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Abstract
Objectives To develop a machine learning model based on quantitative ultrasound (QUS) parameters to improve classification of
steatohepatitis with shear wave elastography in rats by using histopathology scoring as the reference standard.
Methods This study received approval from the institutional animal care committee. Sixty male Sprague-Dawley rats were either
fed a standard chow or a methionine- and choline-deficient diet. Ultrasound-based radiofrequency images were recorded in vivo
to generate QUS and elastography maps. Random forests classification models and a bootstrap method were used to identify the
QUS parameters that improved the classification accuracy of elastography. Receiver-operating characteristic analyses were
performed.
Results For classification of not steatohepatitis vs borderline or steatohepatitis, the area under the receiver-operating characteristic
curve (AUC) increased from 0.63 for elastography alone to 0.72 for a model that combined elastography and QUS techniques
(p < 0.001). For detection of liver steatosis grades 0 vs ≥ 1, ≤ 1 vs ≥ 2, ≤ 2 vs 3, respectively, the AUCs increased from 0.70, 0.65,
and 0.69 to 0.78, 0.78, and 0.75 (p < 0.001). For detection of liver inflammation grades 0 vs ≥ 1, ≤ 1 vs ≥ 2, ≤ 2 vs 3, respectively,
the AUCs increased from 0.58, 0.77, and 0.78 to 0.66, 0.84, and 0.87 (p < 0.001). For staging of liver fibrosis grades 0 vs ≥ 1, ≤ 1
vs ≥ 2, and ≤ 2 vs ≥ 3, respectively, the AUCs increased from 0.79, 0.92, and 0.91 to 0.85, 0.98, and 0.97 (p < 0.001).
Conclusion QUS parameters improved the classification accuracy of steatohepatitis, liver steatosis, inflammation, and fibrosis
compared to shear wave elastography alone.
Key Points
• Quantitative ultrasound and shear wave elastography improved classification accuracy of liver steatohepatitis and its histo-
logical features (liver steatosis, inflammation, and fibrosis) compared to elastography alone.

• A machine learning approach based on random forest models and incorporating local attenuation and homodyned-K tissue
modeling shows promise for classification of nonalcoholic steatohepatitis.

• Further research should be performed to demonstrate the applicability of this multi-parametric QUS approach in a human
cohort and to validate the combinations of parameters providing the highest classification accuracy.
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Abbreviations
AUC Area under the receiver-operating characteristic

curve
CAP Controlled attenuation parameter
HKD Homodyned-K distributions
HPS Hematoxylin phloxine saffron
IQR Inter-quartile range
MCD Methionine and choline deficient
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
QUS Quantitative ultrasound
ROC Receiver operating characteristic
ROI Region of interest
SH Steatohepatitis

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a highly preva-
lent condition, found in 20 to 30% of adults inWestern nations
[1], which may progress to nonalcoholic steatohepatitis
(NASH), an advanced form found in 3 to 5% of the general
population [1]. Liver biopsy is commonly used as the refer-
ence standard to grade steatosis and inflammation, two dis-
tinctive features of steatohepatitis, and to stage fibrosis, a
marker of liver disease severity [2, 3]. However, liver biopsy
is invasive, associated with pain, sampling errors, and risk of
bleeding [4, 5]. Hence, there is a need for a noninvasive tech-
nique for the assessment of liver steatohepatitis.

Magnetic resonance-based techniques are accurate and pre-
cise for quantification of liver fat with proton density fat frac-
tion [6–8] and liver fibrosis with elastography [9, 10]. Recent
research also suggests that advanced magnetic resonance
elastography may potentially discriminate hepatic inflamma-
tion and fibrosis in the early stages of chronic liver disease [11,
12]. Despite its strengths, magnetic resonance imaging may
not be practical or cost-effective for clinical screening consid-
ering the high prevalence of NAFLD [13]. Recently, quanti-
tative ultrasound (QUS) techniques that measure controlled
attenuation parameter (CAP) [14–17], local attenuation coef-
ficient, or backscatter coefficient have been proposed for the
detection or grading of liver steatosis using either magnetic
resonance imaging proton density fat fraction or histology as
the reference standard [18, 19]. These QUS techniques may be
implemented on ultrasound scanners with an elastographic
capability that can currently achieve good accuracy for non-
invasive staging of liver fibrosis [20, 21]. Hence, there is a
high interest in developing an ultrasound-based approach for

comprehensive assessment of liver inflammation, steatosis,
and fibrosis within the same examination.

A potential strategy to characterize the livers is by analyz-
ing the interaction of sound waves with insonified tissues to
reveal microstructure properties accessible through the analy-
sis of backscatter radiofrequency echoes [22]. Various QUS
backscatter approaches for determining tissue microstructures
from radiofrequency echoes have received broad interest: in
particular, fitting the spectrum of radiofrequency signals to an
estimated spectrum by an appropriate scattering model (spec-
tral approach) [22], and computing 1st order statistics of ra-
diofrequency signal echo envelope (statistical approach) [23].
We hypothesized that a machine learning model based on
QUS parameters could help detect steatohepatitis by provid-
ing a cellular signature (i.e., size, density, spatial organization,
and acoustic properties) of liver tissues with various histolog-
ical features along the NAFLD to NASH disease continuum
[2]. A recent study found that liver shear stiffness measured
with ultrasound elastography shows promise as a biomarker
for noninvasive diagnosis of steatohepatitis [24].

The aim of this study was to develop a machine learning
model based on QUS parameters that can be used to improve
the classification of steatohepatitis over shear wave
elastography in rats by using histopathology scoring as the
reference standard. The secondary purpose was to identify
QUS parameters that provide the highest classification accu-
racy for steatosis, inflammation, and fibrosis.

Materials and methods

Study design and animals

This study received approval from the Institutional Animal
Care Committee at the University of Montreal Hospital
Research Centre. Special care was taken to follow the
Animal Research: Reporting of In Vivo Experiments
(ARRIVE) guidelines for the replacement, refinement, and
reduction of animals in this study. This is an ancillary study
to an experimental animal model of NASH described in detail
previously [24]. To obtain a range of disease severity, we
included 48 11-week-old (at the start of the study) male
Sprague-Dawley rats (Charles River Canada, Saint-Constant,
Quebec, Canada) fed with a methionine- and choline-deficient
(MCD) diet (Dyets 518753; Research Diets) ad libitum to
develop steatosis, necroinflammation, and fibrosis similar to
that found in human NASH [25, 26]. These rats were divided
into four groups of 12 rats each that were imaged and subse-
quently euthanized at 1, 4, 8, and 12 weeks, respectively.
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Twelve 11-week-old healthy control rats with free access to
standard food and water served as controls and were imaged
and sacrificed 4 weeks after the start of the study.

The liver of animals in the experimental and control co-
horts was evaluated in vivo by ultrasound elastography and
QUS prior to euthanasia. After euthanasia, livers were
explanted for ex vivo assessment by histopathology.

US Elastography

Shear wave ultrasound elastography measurements were
performed using a research ultrasound system (model
V1, Verasonics Inc.), while the rats were under anesthe-
sia and in the supine position on an electronic heating
pad (MMHP01FFC; Mansfield Medical). To generate each
shear wavefront within the liver, a linear array ultrasound
transducer (ATL L7-4, Philips) was used to induce three 40-
V 125-μs long radiation force pushes 4 mm apart [27]. Three
reference images for the displacement field estimation were
acquired before the shear wave generation. The same trans-
ducer was used to acquire plane wave radiofrequency data at a
frame rate of 4 kHz [28]; image frames were reconstructed
using the f-k migration algorithm [29]. Ten shear wave gen-
eration and acquisition sequences were performed for each
animal. The sequence with the highest signal-to-noise ratio
was chosen for post-processing.

A conventional one-dimensional normalized cross-
correlation algorithm was used to obtain shear wave displace-
ment fields within the liver from acquired radiofrequency data
[30]. Shear wave (phase) velocities were estimated from the
displacement fields in the wavenumber-frequency domain
[31]. The regions of interest (ROIs) for all animals were se-
lected at an approximate depth of 15 mm from the ultrasound
transducer surface and with a length between 6 to 8 mm on the
median lobe of the liver. Liver storage modulus (G’) was
estimated and averaged over the frequency range between
130 and 220 Hz, which was previously shown to provide a
better separation between SH categories compared with lower
frequencies [24].

Quantitative ultrasound

Similar to ultrasound elastography acquisitions, rats were un-
der anesthesia and in a supine position on the heating pad.
QUS acquisitions were performed before the elastography ex-
am using the same Verasonics system and an ultrasound trans-
ducer, with a bandwidth of 4 to 7 MHz and a center frequency
of 5 MHz. One hundred radiofrequency frames were acquired
at 4 kHz, migrated [29], and Hilbert transformed to obtain the
echo envelope. Received echoes were compensated for time
gain attenuation, whose values were recorded during acquisi-
tion. Contours of a ROI within the median lobe or left lateral
lobe of the liver were manually delineated by a fellowship-

trained radiologist on the first frame of each B-mode se-
quence. These contours were then propagated automatically
using a segmentation algorithm [32] to consider similar ROIs
on consecutive frames.

Ultrasound echo envelope statistics were modeled with
homodyned-K distributions (HKD). A sliding window of
82 × 10 pixels2, corresponding to 3 mm in both axial and
lateral directions, was swept across the ROI by steps of 4 ×
1 pixels2, and estimation of HKD parameters was performed
within the sliding window as in Destrempes F et al [33, 34].
Thus, at each pixel of the ROI corresponded a local HKD
estimation, from which could be computed local values of
the mean intensity normalized by its maximal value μn, the
reciprocal 1/α of the scatterer-clustering parameter α, the
coherent-to-diffuse signal ratio k, as well as the diffuse-to-
total signal power ratio 1/(κ + 1) [34]. The mean intensity μn
is akin to B-mode echogenicity. A decrease of 1/α corre-
sponds to a greater homogeneity of the scattering medium.
An increase in k or κ reflects the periodic alignment of scat-
terers, the presence of specular reflection, or highly structured
spatial organization of scatterers [34].

This image post-processing pipeline yielded four HKD
parametric maps of the ROI: μn, 1/α, k, and 1/(κ + 1)
(Supplementary Table 1). The mean and interquartile range
(IQR) of each parameter were then computed on each frame,
and median values over all frames were output, thus yielding
eight HKD features. The local attenuation coefficient (dB/
MHz/cm) within the ROI was also computed using the spec-
tral shift algorithm [35]. Since no diffraction occurs within the
image plane in images that are reconstructed from plane-wave
images [36], correction for diffraction was not applied in this
application of the spectral shift method. The attenuation slope
was estimated with a robust fit method rather than linear re-
gressions (c.f. eq. (4.13) in Bigelow et al [35]). The median of
attenuation coefficients estimated over all the frames was con-
sidered as the last QUS feature.

Histopathology analysis

The liver specimens were stained with hematoxylin phloxine
saffron, trichrome, reticulin, Sirius red, and α-smooth muscle
actin stains. Histology slides of liver specimens were reviewed
by an hepatopathologist. Blinded to the animal cohort, scores
of the steatosis grade from 0 to 3, lobular inflammation grade
from 0 to 3, hepatocellular ballooning grade from 0 to 2, and
fibrosis stage from 0 to 4 were obtained according to the
NASHClinical Research Network histological scoring system
[2] and used as the reference standard for in vivo quantitative
ultrasound data. Steatohepatitis (SH) was categorized as: Bnot
SH,^ Bborderline,^ and BSH,^ based on the NAFLD Activity
Score, which is the unweighted sum of steatosis, inflamma-
tion, and ballooning grades [2]. For this study, SH was further
subdivided into BSH with fibrosis stage 1 or lower^ and BSH
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with fibrosis stage 2 or higher^ to account for the presence of
fibrosis. A detailed description of the histopathological scor-
ing system is provided in Supplementary Table 2.

Data analysis

Machine learning model A random forest classifier was used
as a statistical learning model [37]. With this method, a clas-
sification is performed independently by multiple decision
trees, based on input features, and the most frequent class is
assigned as output decision. Feature selection was performed
with random forests of 3000 trees each, on all combinations of
at most three features among all chosen features. The G-mean
(square root of the product of sensitivity with specificity) was
computed for each tested combination, and the ten combina-
tions with the highest G-means were selected. The G-mean is
recommended in the case of imbalanced data (i.e., in which
the two class groups vary much in size) [38].

Statistical analysis

Classification of NASH For each selected combination of fea-
tures, the receiver-operating characteristic (ROC) curve was
constructed by generating stratified samples with a proportion
of the samples in one class varying from 1/40 to 39/40 by steps
of 1/40. For each specified proportion, false positive and neg-
ative rates were computed according to the 0.632 + bootstrap
method [39]. To avoid over-fitting, trees were restricted to a
maximum number of terminal nodes, ranging from 2 to 20 by
steps of 2. The combination of features with the highest AUC
was then selected as the best combination, for a given classifi-
cation task. The 95% confidence interval (CI) was computed
based on percentiles of a sample of AUCs that was constructed
with the jackknife method [40]. Jackknife samples of AUCs
were also used to perform one-sided-paired Wilcoxon-signed
rank tests to compare the best combination of QUS features
with the elastography parameter alone.

Classification of steatosis grades, inflammation grades, and
fibrosis stages The same approach was used to identify a com-
bination of QUS parameters that improved the classification
accuracy for steatosis, inflammation, and fibrosis. On each
ROC curve, the point with maximal Youden’s index was com-
puted and the corresponding sensitivity and specificity were
reported. In the case of imbalanced classes, the area under the
precision-recall curve (PRC-AUC) [41] was also estimated, as
a better metric for comparing the performance of features’
combinations.

Correlations between steatosis grades, inflammation grades,
and fibrosis stages Since it is expected that the categorical
variables steatosis, inflammation, and fibrosis present some
degree of association, pairwise Pearsons’s chi-square test was

performed, with Holm-Bonferonni adjustment on p values, for
contingency tables as a test of association between pairs of the
categorical variables steatosis, inflammation, and fibrosis.

Statistical analysis was performed using R statistical soft-
ware (R Foundations), with p values estimated by Monte
Carlo simulations. A p < 0.05 was considered as significant.

Results

Effects of MCD model on histopathological findings

Compared with Sprague-Dawley control rats fed a standard
chow, rats fed a MCD diet for 1, 4, 8, or 12 weeks developed
steatosis, inflammation, and fibrosis. Representative stains for
each cohort are shown in Fig. 1. Further histological analysis
staining revealed a rapid increase in the grade ofmacrovesicular
steatosis as early as 1 week after exposure to the MCD diet,
reaching severe (grade 3) steatosis at 4 weeks and remaining at
that level with a longer duration of exposure to MCD diet
(Fig. 2a). Moreover, the level of inflammation increased after
1week of exposure to theMCDdiet, reaching a peak at 8weeks
and decreasing afterward (Fig. 2b). Fibrosis gradually increased
after the 4-week MCD diet and developed as mild to severe
fibrosis (stages 1 to 4) in the 12-week MCD diet cohort
(Fig. 2c). All of the control rats were classified as not SH,
whereas the classification was borderline for most of the rats
(ten out of 12) of the 1-week MCD diet cohort and SH for the
rest of MCD diet cohorts (except for two rats) (Fig. 2d).

Machine learning model

The storage modulus could not be estimated for one of the
animals in the experimental group fed with a MCD diet for
4 weeks, as all of the ten US elastography sequences revealed
a very low signal-to-noise ratio due to significant diffraction
of the shear wave by the layered structure of rat liver.
Therefore, analysis was performed on 59 rats (rather than
60). Table 1 provides detailed information about the combi-
nations of G’ and QUS parameters that provided the highest
classification accuracy for the diagnosis of NASH and for the
identification of its histopathological components (steatosis,
inflammation, and fibrosis). The addition of QUS features
improved all the classification tasks (p < 0.001). The highest
improvements were for the classification of steatosis grades
≤ 1 vs. ≥ 2 (13% in AUC), and for the characterization of not
steatohepatitis vs. borderline or steatohepatitis (9% in AUC).
The models providing the best accuracy often included the
shear elasticity modulus. B-mode images with overlaid
color-coded parametric maps of the scatterer-clustering pa-
rameter, coherent-to-diffuse signal ratio, and diffuse-to-total
signal power ratio are shown for five animal representatives
of their respective cohorts (Fig. 3).
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Classification accuracy of NASH

Depending on the dichotomized NASH categories, AUCs
were 0.63–0.92 for G’ only and 0.72–0.98 for combinations
of parameters (Table 1). Specificity and sensitivity corre-
sponding to the points on ROC curves that maximize

Youden’s index for each dichotomization are provided in
Fig. 4a.

Classification of steatosis grades, inflammation
grades, and fibrosis stages

Table 1 also provides AUC and 95% confidence intervals
for G’ only and the combinations of QUS parameters that
provided the highest classification accuracy for dichoto-
mized steatosis grades, inflammation grades, and fibrosis
stages. For detection of liver steatosis grades 0 vs. ≥ 1, ≤ 1
vs. ≥ 2, ≤ 2 vs. 3, AUCs were respectively 0.70, 0.65, and
0.69 for elastography alone and 0.78, 0.78, and 0.75 for a
model that combined QUS features and elastography for
the latter category. For detection of liver inflammation
grades 0 vs. ≥ 1, ≤ 1 vs. ≥ 2, ≤ 2 vs. 3, AUCs were respec-
tively 0.58, 0.77, and 0.78 for elastography alone and
0.66, 0.84, and 0.87 for a model that combined
elastography and QUS techniques. For staging of liver
fibrosis grades 0 vs. ≥ 1, ≤ 1 vs. ≥ 2, and ≤ 2 vs. ≥ 3,
AUCs were improved from 0.79, 0.92, and 0.91 for
elastography alone to 0.85, 0.98, and 0.97 for a model
that combined elastography and QUS techniques.
Optimal thresholds that maximize Youden’s index for
each steatosis, inflammation, and fibrosis dichotomiza-
tions are provided in Fig 4b–d, respectively.

Correlations between steatosis grades, inflammation
grades, and fibrosis stages

There was an association between steatosis and inflammation
(p = 0.0015), and between inflammation and fibrosis (p =
0.0015), but not between steatosis and fibrosis (p = 0.10).

Discussion

The key findings of this study indicate that a machine
learning approach adding QUS parameters (μn, 1/α, k,
1/(κ + 1), and local attenuation) to elastography can signif-
icantly improve the diagnosis of steatohepatitis and the
classification of steatosis, inflammation, and fibrosis in
an animal model of NASH. Historically, ultrasound imag-
ing has been used to diagnose disease based on B-mode to
classify tissue structures and Doppler-mode to assess vas-
cularity. In recent years, ultrasound elastography has been
very successful to image liver elasticity as a marker of liver
fibrosis [42, 43]. However, steatosis, inflammation, and
fibrosis may coexist in the NASH continuum and confound
liver stiffness. Inflammation, through edema and the pres-
ence of inflammatory cells, may increase the internal pres-
sure and the liver stiffness [44–47], whereas liver fat may
decrease liver stiffness [24, 48]. Another strategy to

Fig. 1 Histopathology and representative stains at × 20 magnification of
animals from the five groups of animals tested in this study. a Control
group fed a standard chow (hematoxylin phloxine saffron [HPS] stain). b
Experimental group fed a methionine and choline deficient (MCD) diet
for 1 week (HPS stain). c Four weeks (HPS stain). d Eight weeks (Sirius
red stain). e Twelve weeks (trichrome stain). Steatosis can be seen after
1 week, inflammation at 8 weeks, and fibrosis at 12 weeks
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characterize the liver tissue is to analyze its interaction
with sound waves to reveal properties accessible through
the analysis of backscatter radiofrequency echoes [22].
QUS imaging analyzes sub-resolution echoes produced
by constructive and destructive interferences for the

purpose of characterizing the tissue microstructure.
Recently, statistical machine learning approaches such as
random forest classifiers [37] have been proposed to iden-
tify elastography and QUS features providing the highest
classification accuracy for a given dataset [49, 50].

Fig. 2 Plots showing histological
grading and staging. a Steatosis
grade for the control and the
MCD diet cohorts. b
Inflammation grade for the
control and theMCD diet cohorts.
c Fibrosis stage for the control and
the MCD diet cohorts. d NASH
diagnosis category for the control
and the MCD diet cohorts
(category 0 = no steatohepatitis,
category 1 = borderline, category
2 = steatohepatitis with fibrosis
stage 1 or lower, and category 3 =
steatohepatitis with fibrosis stage
2 or higher). Comparisons were
limited to experimental cohorts
with the control cohort (*p < 0.01;
**p < 0.001). MCD1 = 1-week
MCD diet cohort, MCD4 =
4-week MCD diet cohort,
MCD8 = 8-week MCD diet
cohort, MCD12 = 12-week MCD
diet cohort

Table 1 Diagnostic accuracy of storage modulus (G’) alone and in combination with quantitative ultrasound (QUS) parameters for diagnosis of
steatohepatitis (SH) and for classification of steatosis, inflammation, and fibrosis in an animal model of NASH

Pathological
features

Groups Size AUC
G’ only

AUC multi-parameter Parameters p value

Diagnosis of
steatohepatitis

Not SH vs. (borderline or SH) 14/45 0.66 (0.63–0.70) 0.75 (0.73–0.77) 1/α IQR + 1/(κ + 1) IQR + local Att. < 0.001

(Not SH or bordeline) vs. SH 25/34 0.79 (0.78–0.81) 0.82 (0.81–0.85) G’ + 1/α IQR + μn mean < 0.001

(Not SH or borderline or SH
with fibrosis stage ≤ 1)
vs. SH with fibrosis stage ≥ 2

52/7 0.92 (0.91–0.93) 0.98 (0.97–0.98) G’ + k IQR < 0.001

Steatosis 0 vs. ≥ 1 12/47 0.73 (0.70–0.76) 0.80 (0.78–0.82) 1/α IQR + 1/(κ + 1) IQR + local Att. < 0.001

≤ 1 vs. ≥ 2 13/46 0.69 (0.65–0.73) 0.80 (0.79–0.81) 1/α IQR + 1/(κ + 1) IQR + local Att. < 0.001

≤ 2 vs. 3 17/42 0.71 (0.69–0.74) 0.78 (0.76–0.80) G’ + k mean + 1/(κ + 1) IQR < 0.001

Inflammation 0 vs. ≥ 1 12/47 0.59 (0.54–0.62) 0.69 (0.66–0.73) G’ + 1/α IQR + 1/α mean < 0.001

≤ 1 vs. ≥ 2 31/28 0.77 (0.76–0.79) 0.84 (0.83–0.86) G’ + 1/α IQR + μn mean < 0.001

≤ 2 vs. 3 46/13 0.79 (0.77–0.82) 0.86 (0.84–0.87) G’ + μn IQR +1/(κ + 1) mean < 0.001

Fibrosis 0 vs. ≥ 1 31/28 0.79 (0.78–0.80) 0.85 (0.84–0.86) G’ + k mean + μn IQR < 0.001

≤ 1 vs. ≥ 2 52/7 0.92 (0.91–0.93) 0.98 (0.97–0.98) G’ + k IQR < 0.001

≤ 2 vs. ≥ 3 53/6 0.91 (0.90–0.92) 0.96 (0.95–0.97) G’ + k IQR + 1/α mean < 0.001

Holm-Bonferroni correction was applied to p values

AUC = area under the receiver-operating characteristic curve. Numbers in parentheses are 95% confidence intervals

G’ storage modulus, μn =mean intensity normalized by its maximal value, 1/α reciprocal of the scatterer-clustering parameter, k coherent-to-diffuse
signal ratio, 1/(κ + 1) diffuse-to-total signal power ratio, IQR inter-quartile range
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Steatosis grades ≤ 2 were best staged by the local atten-
uation in combination with other QUS parameters based
on homodyned-K modeling. Of note, combinations of
QUS parameters achieved good classification accuracy:
0.78 for steatosis grades 0 vs. ≥ 1, 0.78 for grades ≤ 1
vs. ≥ 2, and 0.75 for ≤ 2 vs. 3 (by also considering
elastography). This is consistent with recent studies that
have shown that ultrasound attenuation, either measured
by a controlled attenuation parameter [15–17] or local at-
tenuation [18, 19] constitutes accurate biomarkers for the
detection and quantification of steatosis. Using liver biop-
sy as their reference standard, de Ledinghen et al showed
that the controlled attenuation parameter evaluated with
transient elastography could be useful for the detection
of steatosis with an AUC of 0.80 for grade 2 or higher
and 0.66 for grade 3 [15]. Using histology as the reference
standard, Paige et al reported that the attenuation coeffi-
cient could achieve higher accuracy than conventional ul-
trasound for grading liver steatosis, with an AUC of 0.79
for grade 2 or higher and 0.80 for grade 3 [19].

Inflammation was best graded by shear wave elastography
in combination with QUS parameters. This is similar to recent
studies that have reported mild increases in liver stiffness in
the presence of inflammation, either with ultrasound-based
[45, 46] or MR-based elastography [11, 47]. Investigators

showed that inflammation, either through infiltration of in-
flammatory cells or through edema, which increases the inter-
nal pressure of the liver [44], may increase the liver stiffness.
Our results suggest that QUS, which measures microstructural
changes, may provide a technique to account for these
phenomena.

As expected, fibrosis could be staged with good to excel-
lent accuracy using shear wave elastography alone, with
AUCs ranging from 0.79 to 0.92. This is consistent with
an abundant literature demonstrating the high fibrosis stag-
ing accuracy of liver stiffness in humans [20, 21].
Interestingly, these results suggest that the combination of
additional QUS parameters further improved the classifica-
tion accuracy, with AUCs ranging from 0.85 to 0.98, in the
range of diagnostic performance typically observed with
MR elastography [10, 51].

Taken together, these results lead us to confirm the
hypothesis that QUS-based diagnosis of NASH and
quantification of its individual histological components
(steatosis, inflammation, and fibrosis) are achievable
noninvasively within an ultrasound examination. Unlike
prior studies that have focused on one or two histological
components (mainly steatosis or fibrosis), we have ad-
dressed all three at once. This is important because the
coexistence of these conditions may all have a confounding

Fig. 3 Representative B-mode
and QUS parametric maps of five
rats fed a standard chow or a
methionine- and choline-deficient
diet for 1, 4, 8, or 12 weeks. Top
row shows B-mode images for
each animal with white lines
outlining segmented regions of
interests. Second row shows
color-coded QUS parametric map
for the scatterer-clustering pa-
rameter (displayed in log-scale).
Third row shows QUS parametric
map for the coherent-to-diffuse
signal ratio. Bottom row shows
QUS parametric map for the
diffuse-to-total signal power ratio.
Yellow indicates higher values
and dark blue lower values.
Images have been cropped from
their bottom third for display

Eur Radiol (2019) 29:2175–2184 2181



effect on liver stiffness. Of note, our study revealed associa-
tions between steatosis and inflammation, and between in-
flammation and fibrosis. Hence, a multi-parametric approach
may take into account the coexistence of these multiple con-
founders: the stiffness-lowering effect of liver steatosis over-
lapping with stiffness-increasing inflammation and fibrosis
[24].

Our study has potential limitations. Using shear wave
elastography, we only assessed the storage modulus (G’),
which is related to elasticity, and did not measure the loss
modulus (G^), which is related to viscosity. Although techni-
cally possible with state-of-the-art ultrasound [27], shear wave
viscoelastography is difficult to achieve in an animal model
due to the small size of livers but should be feasible in human
livers. Future work should be performed to determine if

viscoelastography in combination with QUS parameters
would further improve the classification of NASH and its
histopathological components.

Another limitation was imbalanced classes for three of the
dichotomic tasks. However, a comparison based on the metric
AUC-PR local to the same conclusion that combining QUS
parameters with elastography does improve greatly the perfor-
mance of classifiers.

In summary, this animal study reveals that a random forest
model based on QUS and shear wave elastography improved
classification accuracy of liver steatohepatitis and its histolog-
ical features (liver steatosis, inflammation, and fibrosis) com-
pared to elastography alone. Further research should be per-
formed to demonstrate the applicability of this multi-
parametric QUS approach in a human cohort and to validate
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Fig. 4 ROC curves obtained for the evaluation of classification accuracy
of liver steatohepatitis and its histological features. a Steatohepatitis
categories. b Steatosis grade. c Inflammation grade. d Fibrosis stage.
Dashed lines correspond to classification accuracy for storage modulus

(G’) only and full lines to combination of QUS features. Specificity and
sensitivity corresponding to points on ROC curves that maximize
Youden’s index (i.e., specificity + sensitivity −1) are reported
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the combinations of parameters providing the highest classifi-
cation accuracy.
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