in
each direction (axial, lateral and elevation) is one wavelength
of the transmitted pulse [45]–[47]. The wavelength is about
0.2 mm for a 7.2 MHz central frequency transducer.

A systemic blood pressure waveform with pressure changes
from 80 to 120 mmHg (10 to 16 kPa) was applied to the
simulated model. The pressure waveform was divided into

500 segments to allow mimicking a frame rate of 500 s−1.
For each intraluminal pressure difference, displacements and
strains of the vessel wall were calculated using a finite
elements method (FEM) under plane strain condition. These
displacements plus pre-deformation positions were used to
update the post-deformation positions of scatterers. The strains
were used as gold standard for comparison.

Cross-sectional RF data were simulated using the ultrasound
simulation program Field II [48]. A L14-5/38 linear array
probe with 128 elements (Ultrasonix Medical Corporation,
Richmond, BC, Canada) was simulated with a 7.2 MHz center
frequency and a 40 MHz sampling rate. The full aperture
was considered as activated in transmission to create plane
waves with emission angles ranging from −10

◦
to 10

◦
with 1

◦

increment. Plane wave data with 21 angles at each intraluminal
pressure difference were beamformed to create one coherent
plane wave compounded (CPWC) image using a delay-and-
sum algorithm [49]. All beamformed images were corrupted
with white Gaussian noise to make them more realistic with
signal-to-noise ratios (SNR) of 20 dB. To evaluate the robust
against global noise, additional 5 dB, 10 dB, 15 dB, and
25 dB SNR images were generated by adding white Gaussian
noise globally. To evaluate the robustness of strain estimation
algorithms against localized noise, the 20 dB SNR images
were corrupted with additional white Gaussian noise at four
specific regions where SNR was reduced to 5 dB. The four
regions were evenly divided into the upper left, upper right,
lower left and lower right regions by considering the image
center (see Fig. 3).

B. In Vitro Experiments

In vitro data from two vascular phantoms, one homogeneous
and the other heterogeneous, were used to validate the
proposed SMSE algorithm. These phantoms were made
of 10% polyvinyl alcohol mixed with 3% acoustic scatterers
(Sigmacell cellulose, type 50, Sigma Chemical, St Louis, MO,
USA). To fabricate the homogeneous phantom, two molds,
a hollow cylindrical mold and a solid stem, were designed
and generated using a 3-D printer (Dimension Elite, Stratasys
Inc., Eden Prairie, MN, USA). Then, polyvinyl alcohol mate-
rials were poured between the two molds. The homogeneous
phantom was solidified using 6 freeze-thaw cycles to obtain a
modulus of 182 ± 21 kPa [50]. The heterogeneous phantom
consisted in a soft inclusion within a vascular wall mimicking
a lipid plaque. To fabricate it, a solid stem mold with the
cross sectional shape of a soft inclusion was printed. After
assembling previous outer and inner molds with the soft
inclusion mold, polyvinyl alcohol materials were poured and
underwent 5 freeze-thaw cycles. Then, the soft inclusion mold
was removed and a second injection of polyvinyl alcohol
materials was introduced into the hole left by the soft inclusion
mold. The whole phantom then underwent a last freeze-thaw
cycle. The soft inclusion thus experienced 1 freeze-thaw cycle
giving a modulus of 25±3 kPa [50]; whereas the surrounding
vascular wall underwent 6 freeze-thaw cycles, similar to the
homogeneous phantom.

Each phantom was suspended in a water tank and
pressurized by connecting the tube outlet to a water column.
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The intraluminal pressure was varied from 60 mmHg to
120 mmHg with a pulsatile pump (model 1421, Harvard
Apparatus, Holliston, MA, USA). The pressure was monitored
using a ViVitest software system (Vivitro Labs Inc., Victoria,
BC, Canada).

C. In Vivo Experiments

To further validate the proposed strain estimator, RF data
of a common carotid artery were acquired from a 30 year-old
healthy male. The study was approved by the human ethical
review board of the Centre Hospitalier de l’Université de
Montréal. The volunteer signed an informed consent.

D. Data Acquisition and Image Reconstruction

For in vitro and in vivo experiments, RF data in a
cross-sectional view were acquired using a Sonix Touch ultra-
sonic system (Ultrasonix Medical Corporation, Richmond, BC,
Canada) equipped with a L14-5/38 linear array probe with
128 elements, as considered in the simulation study. Plane
wave data were generated and stored with full aperture using
a Sonix DAQ multi-channel system and the development
kit software (TexoSDK, v6.0.1). As for simulations, CPWC
images were beamformed in post-processing using a delay-
and-sum algorithm [49] and emission angles ranging from
−10

◦
to 10

◦
with 1

◦
increment (final frame rate of 500 s−1).

RF images were reconstructed on a regular Cartesian grid
with 50 × 20 μm resolution (lateral × axial). All RF images
were normalized in intensity before performing elastography
computations.

E. Parameter Selections

In Eq. (3), λs and λd govern the influence of smoothness
and nearly incompressibility constraints. Different pairs of
these two parameters were tested using simulation data with
a SNR of 20 dB (see results in supplementary materials,
Fig. S2). The test ranges for λs and λd were both from 0.01 to
1 with an increment of 0.01. The smoothness and nearly
incompressibility constraints were assumed to have the same
influence on simulated, in vitro and in vivo strain estimates.
Thus, the parameter pair providing the least estimation error
was chosen for all reported results. The same regularization
parameters λs = 0.05 and λd = 0.6 were used for all analyses,
which prevented fine tuning the results and allowed a common
framework for all datasets.

The property of energy compaction of DCT coefficients
encourages representing the motion field with a limited num-
ber of coefficients. In this study, we choose to truncate DCT
coefficients with sizes Mt and Nt in the low frequency
domain. The truncation allowed reducing the equation number
in Eq. (11) from 2M N to 2Mt Nt , which impacted positively

the computational complexity compared with a reconstruction
with all DCT coefficients. Another advantage of the truncation
is the lower number of equations that allows to derive an
analytical solution efficiently without an iterative process.
Furthermore, the truncation ignores DCT coefficients at higher
frequencies. Consequently, since motion fields are expected to
be spatially smooth, this low pass filtering also improved the
accuracy of elastograms.

In addition, the effect of the smoothness term in the cost
function is alleviated (λs is smaller than λd ) as the recon-
struction with truncated DCT coefficients already eliminates
high frequency noise. For a sparse representation of Eq. (3),
sizes of the truncated discrete cosine basis Mt and Nt were
chosen to reconstruct motion fields based on prior information.
To our knowledge, there is no guideline on DCT numbers to
reconstruct a motion field. Here, we propose using a cut-off
frequency, kcut−of f , to determine Mt and Nt . Cut-off values
were computed as Mt or Nt = kcut−of f

/
kmax × M(or N),

where kmax = 1
/
(2 × lateral grid resolution for M or axial

grid resolution for N) is the maximum frequency in the DCT
domain. Since, the thickness of the carotid artery wall with a
plaque can be assumed smaller than 3 mm [51], we limited the
minimum wavelength of the cosine basis function to 1.5 mm.
Thus, the truncated number of DCT coefficients, Mt or Nt ,
was given by the Cartesian grid resolution (lateral or axial) /
1.5 mm × image size (lateral M or axial N).

F. Criteria for Evaluation

1) Comparison With the Lagrangian Speckle Model Estimator
(LSME): The LSME estimator of [6] was applied to simulation,
in vitro and in vivo data to compare with the proposed
algorithm. The LSME is a window-based strain estimator.
In each window, tissue motion is defined as an affine transfor-
mation model that is applied into the optical flow constraint
equation. Specifically, the displacement of an arbitrary pixel
can be described by an affine representation using its 1st

order Taylor expansion. Thus, the optical flow constraint
equation (Eq. (1)) can be written as Ix

(
Ux + x Sx x + ySxy

)+
Iy
(
Uy + x Syx + ySyy

) = −It .
Although a full incompressibility assumption

(i.e., Sx x = −Syy) is considered, there are still five unknown
variables in this equation. The LSME assumes that the affine
motion field of pixels within a measurement window with
p×q pixels is the same allowing to build an over-determined
linear equation system given by Eq. (13).

The affine motion field of the centroid of the measurement
window is solved using a least squares method. In the frame-
work of high frame rate CPWC imaging, the small time
step between consecutive frames allows further processing.
Instead of using a pair of consecutive frames for strain

⎡
⎢⎣

Ix1 y1 Ix1
...

...
Ix p×q yp×q Ix p×q

Iy1 x1 Iy1 y1 − Ix1 x1 Iy1
...

...
...

Iyp×q x p×q Iyp×q yp×q − Ix p×q x p×q Iyp×q

⎤
⎥⎦ .

⎡
⎢⎢⎢⎢⎣

sxy

Ux

syx

syy

Uy

⎤
⎥⎥⎥⎥⎦ = −

⎡
⎢⎣

It1
...

Itp×q

⎤
⎥⎦ . (13)
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estimation, as in the original proposal of the method [52],
a time-ensemble strategy was considered in [6]. Assuming
motions of successive nt frame pairs over a given time
duration are the same, the number of equations in Eq. (13)
is increased nt times, which allows increasing the robustness
of the least squares estimation problem. For a fair comparison,
the estimation parameters were the same as in [10]. Namely,
the window size was set to 1.0 mm×1.0 mm with 80% overlap
in axial and lateral directions, and the time-ensemble number
nt was 8 with 90% time overlap.

2) Evaluation of Strain Estimation Performance: For
simulated data, an image sequence of one pressure cycle
was selected and all 2-D strain components (Sx x , Sxy , Syy ,
Syx) were computed over consecutive frames and cumulated.
Principal strains were determined using Eq. (6) and the largest
cumulated strain map was considered as the final elastogram.
Since reference strain values are known for simulations,
the normalized root-mean-square-error (NRMSE) was used
to evaluate elastograms in that case:

N RM SE =
√∑N

i=1 (re f i−est i )
2

N

re f max − re f min
, (14)

where N is the number of pixels in an elastogram, re f is the
ground truth principal strain from the finite elements analysis,
and est is the estimated principal strains. The subscripts max
and min refer to the maximum and minimum values of the
principal strain map.

The metric for evaluation of cumulated strains of in vitro
and in vivo studies was the residual strain. The rationale is
that the carotid artery should restore its initial state after an
entire cycle. The residual strain is a good indicator to evaluate
cumulative estimation errors in vascular elastography [53],
[54]. The less residual strain means less cumulative estimation
errors. In this study, a whole cycle was determined by two
periodic zero-crossing points on the time-varying principal
strain curve. The residual strain was calculated as the mean
strain value of the cumulated end frame for a full cardiac cycle.
In addition to the residual strain metric, the reproducibility of
cumulative strain curves was evaluated for in vivo results. Two
successive cardiac cycles of cumulated principal strain maps
were estimated and spatially averaged to obtain mean principal
strain curves. Unlike computing a correlation coefficient of two
strain curves, as done in [55], we performed a linear regression
of the two strain curves to fit a function, y = ax + b, where
x, y are strain curves of two successive cycles, and a, b are
fitted coefficients. Here, a was used to evaluate the similarity
between the two consecutive cyclic strain curves, and it was
expected to be 1 when the two curves are the same. The
intercept b was used to evaluate residual strain errors, and
in this case it was expected to be 0 when there is no residual
strain error.

3) Other Assessments of Strain Estimation Algorithms: Addi-
tionally, computation time for a whole image sequence was
viewed as an indicator of algorithm efficiency. To assess
this, the LSME and proposed SMSE algorithms were both
implemented in Matlab 2016a (MathWorks Inc., Natick, MA,
USA) on a 4-core CPU at 3.7 GHz.

Finally, additional in vitro measurements were performed to
compare the strain image resolution of both LSME and SMSE
algorithms. Two soft phantoms with hard inclusions were
fabricated. The first one had three hard inclusions of 2 mm,
1 mm and 0.8 mm at the same depth. The other was made with
three hard inclusions of 2 mm but at different depths. The soft
background was made with 0.3% agar (A9799, Sigma–Aldrich
Chemical, St Louis, MO), 4% gelatin (G2500, Sigma–Aldrich
Chemical), 8% glycerol, and 87.7% distilled water. Hard
inclusions were fabricated with 15% polyvinyl alcohol, 3%
cellulose particles (Sigmacell, type 5504, Sigma Chemical),
and 82% distilled water that underwent 6 freeze-thaw cycles.

Since cross sectional sizes of hard inclusions are small, they
could not be fabricated by simply pouring polyvinyl alcohol
materials into a mold. Thus, we used a syringe to inject the
solution into cylindrical tubes with inner diameters of 2 to
0.8 mm. After 6 freeze-thaw cycles, the cylindrical polyvinyl
alcohol materials were extracted from the tubes to mimic hard
inclusions. Then, the ends of cylindrical hard inclusions were
horizontally fastened on the walls of a cubic plastic box. The
soft mixture of agar, gelatin, glycerol and distilled water was
poured into the mold. After cooling down the mixture to
room temperature, the phantom was made by removing the
plastic box. Axial compressions with maximum deformations
of 1 mm were launched on the top of the phantom with the
ultrasound probe that was driven by a mini-shaker vibrating
as a 1.2 Hz sinusoid. For the first phantom, the LSME with
the same window size (1 mm × 1 mm) but different overlaps
of 50%, 80% and 95% were used to compare axial strains
Syy with those obtained with the proposed SMSE algorithm.
For the second phantom, the LSME still had a window size
of 1 mm × 1 mm with a 80% overlap.

IV. RESULTS

A. The Simulation Study

Figure 1(a) shows a B-mode image with a SNR of 20 dB
of the carotid artery simulation using CPWC imaging.
Accumulated principal strain maps estimated with the LSME
and SMSE are presented in Fig. 1(d)-(g). For principal minor
strains, both LSME and SMSE provided similar estimation
performance with NRMSE of 8.45% and 6.75% with respect to
the ground true, respectively. The LSME strain map (Fig. 1(d))
allowed identifying the small hard inclusion close to the lumen
at 7 o’clock, but provided less evidence of the presence of the
two hard inclusions in the upper right of the model than with
the SMSE (Fig. 1(f)). The estimation error of principal minor
strains was reduced by 20% with the SMSE compared with
the LSME. For principal major strains, the SMSE strain map
(Fig. 1(g)) revealed hard inclusions better than with the LSME
(Fig. 1(e)). The NRMSE in Fig. 1(e) and (g) are 9.56% and
7.02%, respectively. The estimation error of principal major
strains was reduced by 27% using the SMSE. The impact of
the LSME window size on strain estimates can be visualized
in the zoomed ROI. The SMSE principal minor strain shows
smoother inner and outer artery edges compared with the
window-based LSME algorithm. A similar conclusion applies
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Fig. 1. (a) B-mode image of an artery simulation model with one
soft inclusion and four hard inclusions. The image SNR is 20 dB.
(b), (c) Principal minor and major strains of the finite-elements model
ground truth. (d), (e) Accumulated principal minor and major strains using
LSME, whose NRMSE are 8.45% and 9.56%, respectively. (f), (g) Accu-
mulated principal minor and major strains using SMSE, whose NRMSE
are 6.75% and 7.02%, respectively. Close-ups in the red rectangular
regions are displayed to present the resolution of strain maps.

to the principal major strain map. For these results, values of
Mt and Nt were 11 and 10, respectively.

To test the robustness against global noise, the LSME
and SMSE accumulated principal strain elastograms were
computed from simulation images by considering different
SNRs from 5 dB to 25 dB. Overall, the SMSE achieved
less NRMSE than the LSME for both principal minor and
major strains (see results in supplementary materials, Fig. S3).
Accumulated principal strain examples at SNRs of 10 dB and
15 dB are presented in Fig. 2. Results for a SNR of 20 dB
can be seen in Fig. 1. As presented in Fig. 2, principal strain
maps with the LSME were noisier than with the SMSE when
the SNR was reduced, especially in the thin wall region of
the upper left part. NRMSE of LSME principal minor and
major strain maps for the SNR of 10 dB are 13.90% and
16.27%, respectively, while those errors with the SMSE are
7.54% and 8.17%, respectively. Estimation errors of principal
minor and major strains were reduced by 46% and 50%,
respectively, using the SMSE. As shown in Fig. 2(d), at
the SNR of 15 dB, the LSME estimation performance was
improved with NRMSE of 9.81% and 11.33% for principal
minor and major strain maps, whereas they remained similar
but better with the SMSE (NRMSE of 7.30% and 7.49% for
principal minor and major strain maps, respectively).

Figure 3 presents robustness of both algorithms against
localized noise (simulations with a SNR of 20 dB where the
SNR was reduced to 5 dB into the upper left (a), upper right
(b), lower left (c) and lower right (d) regions). All LSME
accumulated principal strain maps were obviously deteriorated
by the addition of local noise. NRMSE of SMSE accumulated
principal strain maps nearly remained the same in all regions.
Moreover, NRMSE with the SMSE were less than with the
LSME (see legend of Fig. 3 for values).

B. In Vitro Experiments

1) The Homogeneous Vascular Phantom Study: Figure 4(a)
presents a CPWC B-mode image of the homogeneous

Fig. 2. (a), (b) B-mode images with a SNR of 10 dB and corresponding
accumulated principal strain maps. (c), (d) B-mode images with a SNR
of 15 dB and corresponding accumulated principal strain maps. NRMSEs
of accumulated principal strain maps with the LSME and SMSE are
shown.

vascular phantom. Figure 4(b)-(e) shows accumulated princi-
pal strain maps using the LSME and SMSE. Like simulation
results, the vascular geometry was more smoothly delineated
in principal strains using the SMSE (panels (d) and (e)) than
with the LSME (panels (b) and (c)). According to previous
literature [56], the strain magnitude is expected to decrease
with increasing radial distance from the lumen, which is
known as the strain decay phenomenon. Qualitatively, the
strain decay is more distinct on SMSE principal strain maps.
Some artifacts are noticed on LSME elastograms at the lower
left region (Fig. 4(b) and (c)). Residual principal minor and
major strains at the end of the flow cycle were −0.49%
and 0.49% for the LSME, and they were reduced to −0.14%
and 0.13% for the SMSE. Selected values of Mt and Nt for
those results were 9 and 8, respectively.

2) The Heterogeneous Phantom Study: Figure 5 presents a
CPWC B-mode image of the heterogeneous vascular phantom
with a soft inclusion, and accumulated principal strains using
the LSME and SMSE. The soft inclusion is identifiable
on all strain maps. The strain decay phenomenon caused
an overestimation of the dimension of the soft inclusion
with both algorithms. Residual principal minor and major
strains were −0.56% and 0.56% for the LSME, respectively.
They were lower at −0.19% and 0.17% for the SMSE,
respectively. Selected values of Mt and Nt were 9 and 8,
respectively.

C. In Vivo Validation

Figure 6 displays an in vivo B-mode image of a common
carotid artery. LSME and SMSE accumulated principal strain
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Fig. 3. B-mode images with a global SNR of 20 dB and local noise at a SNR of 5 dB in the upper left (a), upper right (b), lower left (c) and lower
right (d) regions and corresponding accumulated principal strain maps. NRMSEs of accumulated principal strain maps with the LSME and SMSE
are shown.

Fig. 4. (a) B-mode image of a homogeneous vascular phantom.
(b), (c) Accumulated principal minor and major strains using the
LSME, whose residual strains are −0.49% and 0.49%, respectively.
(d), (e) Accumulated principal minor and major strains using the SMSE,
whose residual strains are −0.14% and 0.13%, respectively.

maps are shown in Fig. 6(b)-(e). Because of boundary
conditions imposed by surrounding tissues, non-homogeneous
strain maps are noticed with both algorithms as a function
of the angular position. However, regional differences are
observed when comparing both elastography methods. Resid-
ual strains at the end of the sequence for principal minor and
major strain maps using the LSME were −5.56% and 5.56%,
respectively, whereas they were below at −1.92% and 1.77%
for the SMSE, respectively. Values of Mt and Nt were 8 and 7,
respectively.

All cumulated principal strain maps over two consecutive
cycles were spatially averaged. Mean strain curves for the
LSME and SMSE are presented in Fig. 7. Values of end points

Fig. 5. (a) B-mode image of a heterogeneous vascular phantom with
a soft inclusion under the lumen. (b), (c) Accumulated principal minor
and major strains using the LSME, whose residual strains are −0.56%
and 0.56%, respectively. (d), (e) Accumulated principal minor and major
strains using the SMSE, whose residual strains are −0.19% and 0.17%,
respectively.

of mean strain curves were considered as residual strains.
As quantified above, the SMSE gave less residual strain errors:
3.65% and 3.34% for principal minor and major strains,
respectively, compared with −7.89% and 7.89%, respectively,
in the case of the LSME. To quantify the reproducibility, strain
curves of two cardiac cycles were used to perform a linear fit.
As shown in Fig. 8, a higher regression coefficient a and a
lower intercept b were obtained with the SMSE.

D. Computation Efficiency

Computation time for processing a whole image sequence
was calculated and normalized by the number of frames
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Fig. 6. (a) In vivo B-mode image of a carotid artery of a 30 year-old
healthy male. (b), (c) Accumulated principal minor and major strains using
the LSME, whose residual strains are −5.56% and 5.56%, respectively.
(d), (e) Accumulated principal minor and major strains using the SMSE,
whose residual strains are −1.92% and 1.77%, respectively.

Fig. 7. (a) Mean strain curves over two consecutive cardiac cycles
obtained by averaging spatially accumulated principal minor strains.
Residual strains of the LSME and SMSE are −7.89% and −3.65%,
respectively. (b) Mean strain curves over two consecutive cardiac cycles
obtained by averaging spatially accumulated principal major strains.
Residual strains of the LSME and SMSE are 7.89% and 3.34%,
respectively.

Fig. 8. Accumulated principal strain curves from the two successive
cardiac cycles of Fig. 7 were selected to perform linear regressions for
(a) principal minor strains of the LSME and SMSE, and (b) principal major
strains of the LSME and SMSE.

per sequence. As presented in Table I, the computation time
of the SMSE was reduced by 4 to 25 folds compared with the
LSME regarding simulation, in vitro and in vivo data.

E. Spatial Resolution

As seen in Fig. 9, the LSME elastogram with a 50% overlap
(panel b) presents a smoother strain distribution than with
higher overlaps, but fails to detect the inclusion of 0.8 mm.
At 80% or 95% overlap (panels c and d), the spatial sampling
is improved but at the cost of a higher variance. The SMSE

TABLE I
COMPUTATION EFFICIENCY (SECOND/FRAME)

Fig. 9. (a) B-mode image of a soft phantom with three sizes of hard
inclusions of 2 mm, 1 mm and 0.8 mm. (b), (c), (d) Accumulated axial
strains using the LSME with a �.� mm × �.� mm window size and 50%,
80% and 95% overlaps, respectively. (e) Accumulated axial strains using
the SMSE.

Fig. 10. (a) B-mode image of a soft phantom with three hard inclusions
of 2 mm at different depths. (b) Accumulated axial strains using the LSME
with a �.� mm × �.� mm window size and 80% overlap. (c) Accumulated
axial strains using the SMSE.

algorithm provided better results and allowed identifying all
inclusion sizes. The impact of the hard inclusion depth is
presented in Fig. 10 (for the 2 mm diameter inclusion). Again,
the best results are obtained with the SMSE method.

V. DISCUSSION

Although dense OF estimation is already applied into
computer vision [22] and myocardial motion tracking [21]
to obtain displacement fields, these models required new
developments for strain imaging in the context of vascular
mechanical characterization. In the current study, we extended
the dense OF model with DCT descriptions to derive four
strain components (axial and lateral strains and shears).
Those strain components were combined to obtain coordinate-
system independent principal strains. Moreover, a framework
with sparse representation was analytically implemented to
reduce the estimation time compared with window-based
strategies.

For in vivo results, principal strain maps were not
homogeneous circumferentially (Fig. 6(b)-(e)). The same het-
erogeneous observation in strain maps for healthy carotid
arteries were recently reported [57], [58]. The potential
explanation is likely the presence of different boundary
conditions surrounding the carotid artery [6]. Thus, we
proposed to use a linear regression strategy to evaluate the
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reproducibility of cumulated principal strain curves instead of
SNR measurements, as done in [57], [58].

There is a trade-off between elastogram spatial sampling
and computation efficiency for window-based approaches.
The spatial sampling is determined by the window overlap,
as demonstrated in Fig. 9 for the case of the LSME algorithm.
Compared with the 80% window overlap used to obtain most
results, the computation time was reduced 4 times when using
the 50% overlap, and it was increased 46 times for the 95%
overlap. The proposed SMSE method could circumvent this
trade-off issue by considering all pixels globally. Even with a
theoretical pixel resolution, the SMSE computation time was
still lower than that of the LSME with a lower resolution.
Moreover, an arbitrary resolution can be set in this SMSE
implementation, which could reduce the computation time
proportionally. According to in vivo SMSE performance whose
frame rate was around 3 s−1 with described computer facilities
and software, it is believed that real-time estimation could be
achieved by combining appropriate down-sampling estimation
and parallel computing.

Another trade-off of window-based approaches is the
compromise between elastogram spatial sampling and arti-
facts. Intuitively, larger overlap can increase elastogram spatial
sampling, but at an expense of increasing artifacts. As seen
in Fig. 9, the axial elastogram using the LSME with a
50% overlap presented a smooth strain distribution due to a
lower spatial sampling, while it failed to detect the inclusion
of 0.8 mm. With an overlap of 80% or 95%, the elastogram
spatial sampling was increased and it was visually possible to
barely see the 0.8 mm inclusion, but at the expense of strong
background variance. Moreover, worm artifacts due to a large
overlap were noticed. Worm artifacts appear as thin and short
alternate bands attributed to correlation noise patterns when
the overlap is increased [11]. The elastogram using the SMSE
avoided these artifacts and presented clear outlines of each
inclusions.

In this study, we integrated a nearly incompressibility
constraint into the SMSE. Also, weights were assigned into
Eq. (12) to refine the solution. To evaluate the separate
influence of these propositions on principal strain results,
we performed additional experiments using the SMSE without
the nearly incompressibility constraint or without any weights.
Results can be seen in supplementary materials (Figs S4-S7).
The nearly incompressibility constraint improved principal
strain estimations to a large extent. However, the impact of
adding weights into Eq. (12) was less significant; it mainly
allowed fine tuning the solution.

It was mentioned earlier that the computation time of the
SMSE is proportional to the number of equations, namely
2Mt Nt in Eq. (11). Additional computations were performed
to illustrate this. Namely, the impact of doubling the number
of DCT coefficients is presented in Table S1 of supplementary
materials.

In this study, plane wave imaging was implemented
to achieve a frame rate of 500 s−1, which kept inter-
frame motions small. However, the performance of optical
flow-based methods, such as the LSME and SMSE, could be
affected by large inter-frame motions that could be observed

with conventional focused ultrasound imaging. To verify this,
the in vitro and in vivo data were down sampled by a
factor of 10 to simulate a conventional focused ultrasound
imaging frame rate of 50 s−1. We found that the larger inter-
frame deformations at 50 s−1 indeed induced larger estimation
errors (about two-time larger residual strain magnitudes).
Nevertheless, principal strain maps at 50 s−1 (see Figs S8 to
S10 in supplementary materials) were similar to those at a
frame rate of 500 s−1 (Figs 4 to 6). Since this paper is focusing
on vascular elastography where vessel deformation is much
less than cardiac strain or other larger deformation conditions,
the proposed method is adequate and accurate in this context.
To handle larger inter-frame motions, a multi-scale strategy
adapted to optical flow methods would be useful.

Although the SMSE is more robust than the LSME against
local noise with a SNR of 5 dB (Fig. 3) and global noise with
different SNRs (Fig. 2 and Fig. S3 in supplementary materi-
als), the performance of the SMSE when a large local region
is corrupted with more noise deserves additional attention.
Therefore, an additional simulation test reported in Fig. S11 of
supplementary materials verified this potential issue. We found
that local noise with a SNR of 1 dB instead of 5 dB simply
affected local estimations of the SMSE, not global estimations
over the whole artery. This implies that the SMSE is robust
against localized noise and that the whole principal strain
estimation process is not affected.

Theoretically, other sophisticated regularization terms that
are used in dense optical flow techniques, such as sparsity of
optical flow gradients [25] and non-local terms [59], [60] can
be added into the proposed SMSE model as a prior knowledge
instead of the nearly incompressibility term to solve the strain
field. The impact of using different regularization terms on
strain estimations deserves to be investigated in future studies.

Finally, the SMSE is not only able to provide robust
strain estimates at a sub-mm spatial resolution, but also the
assessment of the 2-D displacement field, as described by
Eq. (4). Thus, the SMSE may be applicable in the context
of shear wave elastography to track the 2-D velocity field
[61]. Future experiments in that direction are worthy to be
investigated. Beside ultrasound vascular elastography, it is
believed that the proposed algorithm can also be of value
for magnetic resonance elastography [62] or non-rigid object
tracking in computer vision applications [63]. As shown in
Fig. 10(c), the detection of small hard inclusions at different
depths might also enhance the capability of current quasi-static
breast compression elastography technologies [64].

VI. CONCLUSION

In this study, an affine model-based estimator including a
sparsity strategy has been proposed to provide vascular strain
estimations at high spatial resolution and with computational
efficiency close to real-time. With simulation data, the SMSE
gave less estimation errors than with the window-based LSME
approach. For in vitro results, elastograms with the SMSE
showed less residual strain errors than with the LSME. For in
vivo results, the SMSE provided also less residual strain errors
and more reproducible cumulative strain curves. Computation
time was reduced significantly with the SMSE compared with
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the LSME. In addition, the SMSE avoided window effects of
window-based approaches.
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