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TAGGEDPFRANÇOIS DESTREMPES,* ISABELLE TROP,y,z LOUISE ALLARD,* BORIS CHAYER,*

JULIAN GARCIA-DUITAMA,* MONA EL KHOURY,y,z LUCIE LALONDE,y,z and GUY CLOUTIER*,z,xTAGGEDEND
*Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montr�eal,

Qu�ebec, Canada; yDepartment of Radiology, Breast Imaging Center, University of Montreal Hospital (CHUM), Montr�eal, Qu�ebec,
Canada; zDepartment of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montr�eal, Qu�ebec, Canada; and

x Institute of Biomedical Engineering, University of Montreal, Montr�eal, Qu�ebec, Canada

(Received 24May 2019; revised 17 September 2019; in final from 25 October 2019)
A
rheolog
Hospit
Suite R
guy.clo
Abstract—The purpose of this study was to evaluate various combinations of 13 features based on shear wave
elasticity (SWE), statistical and spectral backscatter properties of tissues, along with the Breast Imaging Report-
ing and Data System (BI-RADS), for classification of solid breast lesions at ultrasonography by means of random
forests. One hundred and three women with 103 suspicious solid breast lesions (BI-RADS categories 4-5) were
enrolled. Before biopsy, additional SWE images and a cine sequence of ultrasound images were obtained. The
contours of lesions were delineated, and parametric maps of the homodyned-K distribution were computed on
three regions: intra-tumoral, supra-tumoral and infra-tumoral zones. Maximum elasticity and total attenuation
coefficient were also extracted. Random forests yielded receiver operating characteristic (ROC) curves for vari-
ous combinations of features. Adding BI-RADS category improved the classification performance of other fea-
tures. The best result was an area under the ROC curve of 0.97, with 75.9% specificity at 98% sensitivity. (E-
mail: guy.cloutier@umontreal.ca) © 2019 World Federation for Ultrasound in Medicine & Biology. All rights
reserved.
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INTRODUCTION

Mammography has long been established as an efficient

screening method for breast cancer but its performance in

classifying abnormalities is limited, requiring additional

tests for lesion characterization. Once a suspicious lesion

is detected, additional ultrasound (US) and/or mammo-

graphic views are obtained to classify lesions into one of

five Breast Imaging Reporting and Data System (BI-

RADS) categories (Madjar and Mendelson 2008). By add-

ing US for analysis of mammographically identified breast

lesions, Zonderland et al. (1999) obtained a combined sen-

sitivity of 91% and specificity of 98% for breast cancer

detection on a database comprising 70% of breast lesions

suspected as benign or probably benign (i.e., BI-RADS
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categories 2 and 3). Lesions classified as BI-RADS 4 or 5

(suspicious for malignancy or highly suggestive of malig-

nancy) undergo biopsy, but many biopsies still confirm

the absence of cancer (Mitka 2007). Surveillance is

acceptable for women in the BI-RADS 3 category (proba-

bly benign) because of the very low likelihood of cancer

(defined as <2%).

Ultrasound is an excellent modality for lesion eval-

uation and follow-up considering availability, cost and

absence of radiation, but improvements in specificity are

still important targets to reach. Adding US shear wave

elasticity (SWE) to standard B-mode imaging features

has shown promise in improving classification of lesions

(Athanasiou et al. 2010). A recent meta-analysis by Xue

et al. (2017) of 25 articles revealed a sensitivity and

specificity for SWE overall of 0.88 (0.84�0.91) and 0.87

(0.84�0.89), respectively. In particular, combining SWE

parameters with BI-RADS assessment yielded an

improvement on lesion classification, thus potentially

avoiding unnecessary biopsies (Berg et al. 2012; Evans
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et al. 2012a; Au et al. 2014; Klotz et al. 2014). These

results did not only consider suspicious for malignancy

or highly suggestive of malignancy lesions (i.e., BI-

RADS 4 and 5 lesions).

Quantitative US (QUS) has also been shown to be

of interest for breast lesion characterization. One family

of QUS parameters is based on statistical analysis of

backscatter US echoes. The spatial organization of

cells—randomly positioned or spatially organized, their

number per unit volume, the contrast between the com-

pressibility and mass density of their nuclei and those of

the ambient cytoplasm—are factors that leave a signa-

ture on the distribution of the US echo envelope (Des-

trempes and Cloutier 2010, 2013). In a study on 98 solid

breast lesions (Trop et al. 2015), one of four women with

a later confirmed benign lesion could have avoided

biopsy, without any false negatives, based on homo-

dyned-K modeling of the echo envelope (Destrempes

and Cloutier 2010, 2013). Dobruch-Sobczak et al.

(2017) subsequently reported that classification based on

BI-RADS grade alone improved substantially when

combined with features based on Nakagami imaging,

another statistical modeling of US echoes.

Another family of QUS parameters is based on

spectral analysis of US echoes. Among these parameters,

the total attenuation coefficient has been studied to mea-

sure losses in US energy caused by absorption in tissues

along propagation (Bigelow and Labyed 2013). As found

in a retrospective study (spanning 1998�2010) on 509

invasive lobular carcinomas by Jones et al. (2013), atten-

uation effects resulting in posterior shadowing are com-

mon in malignant breast lesions.

In this study, we postulated that SWE, homodyned-

K analysis and attenuation estimation provide comple-

mentary assessment of tumors, the first paradigm based

on mechanical properties of breast lesions and their sur-

rounding tissues, the second on their cellular characteris-

tics and the third on losses of signal energy caused by

intervening tissues. Specifically, the goal was to imple-

ment this combined SWE�QUS strategy with machine

learning random forest classifiers using as input elastog-

raphy and statistical and spectral backscatter features of

tissues, together with the usual BI-RADS category, for

cancer detection in suspicious-for-malignancy or highly-

suggestive-of-malignancy solid breast lesions at US.
METHODS

This study was approved by our institutional review

board, and all patients gave written informed consent.
Patient selection

All consecutive women evaluated at the breast imag-

ing center and for whom a recommendation for biopsy of
a solid mass (BI-RADS 4 or 5 lesion) was made were

invited to participate in the study. Women with implants,

breastfeeding women and women who had undergone

prior surgery in the same breast quadrant as the lesion of

interest or radiotherapy were excluded; prior biopsy in the

same breast was not a criterion for exclusion. When multi-

ple biopsies were recommended for one patient, only one

lesion was selected for inclusion into this study, chosen at

the discretion of the radiologist. Radiologists favored

masses over other types of lesion morphologies. If multi-

ple masses were present, the most suspicious one (based

on BI-RADS assessment) was selected. When lesions of

similar BI-RADS assessment were present, the larger one

was selected for study inclusion.

Information on menopausal status, hormone replace-

ment therapy and family history of breast or ovarian can-

cer was obtained directly from the patient. Breast density

was assessed subjectively from digital 2-D mammography

and classified as per BI-RADS into one of four categories:

type A (almost entirely fatty), type B (scattered areas of

fibroglandular density), type C (heterogeneously dense)

and type D (extremely dense). Lesion depth was charac-

terized on US as superficial third, middle third or posterior

third, by dividing breast thickness at the level of the lesion

of interest in equal thirds.

US imaging and histopathology

Ultrasound evaluation of breast lesions was per-

formed as per standard practice, with a high-frequency

linear transducer, either on a GE Logiq 9 system (Gen-

eral Electric Healthcare, Chicago, Il, USA) or a Toshiba

Aplio 500 (Canon Medical Systems, Tustin, CA, USA),

by one of three fellowship-trained breast imagers

(15�24 y of experience). Each lesion was assigned a BI-

RADS category assessment based on integration of clini-

cal, mammographic and sonographic features.

For women who gave written consent, three SWE

images were immediately obtained with an Aixplorer US

system (Supersonic Imagine, Aix-en-Provence, France)

using a SL15-4 probe. For each lesion, SWE parameters

were adjusted to obtain an elastogram that covered the

lesion entirely and the probe was kept immobile for

3�5 s to reach stability of elastograms. Then, for the

same lesion, a 1-s cine loop (100 frames/s) of radiofre-

quency (RF) images was obtained under B-mode guidance

with the same system and probe, by changing the acquisi-

tion mode. A fixed setting was used for all acquisitions:

nominal center frequency = 7.0 MHz, focused at 2 cm,

bandwidth = 68%, depth = 4 cm, lateral and axial discreti-

zations = 0.20 and 0.00639 mm/pixel, respectively.

After acquisition, the radiologist performed percu-

taneous biopsy as per standard procedure, under local

anesthesia, with 14G or 16G automatic needles, retriev-

ing four to eight samples per lesion, at the radiologist’s
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discretion. Breast pathologists performed histopatho-

logic analyses. Final diagnoses were categorized as

benign or malignant. Malignancy was defined as identifi-

cation of an infiltrating carcinoma or ductal carcinoma

in situ; all other diagnoses were considered benign. The

label “fibrocystic changes” was applied to all lesions

with pathologic diagnoses that included sclerosing

adenosis, apocrine metaplasia, ductal hyperplasia and

sclerocystic changes. For women in whom a high-risk

diagnosis was obtained at percutaneous biopsy, the final

diagnosis recorded was the one based on surgical pathol-

ogy. In the absence of surgery, stability at imaging was

considered indicative of no associated malignancy.

Patient management decisions were made without

consideration of the data obtained from elastography or

QUS.

Lesion analysis

The data acquired with the Aixplorer scanner were

transferred to a workstation for analysis; lesions were

anonymized so that neither patient identity nor lesion

BI-RADS classification was revealed.

Uncompressed B-mode images were computed as

the echo envelope of RF data (Kallel et al. 1994) as in

Destrempes et al. (2013), without application of filters or

log compression except for display. The contour of each

lesion was manually delineated (segmented) on the first

image of the cine loop of RF data and on the first of three

corresponding B-mode images matched with SWE maps

by a breast radiologist, with an in-house software written

in MATLAB (2010a, The MathWorks, Natick, MA,

USA) that required little training for using.

Contours were then propagated along remaining

images using an algorithm that compensates for motion

(Destrempes et al. 2011). In addition to the segmented

intra-tumoral zone, a 3-mm-thick supra-tumoral zone

above the lesion was defined to take into account spicu-

lations and formation of an echogenic rim in peri-

tumoral tissues caused by reaction of surrounding

parenchyma to malignant cells. A 5-mm-thick infra-

tumoral zone was also defined to capture posterior fea-

tures, if present, associated with the lesion. Supra- and

infra-tumoral zones were automatically computed from

the intra-tumoral zone segmentation.

The median (over three acquisitions) of the maxi-

mum elasticity Emax on each of these three regions of

interest (ROIs) was computed from SWE images directly

obtained from the Aixplorer system, for a total of three

elastographic features (one per ROI). For each of the

three ROIs on B-mode images, a local sliding estimation

window was swept across the ROI, and only pixels with

the same statistical properties as the center pixel were

considered for estimation, as described in Destrempes

et al. (2016). At each location of the window, four
parameters with a physical interpretation were derived

from the postulated homodyned K-distribution model of

the echo envelope (Destrempes et al. 2013), from which

the following were retained based on Trop et al. (2015):

(i) infra-tumoral total signal power mn normalized by the

maximal intensity in the ROI (Trop et al. 2015); (ii)

intra-tumoral reciprocal 1/a of the scattering clustering

parameter a (Dutt and Greenleaf 1994; Destrempes et al.

2013); (iii) supra-tumoral coherent-to-diffuse signal ratio

k (Dutt and Greenleaf 1994; Destrempes et al. 2013); and

(iv) supra-tumoral diffuse-to-total signal power ratio 1/

(k + 1) (Destrempes et al. 2016). This process yielded

four homodyned-K parametric maps. The mean value

and interquartile range (IQR) of each of these maps were

extracted as QUS features, for a total of eight bio-

markers. Note that any other statistic (e.g., median, stan-

dard deviation, skewness) could have been considered as

features.

The total attenuation coefficient’s slope (under lin-

ear dependency with respect to frequency) aatt (dB/

MHz/cm) on intra- and infra-tumoral zones was esti-

mated based on the spectral fit algorithm (Bigelow and

O’Brien 2005) that requires use of a RMI 403 GS refer-

ence phantom (Gammex, Middleton, WI, USA), thus

yielding two additional QUS features. The acquisition

settings were fixed throughout the study, and the acquisi-

tion on the reference phantom was performed after data

acquisition using the same settings.

In addition to these 13 quantitative features, the BI-

RADS category, as assessed and recorded by a breast

radiologist, was considered as a clinical feature for clas-

sification. Lesion analyses were carried out using com-

puter programs in C++, and programs written with

MATLAB. Manual segmentations were based on a pro-

gram written with MATLAB. Examples of segmented

zones and quantitative parametric maps are provided in

Figures 1�4.

Data analysis based on machine learning

Random forests (Breiman 2001) were used as clas-

sifier model as they are liable to avoid overfitting in the

case of relatively small data, as opposed to neural net-

works. A random forest consists of independent decision

trees (1000 in this work, except for feature selection)

from which classification is reached by considering the

most frequent decision among all decisions output by

each tree. Note that, based on Theorem 1.2 of Breiman

(2001), addition of more trees does not cause overfitting

in random forest classifiers. Classification efficiency of

various combinations of features was assessed by esti-

mating the area under the receiver operating characteris-

tic (ROC) curve (AUC). A bootstrap cross-validation

method was adopted to estimate true- and false-positive

rates from which ROC curves were computed.



Fig. 1. Example of a malignant lesion. A 71-y-old woman without prior breast problems presented with a new palpable
mass in the left upper outer breast. Mammography and ultrasound revealed a 2.5-cm irregular highly suspicious mass,
classified as BI-RADS category 5. Biopsy confirmed a luminal A (ER+PR+Her2�) grade 2 infiltrating ductal carcinoma.
(a) Echograph B-mode image within Q-box. (b) Shear wave elasticity (SWE) map (kPa) displayed within Q-box together
with contours delineated on the corresponding echograph B-mode image. BI-RADS = Breast Imaging Reporting and

Data System.

Fig. 2. Example of a malignant lesion (same lesion as in Fig. 1). (a) Echo envelope of radiofrequency (RF) data within
5 mm of the lesion. (b) Homodyned-K reciprocal of the scatterer clustering parameter 1/a (no units)—in log scale for dis-
play—is superimposed on B-mode (echo envelope of RF data) together with contours delineated on the echo envelope.
(c) Homodyned-K diffuse-to-total signal power ratio 1/(k + 1) (no units) is superimposed on B-mode (echo envelope of
RF data). (d) Total attenuation coefficient’s slope map aatt (dB/cm/MHz)—in log scale for display—is superimposed on

B-mode (echo envelope of RF data).
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Fig. 3. Example of a benign lesion. A 44 y-old woman, whose mother had breast cancer at 65, presented with a new
lesion in the upper inner left breast detected at mammography. Ultrasound characterization revealed a 16-mm, oval,
well-circumscribed mass, classified as BI-RADS category 4A. Biopsy confirmed a benign fibroadenoma. (a) Echograph
B-mode image within Q-box. (b) A shear wave elasticity map (kPa) is displayed within the Q-box together with contours
delineated on the corresponding echograph B-mode image. BI-RADS = Breast Imaging Reporting and Data System.
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In view of the heavy computational load inherent to

bootstrap methods, and because the number of combina-

tions of features grows exponentially as a function of the

number of features, a rapid feature selection procedure

was applied on all combinations of at most four features

including the BI-RADS category. For this purpose, a
Fig. 4. Example of a benign lesion (same lesion as in Fig. 3). (a
Homodyned-K reciprocal of the scatterer clustering parameter 1/a
mode (echo envelope of RF data) together with contours delineat
signal power ratio 1/(k + 1) (no units) is superimposed on B-mo

ficient’s slope map aatt (dB/cm/MHz)—in log-scale for display—
single random forest comprising 3000 trees was trained

on the entire database for each such combination (Gen-

uer et al. 2010). The 40 combinations of features with

the highest G-mean values (He and Garcia 2009) and

remaining ones with same G-mean were then selected

for further assessment.
) Echo envelope of RF data within 5 mm of the lesion. (b)
(no units)—in log-scale for display—is superimposed on B-
ed on the echo envelope. (c) Homodyned-K diffuse-to-total
de (echo envelope of RF data). (d) Total attenuation coef-
is superimposed on B-mode (echo envelope of RF data).
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For each of the selected combinations of features,

the 0.632+ bootstrap method (Efron and Tibshirani

1997), with 1000 bootstraps, was applied to estimate the

true- and false-positive rates. To obtain a ROC curve,

stratified resampling with replacement was performed,

with strata based on a proportion of positives varying

from 0�1 (in steps of 1 of 40). The number of true and

false positives was computed only on data not belonging

to a given bootstrap sample.

For each of the 40 selected combinations of fea-

tures, the area under the ROC curve was estimated, and

the combination of features yielding the highest value

was considered as the best combination. The jackknife

technique (DeLong et al. 1988) was then used to provide

a sample of 103 AUCs (one AUC per lesion), from

which a 95% confidence interval for the AUC corre-

sponding to the best combination of features was esti-

mated based on percentiles.

Thus, combinations of 3 QUS or SWE features

among 13 (one per ROI) and the BI-RADS category

were assessed. For comparison’s sake, other combina-

tions of features were tested: combinations of 4 features

(at least 1 per ROI) other than the BI-RADS category

and the BI-RADS category alone. We also tested the

three SWE features combined with the BI-RADS cate-

gory, and combinations of 3 QUS features among 10

(one per ROI), along with the BI-RADS category. When

testing the BI-RADS category alone, the random forest

classifier was used as for the other combinations, albeit

with a single feature, and results of biopsy were the gold

standard as for the other combinations. These analyses

were carried out using R statistical software (R Founda-

tion, Vienna, Austria) and package “RandomForest”

Version 4.6-12 for R.
Table 1. Demographic distribution of BI-RADS categories and
malignancy within the study population

BI-RADS
assessment

Total No. of lesions Malignant Benign

4A 35 (34.0%) 1 (2.9%) 34 (97.1%)
4B 17 (16.5%) 2 (11.8%) 15 (88.2%)
4C 11 (10.7%) 7 (63.6%) 4 (36.4%)
5 40 (38.8%) 39 (97.5%) 1 (2.5%)
Total 103 49 (47.6%) 54 (52.4%)

BI-RADS = Breast Imaging Reporting and Data System.
RESULTS

Study population

Between January 2015 and September 2017, 112

women were recruited. There were 9 subsequent exclu-

sions: 4 retrieved consent; 4 acquisitions were incomplete

(missing RF or SWE data); and 1 woman was found to

have had surgery in the area of interest. The final study

population consisted of 103 women for whom 103 lesions

were considered. Mean patient age was 53.3 y (range:

15�92 y). Fifty-two women had undergone menopause

(50.5%, 52 of 103) and 6 (6 of 52, 11.5%) were taking

hormone replacement therapy. Seven women (7 of 103,

6.8%) had been treated for breast cancer in the contralat-

eral breast, one had been treated for ovarian cancer and

one had undergone radiotherapy for mediastinal lym-

phoma. Four women had previously undergone surgery

for benign lesions in the same breast but in a different

quadrant from the study lesion (from 4�30 y prior) and 3
women had had percutaneous benign biopsies in the ipsi-

lateral breast (from 2 mo to 4 y prior). Fifteen women had

first- and second-degree family histories of breast cancer

(15 of 103, 14.6%), and one woman’s grandmother had

been treated for ovarian cancer.
Breast lesions

Thirty-seven of 103 lesions (35.9%) were located in

the left breast, and 66 (64.1%) in the right breast. Lesion

diameter ranged from 4.4�43.5 mm (mean = 17.1 mm,

median = 13.5 mm). Lesion depth within the breast was

classified as the deepest third for 27 lesions (26%), the mid-

dle third for 56 lesions (54%) and the superficial third for

20 lesions (20%). Mammographic evaluation was available

for 98 lesions (95%): parenchymal density was considered

fatty in 13 (13%) (type A); 33 (34%) were classified as type

B and 37 (38%) as type C; and 15 (15%) were extremely

dense (type D). Sixty-three lesions (61.2%) were classified

as moderately suspicious (BI-RADS 4): 35 lesions (34.0%)

as BI-RADS 4A, 17 (16.5%) as BI-RADS 4B, 11 (10.7%)

as BI-RADS 4C. Forty lesions (38.8%) were classified as

highly suspicious (BI-RADS 5).

Histopathology analysis confirmed 39 of the 40 BI-

RADS 5 lesions (97.5%) as malignant. One of thirty-five

BI-RADS 4A lesions (2.9%) was classified as malignant, as

were 2 of 17 BI-RADS 4B lesions (11.8%) and 7 of 11 BI-

RADS 4C lesions (63.6%). Forty-nine of 103 lesions were

malignant (47.6%) (Table 1). All malignant cases were

invasive cancers, the majority invasive ductal carcinomas

(37 of 49, 75.5%), of which 8 were associated with ductal

carcinoma in situ (8 of 37, 21.6%). Other invasive cancer

subtypes encountered were invasive lobular carcinomas (5

of 49, 10.2%), 3 mucinous carcinomas (3 of 49, 6.1%), 2

papillary carcinomas (4.1%), 1 tubular carcinoma and 1

adenosquamous carcinoma.

Fifty-four non-cancerous lesions were diagnosed.

The majority were fibroadenomas (34 of 54, 63.0%); 6

corresponded to fibrocystic changes (6 of 54, 11.1%); 5

were papillomas, one of which harbored atypia (5 of 54;

9.3%); and 5 were fibrosis (9.3%). The remaining lesions

corresponded to one radial scar, one fat necrosis, one



Fig. 5. Receiver operating characteristic (ROC) curves. ROC
curves were obtained from the best combination of at most
four features chosen from the different types of features: BI-
RADS category, shear wave elasticity (SWE), and quantitative
ultrasound (QUS), comprising features extracted from homo-
dyned-K and total attenuation coefficient’s slope maps, as
tested on lesions in BI-RADS categories 4 and 5. The interpo-
lated specificity (1 � false positive rate) corresponding to a
sensitivity of 98% is also presented on each curve. BI-

RADS = Breast Imaging Reporting and Data System.
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pseudoangiomatous stromal hyperplasia and one border-

line phyllodes tumor.

Machine learning model analysis performance

The area under the ROC curve (AUC) for each type

of combinations of features can be found in Table 2. On

BI-RADS 4 and 5 category lesions, the highest AUC

obtained by considering all types of features that is, 0.97

(0.968�0.972), was obtained with the supra-tumoral 1/

(k + 1) and intra- and infra-tumoral aatt in addition to the

BI-RADS category. These features yielded on the ROC

curve a specificity of 84.8%, 75.9% or 34.6% at a sensi-

tivity of 97%, 98% or 99%, respectively. When retaining

the 40 combinations with the best G-means among QUS

features together with the BI-RADS category (at the fea-

ture selection step), an additional combination was found

to yield an AUC of 0.97: the supra-tumoral k IQR and

intra- and infra-tumoral aatt along with the BI-RADS

category. This combination of features yielded a speci-

ficity of 81.5%, 68.5% or 37.4% at a sensitivity of 97%,

98% or 99%, respectively. Combining the 3 SWE fea-

tures with BI-RADS category yielded an AUC of 0.96,

with a specificity of 57.7%, 43.8% or 21.9% at a sensi-

tivity of 97%, 98% or 99%, respectively. In comparison,

considering all features except BI-RADS category

yielded an AUC of 0.74 for the best combination consist-

ing of supra-tumoral 1/(k + 1) IQR, intra-tumoral Emax,

intra- and infra-tumoral aatt, which gave a specificity of

18.5%, 14.1% or 0.08% for a sensitivity of 97%, 98% or

99%, respectively. In turn, BI-RADS assessment alone

provided an AUC of 0.95, with a specificity of 47.5%,

21.6% or 10.8% at a sensitivity of 97%, 98% or 99%,

respectively. Corresponding ROC curves are provided in

Figure 5.
Table 2. Areas under the ROC curves for various combinations o

Type of features Best found combination
of features

AUC [95% CI]
BI-RADS 4�5

BI-RADS
category

BI-RADS category 0.95 [0.947�0

SWE, QUS Supra: 1/(k + 1) IQR, Intra:
Emax, Intra: aatt, Infra: aatt

0.74 [0.727�0

BI-RADS cate-
gory, SWE

BI-RADS category, Supra:
Emax, Intra: Emax, Infra:
Emax

0.96 [0.959�0

BI-RADS cate-
gory, QUS

BI-RADS category, Supra:
k IQR, Intra: aatt, Infra: aatt

0.97 [0.969�0

BI-RADS cate-
gory, SWE,
QUS

BI-RADS category, Supra:
1/(k + 1), Intra: aatt, Infra: aatt

0.97 [0.968�0

AUC = area under the receiver operating curve; CI = confidence interval; R
ing Reporting and Data System; QUS = quantitative ultrasound; SWE = shear
Supra = supratumoral; Intra = intratumoral; Infra = infratumoral; se = sensitivit

Specificity and Youden’s index values in bold are maximum values.
* BI-RADS category; SWE; Emax; QUS, including mean and IQR of homo

coefficient’s slope aatt. Youden’s index (Schisterman et al. 2005) is also report
y The specificity of interpolated points on the ROC curves corresponding to
DISCUSSION

We propose an ancillary tool to sonographic character-

ization of breast lesions before biopsy, based on quantitative

measurements and estimation, to improve clinical assess-

ment. The model is based on random forests classifiers and
f features, as estimated with the 0.632+ bootstrap method*

Specificityy

se = 97% se = 98% se = 99% Youden’s
index

.952] 47.5% 21.6% 10.8% 0.84

.755] 18.5% 14.1% 0.08% 0.37

.967] 57.7% 43.8% 21.9% 0.86

.970] 81.5% 68.5% 37.4% 0.87

.972] 84.8% 75.9% 34.6% 0.87

OC = receiver operating characteristic curve; BI-RADS = Breast Imag-
wave elasticity; IQR = interquartile range; Emax = maximum elasticity;
y.

dyned-K parametric maps mn, 1/a, k and 1/(k + 1); and total attenuation
ed for each ROC curve.
a high sensitivity (se) are reported.
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uses, in addition to the BI-RADS category, elastography

features; homodyned-K features estimated from uncom-

pressed, unfiltered echo envelopes of RF signals; and the

total attenuation coefficient’s slope estimated with spectral

analysis of RF signals. When considering all types of fea-

tures for 103 lesions, the AUC was 0.97, and a specificity of

55.9% was reached (representing 30 of 54 lesions) at 98.4%

sensitivity.

In the context of US characterization before biopsy,

it is aimed at determining the portion of ROC curves

where sensitivity is close to 100%. Under this condition,

BI-RADS category taken as a single feature performed

poorly (sensitivity = 97.5%, specificity = 27.5%), and

quantitative features alone performed even more poorly

(sensitivity = 97.6%, specificity = 16.3%). Nonetheless,

combination of BI-RADS category with elasticity and

QUS features raised the performance substantially,

reaching a specificity of 55.9% at a sensitivity of 98.4%.

These findings suggest that BI-RADS assessment and

quantitative features would benefit of being used jointly

for improvement of breast classification efficiency to

avoid unnecessary biopsies. This is consistent with table

3 of Dobruch-Sobczak et al. (2017).

Results obtained can be explained from a biological

perspective. Malignant masses typically feature spicu-

lated margins, yielding an expected decrease in parame-

ter 1/(k + 1), which is equivalent to the finding of Trop

et al. (2015); and posterior shadowing, resulting in an

expected higher difference between infra- and intra-

tumoral aatt (because of signal propagation in the poste-

rior zone), which is consistent with Jones et al. (2013).

Indeed, these trends were observed: mean values of 0.80

(malignant lesions) versus 0.86 (benign lesions) for 1/

(k + 1) (no units), and 0.066 versus 0.049 for infra aatt
(dB/cm/MHz) minus intra aatt.

No SWE feature was retained in the best combination

of biomarkers, but it is worth noting that when considering

SWE and QUS alone, the intra-tumoral maximum elasticity

(Emax) was retained in the best selected combination of fea-

tures. Note that in Berg et al. (2012) and Evans et al.

(2012b), Emax or Emean was computed on the lesion and

adjacent tissues presenting stromal stiffness, which justified

considering Emax in the tumoral and two peritumoral zones.

The relevance of elasticity in shells surrounding lesions was

also studied by Huang et al. (2019).

As per meta-analysis by Xue et al. (2017), the over-

all AUC under the ROC curve was 0.93 (0.90�0.95)

with SWE parameters. In contrast, the proposed

SWE�QUS features combined with BI-RADS grade

yielded an AUC of 0.97 (0.968�0.972). Note that some

studies included BI-RADS 2 or 3 category lesions in

patients’ recruitment (e.g., Zonderland et al. 1999; Berg

et al. 2012; Dobruch-Sobczak et al. 2017), thus increas-

ing the overall specificity because of a lower rate of
malignancy. See Davis and Goadrich (2006) on this

issue. Recently, machine learning classification strate-

gies based on SWE features were proposed for breast

cancer diagnosis (Zhang et al. 2016; Zhou et al. 2018).

Comparison of performance with these studies is diffi-

cult because BI-RADS categories of selected women

were not specified.
Limitations

Possibilities of subanalyses were limited in this

work because of the small sample size of some subcate-

gories. For instance, it would have been useful to restrict

subanalyses on BI-RADS categories 4A and 4B, those

most likely to benefit from improved lesion characteriza-

tion after which recommendation for biopsy may be

modified to short-term surveillance only, that is down-

graded to BI-RADS 3 category, but there were only 3

malignant lesions in these two categories. For the same

reason, subanalyses on malignant lesions (e.g., invasive

ductal carcinomas vs. invasive lobular carcinomas) were

not performed. Thus, studies on representative databases

of larger size would have to be performed to further

assess and refine the findings of this study.

Based on the meta-analysis by Xue et al. (2017) and

the multicentric study performed by Berg et al. (2012),

we restricted our choice of SWE features to the maxi-

mum elasticity within three zones of interest. Likewise,

QUS features were restricted to a few possible ones,

based on our previous study (Trop et al. 2015) and work

by Jones et al. (2013). It would be worthwhile pursuing

breast lesion classification based on further features,

including other SWE features based on the full elasticity

map, as was done in Zhang et al. (2016) and Zhou et al.

(2018), albeit without including BI-RADS category as a

feature.

In this work, classification of breast lesions required

the pre-processing steps of localization and manual seg-

mentation of lesions. It is conceivable that these two

steps could be performed automatically in the foresee-

able future, possibly using deep learning, which would

make the proposed method for SWE and QUS analyses

more convenient in the context of clinical routine. Note

that in our previous study (Trop et al. 2015), it was found

that the performed K-homodyned feature analysis was

robust to manually drawn initial lesion contour perturba-

tions within 0.5�1.0 mm.
CONCLUSIONS

The proposed classifier based on BI-RADS cate-

gory combined with elastography and QUS features per-

formed best on BI-RADS categories 4 and 5. Although it

would be expected that further analysis on a substantially

larger study population may result in a best combination
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of features different from that obtained in the present

study, this work illustrates the potential of combining

features of distinct type, such as clinical (BI-RADS cate-

gory), SWE (based on biomechanical properties of bio-

logical tissues) and QUS (based on acoustical properties

of tissues). The reported analysis with random forests

trained classifiers suggests the potential of avoiding

biopsy in up to 75.9% of BI-RADS 4 and 5 category

lesions later confirmed to be benign, while reaching a

sensitivity of 98%.
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