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Inversion methods in shear wave elastography use simplifying assumptions to recover the mechani-

cal properties of soft tissues. Consequently, these methods suffer from artifacts when applied to

media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work,

the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic

properties of the inclusion and surrounding medium, based on an inverse problem approach assum-

ing local homogeneity of both media. An efficient semi-analytical method was developed to model

the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field

by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was

validated against finite element modeling. Shear waves were experimentally induced by acoustic

radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement

field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algo-

rithm compared the model to the experimental data and adjusted the geometrical and mechanical

parameters. The estimated shear storage and loss moduli were in good agreement with reference

measurements, as well as the estimated inclusion shape. This approach provides an accurate estima-

tion of geometry and viscoelastic properties for a single inclusion in a homogeneous background in

the context of radiation force elastography. VC 2017 Acoustical Society of America.
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I. INTRODUCTION

Elastography aims at measuring the local stiffness of

biological tissues in vivo. Variations in tissue stiffness can

indeed be indicative of pathologies, and are used for that rea-

son in medicine through manual palpations. Elastography

methods are developed to complement manual palpations

with quantitative, reproducible, remote, and non-invasive

stiffness measurements.1,2

Elastography methods monitor the local mechanical prop-

erties of tissues from the observed motion. That motion can

either be induced by manual compression, by natural move-

ments of organs, or produced by the elastography method

itself. Shear wave elastography (SWE) is based on the propa-

gation of a shear wave, and relies on the equations of wave

propagation to infer tissue properties. The present work lies in

this framework. SWE uses the fact that the shear stiffness is

several orders of magnitude smaller than the compression stiff-

ness in soft biological tissues. Hence, shear waves propagate

slowly (<10 m/s) compared to compression waves (typically

1540 m/s), and the shear wave propagation can be tracked

using ultrasound,3,4 magnetic resonance,5 and optical imaging6

methods. With ultrasound, tracking of shear waves is possible

using imaging at a high frame rate (a few kHz).

Shear waves can be generated using an exterior mechan-

ical excitation,7 but this approach has been progressively

replaced by excitation of shear waves within the tissue

through ultrasound radiation force.3,8,9 Indeed, a long ultra-

sound push (hundreds of microseconds, compared to a few

microseconds for imaging pulses) generates a radiation force

strong enough to locally move the tissue by a few micro-

meters. This deformation then propagates as a shear wave.

Acoustic radiation force imaging (ARFI) uses a single ultra-

sound push and infers locally the elastic properties from the

time varying response of the tissue.3 Supersonic imaging

(SSI) combines several successive pushes whose focus point

is displaced at a velocity larger than the shear wave velocity

to produce a conical shear wavefront that is perceived as a

planar wavefront in the imaging plane.10 Very recently,

shear waves could also be produced with a Lorentz force11

and by laser under ablative and thermoelastic regimes.12

Two inverse problem approaches have been considered

for shear wave elasticity assessment based on the assumption

of isotropic linear tissues: the direct inversion (DI)

method4,13–15 and the shear wave velocity technique.16–18

With both approaches, the shear stiffness l is estimated as

l¼ qVS
2, where q is the density of the tissue and VS is the

shear wave speed. DI is based on the Helmholtz equation,

which governs the shear wave propagation. This equation

relates the second derivatives of the displacement field in

space and time, with a proportionality factor depending on

the shear wave velocity. The velocity can be obtained directly

from the derivatives of the field. This method is sensitive to
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noise due to the need to numerically differentiate the experi-

mental displacement field. With the shear wave velocity tech-

nique, the shear wavefront in successive image frames is

tracked using correlation or peak detection methods.19

An important limitation of the shear wave velocity

approach described above is that it can only measure a single

velocity of the propagating shear wave pulse (group veloc-

ity), while all biological tissues show some extent of velocity

dispersion (i.e., a variation of the phase velocity with fre-

quency) due to viscoelasticity.20 Therefore, this method only

partially characterizes the medium, reducing the complex

behavior of the material to a single number. There is a grow-

ing set of evidence that viscoelasticity-related parameters are

relevant for diagnosis, as exemplified using magnetic reso-

nance elastography21,22 and ultrasound elastography.23

Moreover, the shear wave velocity method is subject to

artefacts in the case of strong contrast in elastic properties,

due to the assumption of propagation in a single direction

(i.e., neglecting refraction, diffraction, and reflection of the

wave). These artefacts can be partially suppressed by the use

of directional filters.24

Recently, several approaches to extract the tissue vis-

cosity from acoustic radiation force elastography data have

been proposed. Chen et al.25 and Deffieux et al.26 used the

phase slope of the propagating shear wave to infer the

phase velocity at various frequencies. In these studies, tis-

sue stiffness and viscosity were deduced from a fitting of

the velocity dispersion curve to a rheological model (usu-

ally the Voigt model). Several groups have proposed to

measure the shear wave attenuation, which is a direct con-

sequence of viscosity, using either diffraction correction

methods,27,28 time-space Fourier analysis,23 or a frequency

shift modeling strategy.29 These methods are, however,

limited to homogeneous tissues and are not able to charac-

terize the viscoelasticity of mechanical inclusions.

A strategy applicable to mechanical inclusions has been

the modeling of the shear wave propagation and the use of the

mechanical resonance phenomenon to deduce the viscoelastic-

ity.30 With this approach, the elasticity can be determined by

the peak resonant frequencies and the viscosity by the band-

width (i.e., quality factor) of those peaks. A successful inverse

problem implementation based on this concept has been docu-

mented in the context of biogel characterization.31

Furthermore, inverse problem approaches considering

more accurately the physics of the wave propagation have

been proposed to characterize mechanical inclusions, such as

the full waveform inversion.32 This numerically intensive

approach originates from geophysics (see Ref. 33 for a recent

review). To infer the internal structure of the Earth from

recorded seismic signals, geophysicists are fitting a model to

the recorded signals by adjusting the stiffness and mass den-

sity at every point of a given space grid. This results in a

large and costly inverse problem solution, as the wave propa-

gation problem is solved using a purely numerical method

such as finite differences. Application of this approach on

numerical elastography data has led to improvements in both

accuracy and contrast of viscoelasticity measures.32

By using the hypothesis of a localized heterogeneity in

an otherwise homogeneous background, the complexity of

the previous approach can be considerably decreased, since

a semi-analytical approach can be used instead of expensive

purely numerical methods. Moreover, the size of the inverse

problem is drastically reduced if piecewise continuous elas-

tic moduli are considered (i.e., one modulus inside the inclu-

sion and one outside). This approach was used by

Montagnon et al.34,35 to infer the mechanical properties

(stiffness and viscosity) of cylindrical and spherical inclu-

sions in soft tissue phantoms from the scattering of an inci-

dent shear wave. An advantage of this approach is that the

mechanical properties can be estimated independently at

each frequency contained in the incident wave. The visco-

elastic modulus of a sphere could be accurately measured

over a large frequency bandwidth.34 This method, however,

suffers from several drawbacks hindering its practical appli-

cation. First, it has been limited to canonical geometries

[ellipse in two-dimensions (2D), sphere in three-dimensions

(3D)], for which the scattering of an incident wave can be

efficiently computed, but which may not accurately represent

the reality (e.g., a lesion observed in breast cancer). Second,

in the formulation of the inverse problem in the above cited

works, the location and geometry of the inclusion had to be

known a priori, and a small perturbation in one of these

parameters could lead to dramatic perturbation of the esti-

mated mechanical parameters.34,35

The main objective of the present work was to overcome

these two difficulties. First, a semi-analytical model of (vis-

co)elastic wave scattering by cylindrical (2D) objects of

irregular cross section was developed, with the aim to gener-

alize the abovementioned models for elementary shapes.34,35

This model was validated against two-dimensional finite ele-

ment modeling (2D FEM). Second, we conducted a set of

experiments on soft tissue phantoms containing mechanical

inclusions. The scattering model was used in an inverse prob-

lem formulation, in which the parameters of the inclusion

and surrounding medium were optimized until the best match

between experimental and predicted wave fields was

obtained. Contrary to previous works, the geometry and loca-

tion of the inclusion were not considered as a priori informa-

tion, and parameters describing inclusion and surrounding

medium properties within the ultrasound image were opti-

mized along with their viscoelasticity values. This resulted in

an inverse problem with a significantly higher number of

parameters to be estimated, but which could still be solved

using well-known gradient based iterative methods.

The paper is organized as follows. The theoretical model-

ing is presented in Sec. II, with a significant part of the equa-

tions reported in Appendixes A–C. In Sec. III, the choice of the

truncation orders is discussed, using the elementary example of

an off-centred circular cylinder. In Sec. IV, the comparison to

2D FEM is performed to validate the model for irregular inclu-

sion shapes. Section V describes the experimental setup and

the inverse problem. Results are presented and discussed in

Sec. VI. Summary and conclusions are given in Sec. VII.

II. VISCOELASTIC WAVE SCATTERING MODEL

Scattering of acoustic or elastic waves by objects of sim-

ple geometry has been studied for a very long time,36–38 both
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in 2D and 3D configurations. An efficient solution of the

problem can be obtained by decomposition of the refracted

and scattered wave fields as a series of Bessel and Hankel

functions, and obtaining the coefficients of the series by

imposing the appropriate boundary conditions at the inter-

face between the inclusion and surrounding medium. This

approach has been extended to irregular 2D shapes in acous-

tic scattering by L�eon et al.39 In this paper, this approach is

generalized to elastic wave scattering. This is a significantly

more complex situation because of the coupling between

compression and shear waves.

Consider a viscoelastic cylinder of irregular cross sec-

tion with a mass density q1, complex shear modulus l1, and

first Lame coefficient k1, embedded in a viscoelastic medium

with a mass density q2, complex shear modulus l2 and first

Lame coefficient k2 (Fig. 1). The origin of the polar coordi-

nate system ðr; hÞ is placed inside the cylinder. The bound-

ary separating both media is described by the strictly

positive and derivable function R(h). The outer pointing nor-

mal of the contour is nðhÞ ¼ nrer þ nheh. The displacement

in the surrounding medium (medium 2) is the sum of the

incident displacement uinc and the scattered displacement

u2. Displacement in the inclusion is the refracted displace-

ment u1. All three displacement fields are supposed to be

constant along the z coordinate (it is a 2D problem) and har-

monic, i.e., uðr; h; z; tÞ ¼ uðr; hÞeixt (from now on, the time

dependence is omitted). In addition, they satisfy the isotropic

elastic wave equation

�qx2u ¼ ðkþ 2lÞrðr � uÞ þ lr�r� u: (1)

According to the Helmholtz theorem, these three displace-

ment fields can all be decomposed into three scalar

potentials37,40

uðr; hÞ ¼ ruþr� wez þ ar�r� ðvezÞ; (2)

where each of the three potentials satisfies the Helmholtz

equation, i.e.,

ðr2 þ K2Þu ¼ 0 and ðr2 þ k2Þðw; vÞ ¼ 0: (3)

The factor a in Eq. (2) ensures the dimensional homogeneity

of the equation, and the complex wave numbers K and k are

related to the moduli through the dispersion relations

K2 ¼ qx2

kþ 2l
and k2 ¼ qx2

l
: (4)

The scalar potential u is related to compressional waves,

while the scalar potentials w and v are related to shear waves

whose polarization vectors are, respectively, orthogonal and

collinear to the z axis.

Refracted and scattered wave fields are decomposed as

sums of Bessel functions Jn (convergent) and Hankel func-

tions of the first kind H1
n (divergent), which are solutions of

the Helmholtz equation in cylindrical coordinates

u1ðr; hÞ ¼
Xþ1

n¼�1
AnJnðK1rÞ einh; (5)

w1ðr; hÞ ¼
Xþ1

n¼�1
BnJnðk1rÞeinh; (6)

v1ðr; hÞ ¼
Xþ1

n¼�1
CnJnðk1rÞeinh; (7)

u2ðr; hÞ ¼
Xþ1

n¼�1
DnH1

nðK2rÞeinh; (8)

w2ðr; hÞ ¼
Xþ1

n¼�1
EnH1

nðk2rÞeinh; (9)

v2ðr; hÞ ¼
Xþ1

n¼�1
FnH1

nðk2rÞeinh: (10)

To identify the coefficients An, Bn, Cn, Dn, En, and Fn in

these decompositions, the boundary conditions at the inter-

face RðhÞ must be enforced. The continuity of the displace-

ment vector at the interface is expressed as

u1ðRðhÞ; hÞ � u2ðRðhÞ; hÞ ¼ uincðRðhÞ; hÞ;
8h 2 0; 2p½ �; (11)

giving the three equations

ur
1ðhÞ � ur

2ðhÞ ¼ ur
incðhÞ;

uh
1ðhÞ � uh

2ðhÞ ¼ uh
incðhÞ;

uz
1ðhÞ � uz

2ðhÞ ¼ uz
incðhÞ: (12)

Note that since the interface RðhÞ is known and fixed, the

fields on the boundary are functions of the single variable h.

The continuity of the surface tension vector T ¼ nðhÞ � r at

the interface RðhÞ, with r the Cauchy stress tensor, gives the

three following equations:

ðrrr
1 � rrr

2 Þnr þ ðrrh
1 � rrh

2 Þnh ¼ rrr
incnr þ rrh

incnh;

ðrhr
1 � rhr

2 Þnr þ ðrhh
1 � rhh

2 Þnh ¼ rhr
incnr þ rhh

incnh;

ðrzr
1 � rzr

2 Þnr þ ðrzh
1 � rzh

2 Þnh ¼ rzr
incnr þ rzh

incnh; (13)

where the dependence to the angular variable h is implicit.

The expressions of the displacement, stress, and strain field

components as functions of the potentials u, w, and v are
FIG. 1. Geometry of the problem. The inclusion is infinite in the z direction

and the incident wave vector is contained in the ðr; hÞ plane.
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given in Appendix A. The expressions of the fields as func-

tions of the decomposition coefficients An, Bn, Cn, Dn, En, and

Fn can then be obtained by inserting Eqs. (5)–(10) into Eqs.

(A1)–(A15). These expressions, together with some coeffi-

cients defined to simplify them, are given in Appendix B.

As the interfaces considered in this study are irregular,

the equations obtained by inserting the decompositions into

the boundary conditions do not split into a linear system of

equations, as is the case for a circular cylinder.36,38 Indeed,

the fields have dependence to the angular variable h. To

obtain a system of linear equations that can be solved, this

dependency must be suppressed. This can be achieved by

decomposing the expression of the boundary conditions into

Fourier series, as proposed by L�eon et al.39 For example,

using expressions from Appendix B, the continuity of the

radial component of the displacement field,

ur
1ðhÞ � ur

2ðhÞ ¼ ur
incðhÞ; (14)

becomes

Xþ1
n¼�1

Xþ1
q¼�1

ðAnb
L;1
n;q � Dnb

L;2
n;qÞ

h

þðBna
T;1
n;q � Ena

T;2
n;q Þ
i
eiqh ¼

Xþ1
q¼�1

ur
qeiqh (15)

with the Fourier coefficients bL;j
n;q, aT;j

n;q, and ur
q defined as

bs;j
n ðhÞ ¼

Xþ1
q¼�1

bs;j
n;qeiqh for s ¼ ðL; TÞ and j ¼ ð1; 2Þ;

(16)

in

R hð Þ
as;j

n hð Þ ¼
Xþ1

q¼�1
as;j

n;qeiqh

for s ¼ L; Tð Þ; j ¼ 1; 2ð Þ ; (17)

and

ur
incðhÞ ¼

Xþ1
q¼�1

ur
qeiqh: (18)

The other necessary Fourier coefficients are defined in

Appendix C. In the above notation, the superscript L refers

to longitudinal waves and the superscript T refers to trans-

verse waves.

All dependencies to the angular variable are included into

the eiqh terms. Due to the orthogonality of eiqh functions, the

boundary conditions then reduce to an infinite linear system of

equations.39 In practice, the decomposition into Bessel func-

tions are truncated to an order M, and the Fourier series to an

order N to get a finite system of equations described as

bL;1
n;p�n aT;1

n;p�n 0 �bL;2
n;p�n �aT;2

n;p�n 0

aL;1
n;p�n �bT;1

n;p�n 0 �aL;2
n;p�n bT;2

n;p�n 0

0 0 acT;1
n;p�n 0 0 �acT;2

n;p�n

d1
n;n�p e1

n;n�p 0 �d2
n;n�p �e2

n;n�p 0

f1
n;n�p g1

n;n�p 0 �f2
n;n�p �g2

n;n�p 0

0 0 aj1
n;n�p 0 0 �aj2

n;n�p

2
66666666664

3
77777777775
:

An

Bn

Cn

Dn

En

Fn

2
666666664

3
777777775
¼

ur
p

uh
p

uz
p

rr
p

rh
p

rz
p

2
6666666664

3
7777777775
; (19)

where the sub-matrices bs;j
n;q; a

s;j
n;q; cT;j

n;q; dj
n;q; ej

n;q; fj
n;q;

gj
n;q; and jj

n;q are of size M � N and contain the Fourier

coefficients defined in Appendix C, and the constant a was

introduced in Eq. (2). The vectors An, Bn, Cn, Dn, En, and Fn

(of size M), defined earlier, contain the unknown scattering

coefficients while the right-hand side vector contains the

information about the incident wave.

The linear system (19) splits into two uncoupled

problems

bL;1
n;p�n aT;1

n;p�n �bL;2
n;p�n �aT;2

n;p�n

aL;1
n;p�n �bT;1

n;p�n �aL;2
n;p�n bT;2

n;p�n

d1
n;n�p e1

n;n�p �d2
n;n�p �e2

n;n�p

f1
n;n�p g1

n;n�p �f2
n;n�p �g2

n;n�p

2
666664

3
777775

An

Bn

Dn

En

2
66664

3
77775¼

ur
p

uh
p

rr
p

rh
p

2
666664

3
777775
(20)

and

a
cT;1

n;p�n �cT;2
n;p�n

j1
n;n�p �j2

n;n�p

" #
Cn

Fn

� �
¼ uz

p

rz
p

� �
: (21)

This splitting occurs because we considered incident waves

whose wave vector is contained in the ðr; hÞ plane (i.e., nor-

mal incidence on the cylinder). The sub-problem (20) con-

cerns displacement contained in the ðr; hÞ plane, orthogonal

to the cylinder axis (shear vertical SV waves and longitudi-

nal waves), while the system (21) concerns only displace-

ments polarized in the z direction, collinear to the cylinder

axis (shear horizontal SH waves). In the case of an oblique

incidence, the expressions given in Appendixes A–C would

have contained additional terms from derivatives in the z
direction, and the left matrix in the linear problem (19)

would have been full.

If M ¼ N, the linear systems are square and have exact

solutions. If N > M, there are more equations than coeffi-

cients and the systems have a unique least-square solution.
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For the incidence of acoustic wave on irregular cylinder,

L�eon et al.39 only considered the case of M ¼ N. We have,

however, obtained better results with N > M, as shown in

Sec. III. Once the scattering coefficients have been obtained,

all the components of the displacement field can be com-

puted everywhere in the ðr; hÞ plane using the expression

given in Appendix A. The displacement was computed here

on a regular Cartesian grid containing Nx � Ny points.

Although the model presented here is valid for the gen-

eral case, the numerical examples and the experiments

described in Secs. IV–VI are focusing on the case of soft sol-

ids, for which k� l. Note also that, because of the fre-

quency domain formulation, viscoelasticity is handled here

simply by considering complex moduli (and, consequently,

complex wave numbers and complex displacement fields).

III. SELECTING THE TRUNCATION ORDERS

In theory, the approximation of the wave field with a

sum of Bessel (Hankel) functions can be made as accurate as

desired by increasing the order of truncation M of the sum.

However, in practice, high order functions cause numerical

errors. Indeed, high order Bessel functions diverge rapidly as

their argument grows, while Hankel functions are divergent

close to the origin. Therefore, if the contour function RðhÞ of

the inclusion alternatively takes low and high values, the lin-

ear systems (20) and (21) are ill-conditioned. For that reason,

it is not possible to arbitrarily increase the truncation number

M when performing computation with a limited numerical

precision (double precision in the present work), as the linear

system to be inverted is becoming numerically singular.

Additionally, in the method presented in Sec. II, a truncation

order N for the Fourier series must also be selected, with the

constraint N � M. In this section, numerical experiments

studying the influence of the truncation numbers M and N
on the accuracy of the results are reported.

A circle of radius R0 whose centre is offset from the ori-

gin of the coordinate system by a distance b (relative to the

radius R0Þ along the x axis is described by

RðhÞ ¼ R0ðb cos hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2ðsin hÞ2

q
Þ for b < 1:

(22)

This geometry is depicted in Fig. 2 for R0 ¼ 1. The solution

of the scattering problem for an incident plane wave on such

a cylinder with offset b, denoted ubðx; yÞ , can be obtained

from the method described here and compared to the solu-

tion, denoted urefðx; yÞ; of the simpler scattering problem for

a centred circular cylinder,36 previously implemented by our

group.41 The two fields should be identical, up to a transla-

tion of the displacement fields of a distance b along the x
axis. As b increases, the dynamic range of the function RðhÞ
also increases (Fig. 2), leading to more challenging numeri-

cal problems. It is therefore possible to evaluate the preci-

sion of the method by comparing results to the reference

circular centred cylinder solution. For that purpose, we com-

puted the root-mean-square error (RMSE),

RMSE ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNx

i¼1

XNy

j¼1

uref
i;j � ub

i;j

� �2

Nx � Ny

vuuuut
in %ð Þ (23)

over a 6� R0 by 6� R0 region centred on the cylinder with

Nx ¼ Ny ¼ 150, for various incident frequencies as a func-

tion of the shift b, and for various choices of the truncation

numbers N and M. As the Fourier series are computed using

a fast Fourier transform algorithm, which work faster for

powers of 2, we took N in the set [32, 64, 128, 256] while M
was increased from 10 to 70 with a step of 10, with addi-

tional points at M ¼ N (at 32 and 64).

Computations were done for a soft solid (first Lam�e
coefficient k ¼ 2:2 GPa� l) by considering a cylindrical

geometry whose shear modulus (36 kPa) was three times

larger than that of the surrounding medium (12 kPa). There

was no contrast in the first Lam�e coefficient and in the mass

density ( q ¼ 1000 kg m�3). The incident shear wave was a

unit amplitude plane wave propagating polarized along the y
axis and propagating along the x axis. The incident fre-

quency was determined by the non-dimensional product of

the wave number k ¼ 2p=kshear ¼ 2pf=VS by the radius R0.

Low kR0 products (¼0.5 here) correspond to small incident

frequencies (shear wavelength kshear larger than the inclu-

sion), while high kR0 (¼10 here) correspond to high frequen-

cies (wavelength much smaller than the inclusion). The

relative offset b ranged from 0.5 to 0.9. The mechanical con-

trast, inclusion size, and wave numbers used here are repre-

sentative of the cases studied later.

The results are presented in Fig. 3 (left panel) for a large

circle offset (b¼ 0.7) and a moderately high incident fre-

quency (kR0 ¼ 5) as a function of the truncation orders M
and N. It can be observed that for every Fourier truncation

number N, the error reaches a minimum for M < N. We also

see that the minimum decreased when increasing N, except

for N ¼ 256, and that it was obtained for larger M. A similar

behavior was observed for other incident frequencies and

offsets b (not shown). For all tested numbers N, the numeri-

cal problem became singular for M > 70. From that experi-

ment, the best choice for the truncation appeared to be

M ¼ 40 and N ¼ 128. These numbers were used in the

remainder of the paper.

FIG. 2. Shifted cylinder geometry. As the relative shift b of the centre

increases, the dynamic range of the contour function RðhÞ also increases,

leading to a more challenging numerical problem.
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In Fig. 3 (right panel), the results are presented as a

function of b and kR0 for fixed M ¼ 40 and N ¼ 128. The

error increases as the incident frequency increases (higher

kR0) and as the shift b increases. This is expected, as higher

frequencies imply more rapid spatial variations of the wave

field and, therefore, this requires higher orders of Bessel

(Hankel) functions, and because an increase in b leads to

larger and more abrupt variations in the contour function

RðhÞ. It can be observed, however, that good performances

(RMSE < 1%Þ are obtained at all frequencies for b ¼ 0:5
and b ¼ 0:6, and up to kR0 ¼ 5 for b ¼ 0:7. For very large

offsets (b ¼ 0:8 and 0:9), the error is larger than 1% for all

incident frequencies, and became >10% for the highest fre-

quencies. This result highlights the limits of the proposed

approach, which are reached for shapes that are very far

from a circular cylinder and at high frequencies. The case

explored here is, however, extreme and it is likely that varia-

tions in the contour function RðhÞ will be smaller and

smoother for many practical situations. Similar limits have

been observed for the original method for acoustic scattering

prediction39 when applied to ellipses of high aspect ratios.42

As in our case, the dynamic range of the Bessel and Hankel

functions evaluated on the contour rapidly exceeds the range

of double precision numerical computations, and the prob-

lem becomes ill-conditioned or singular. A solution pro-

posed by Cassereau et al.42 is to perform the computation

with arbitrary numerical precision, which allows to set an

arbitrarily high truncation order M at the cost of an increased

computation cost. This approach was not explored here, as

all examples presented in the rest of the paper are far from

the numerical limits.

IV. FINITE ELEMENT VALIDATION OF THE FORWARD
PROBLEM

Validation for non-canonical shapes was done using

finite element modeling (FEM) of the scattering of an inci-

dent shear wave by cylinders of irregular cross section

(structural mechanics module, version 3.3, COMSOL,

France). The case of a SV wave [polarization vector con-

tained in the (x,y) plane and oriented along y] was consid-

ered, and simulations were performed in the frequency

domain, i.e., assuming a harmonic excitation and, conse-

quently, a harmonic displacement field.

The geometry of the numerical computation is described

in Fig. 4. The complete mesh had a dimension of 14 shear

wavelengths kshear in width by 16� kshear in depth (the

wavelength being calculated here for the background mate-

rial). Absorbing regions of 2� kshear in width were defined

on the edges of the mesh using the perfectly matched layers

(PMLs) provided by the software to approximate an infinite

medium. A prescribed displacement uy in the y-direction was

applied on the left edge of the mesh to generate the incident

wave. This displacement was constant over the depth of the

central box and then decreased toward 0 in the top and bot-

tom absorbing regions to reduce edge effects. A triangular

mesh was automatically generated, with about eight

FIG. 3. (Color online) RMSE, relative

to the incident wave amplitude, for

computing the scattered field of a

shifted cylindrical cylinder (depicted

in Fig. 2). The left panel shows the

error as a function of the truncation

orders M and N, for a fixed incident

wave number kR0 and position shift b.
In that configuration, the best results

are obtained for M¼ 40 and N¼ 128.

The right panel shows the error as a

function of b and kR0 for truncation

orders fixed to these values.

FIG. 4. (Color online) Setup for the FEM computation.

J. Acoust. Soc. Am. 142 (4), October 2017 Simon Bernard and Guy Cloutier 2351



elements per wavelength, resulting in about 300 000 degrees

of freedom in total.

A bean-shaped inclusion was obtained from

R hð Þ ¼ R0 1þ cos h
6
þ sin 2h

3

� �
; (24)

and a star-shaped inclusion was modeled using

R hð Þ ¼ R0 1þ cos 5h
10

þ sin 5h
10

� �
: (25)

For both shapes, an incident wave with a wave-number/

radius product kR0 ¼ 5 and two elasticity contrasts were

studied. In one case, the inclusion was three times softer

than the surrounding medium, and in the other case it is three

times harder. For all simulations, an imaginary part equal to

10% of the real part was added to the shear modulus of the

inclusion and of the surrounding medium to introduce atten-

uation. This 10% value approximately corresponds to values

observed experimentally in phantom experiments (see Sec.

VI). No imaginary part was added to the first Lam�e coeffi-

cient. Because the wavelength of compression waves is

much larger than the observed propagation distance, the vis-

cous effect on these waves was considered negligible. The

amplitude of the displacement prescribed on the boundary

was set so that the incident wave had unit amplitude at the

entry of the 6R0 � 6R0 central square region-of-interest

(ROI). The parameters of the FEM simulation are summa-

rized in Table I.

The FEM-computed displacement fields were interpo-

lated on a regular grid over the ROI for direct comparison

with the semi-analytical approach. The RMSE over the ROI

was calculated for the x- and y-displacement fields, with Eq.

(23), except that the difference was calculated here between

the FEM and the semi-analytical solutions.

Results are summarized in Table II. The RMSE are

given in percentage of the incident wave amplitude. Errors

were lower than 0.3% for both geometries and both contrasts

(hard and soft), in the x- and y-polarized fields. The displace-

ment fields are plotted for the stiff bean-shaped inclusion in

Fig. 5. The differences between the two methods are not visi-

ble and the difference curves in the bottom panels were mag-

nified 100 times for visibility. The very small errors are

likely due to differences in boundary conditions. Indeed, the

semi-analytical method considers a perfectly infinite

medium, while it is only approximately obtained in the FEM

model.

V. EXPERIMENTS AND INVERSE PROBLEM

A. Phantom preparation

Two phantoms were prepared containing each a cylindri-

cal inclusion with an irregular cross section, as described by

Eqs. (24) and (25) with R0 ¼ 5 mm. They were made from

mixtures of agar (A9799, Sigma–Aldrich Chemical, St Louis,

MO), gelatin (G2500, Sigma–Aldrich Chemical), and

degassed water. The agar/gelatin concentrations, listed in

Table III, were varied to obtain the desired contrasts in visco-

elasticity moduli. The bean-shaped inclusion was stiffer than

the surrounding medium, and the star-shaped inclusion was

softer. A few milligrams of graphite powder was added to

the inclusions (282863, Sigma–Aldrich chemical) to create a

visual contrast to facilitate the positioning of the ultrasound

probe.

Water was first heated to 70 �C and mixed with the gela-

tin powder. The mixture was cooled down to 50 �C, and the

agar and graphite powder were added. At this temperature,

the agar powder did not melt, creating a suspension of agar

particles in a gelatin background. These particles acted as

acoustic scatterers. The mixture was cooled down to 25 �C
before casting it into rectangular molds of dimensions

12� 12� 7 cm3. Acoustic windows were created in the

mold to allow positioning the ultrasound probe (Fig. 6). To

produce inclusion geometries, two 15-cm-long cylinders

with the desired cross sections were 3D-printed (Dimension

Elite, Stratasys, Eden Prairie, MN), and fixed horizontally in

the rectangular molds at 	3 cm of the surface. The mixture

for the surrounding material was casted around the cylinder,

and stored at 4 �C for 6 h. The plastic cylinder was then care-

fully removed from the stiffened phantom, and the material

used to produce the soft and hard inclusions was casted into

the hole. The phantoms were stored at 4 �C overnight.

Mixtures prepared for inclusions were also casted as homo-

geneous phantoms in other molds for reference

measurements.

B. Data acquisition

The experimental setup for data acquisition is illustrated

in Fig. 6. The incident shear wave was generated in a SSI-

like configuration,10,16 from three radiation force pushes

located at depths of 25, 30, and 35 mm. Each push was cre-

ated by a 240-ls-long excitation at a central frequency of

TABLE I. Parameters of the FEM simulations.

First Lam�e parameter 2.2 GPa

Mass density 1000 kg m�3

Frequency 500 Hz

Size of the inclusion R0 
 5.5 mm (kR0 ¼ 5)

Inclusion shear modulus (soft) 4þ 0:4i kPa

Inclusion shear modulus (hard) 36þ 3:6i kPa

Surrounding medium shear modulus 12þ 1:2i kPa

ROI size 6R0 � 6R0

Width of the absorbing regions 2 kshear

Central box size 12 kshear

Element size 
 kshear/8

TABLE II. RMSEs between the FEM computed displacement fields and the

displacement fields given by the semi-analytical method, for the irregular

inclusions modeled by Eqs. (24) and (25).

RMSE, soft inclusion (%) RMSE, hard inclusion (%)

x-polarization y-polarization x-polarization y-polarization

Bean 0.07 0.21 0.05 0.22

Star 0.17 0.28 0.10 0.24
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4.09 MHz, with a 20 ls waiting time between two successive

pushes at different depths. They were obtained by focusing

the 40 left sided elements of a 128-element linear ultrasound

probe [ATL L7-4 (Philips Healthcare, Bothell, WA), central

frequency 5 MHz], on a research echograph (model V1,

Verasonics, Kirkland, WA). Immediately after the pushing

sequence, the probe was switched to the imaging mode and

used to send short pulses on all elements to produce plane

waves. Angle compounding was used to increase the image

quality.43 Plane waves tilted at four angles (�3�, �1�, 1�, and

3�) were successively sent at a 10 kHz frame rate during

28 ms. The echoes were beamformed in post-processing using

a Fourier method,44 and images obtained at the four angles

were coherently summed, resulting in an effective frame rate

of 2.5 kHz. A Doppler estimator45 was used to track the dis-

placement of speckle between two successive frames along the

ultrasound beam direction (y-direction), and we therefore got a

movie of the particle velocity field (displacement between

frames and not with respect to an absolute reference).

As it is difficult to estimate the lateral motion from

ultrasound echoes, a second probe (ATL L7-4, again) was

placed orthogonally to the first one. Immediately after the

first sequence was completed (pushing þ imaging), a second

sequence was started in which the pushing was still done

with probe #1, but the system then switched the active probe

#2 to perform imaging. These echoes were beamformed sim-

ilarly, and the particle velocity in the x-direction was then

obtained from the same motion estimator. This setup allowed

recording both polarizations of the field generated by the

same pushing sequence. As the lateral polarization (probe

#2) is usually not available in SWE experiments, it has not

been used in the inverse problem, but utilized for a posteri-
ori cross-validation of the model and estimated parameters.

The ROI for data analysis (Fig. 6) was 20 mm in width

and 40 mm in depth. It was set to exclude the region where

the push is generated. During the acquisition, the probe was

placed so that the inclusion ROI was included in the image.

A Fourier transform of the transient movies, from time to

frequency domain, was done for each pixel of the movies to

obtain maps of the stationary particle velocity fields (Fig. 6)

using the fast Fourier transform algorithm. For this opera-

tion, 64 time samples were used (from 0 to 25.2 ls, which

was sufficient to capture the entire time signal), providing

stationary maps for frequencies in the range of 0–1250 Hz

with a 39-Hz resolution.

C. Reference measurements

Reference SWE measurements were performed in the

homogeneous phantoms prepared with the materials used for

the inclusions, as well as in a homogeneous part of the

FIG. 5. (Color online) Validation of

the semi-analytical elastic wave scat-

tering model against FEM for the stiff

bean-shaped inclusion. Top row shows

the x axis (left) and y axis (right) polar-

ized components of the stationary dis-

placement fields at 500 Hz. The

profiles along the solid black lines are

plotted in the bottom row (blue dots),

with the corresponding profiles from

FEM (solid black lines superimposed

on the blue dots). The difference

between displacement curves is plotted

with a 100� magnification (dashed red

line).

TABLE III. Agar, gelatin, and graphite powder concentrations used in the

preparation of phantoms.

Agar Gelatin Graphite

Surrounding media 4% 4% 0%

Soft inclusion 1% 4% 0.1%

Hard inclusion 1% 15% 0.1%
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surrounding medium (i.e., far from the inclusion). The phase

velocity as a function of frequency as well as the linear shear

wave attenuation coefficient, defined as the slope of the atten-

uation vs frequency curve, were extracted from the data.

The wave velocity was measured at each frequency

from a linear fit of the phase vs propagation distance using

the shear wave spectroscopy method,26 while the linear

attenuation coefficient was obtained with a frequency shift

method.29 This latter algorithm assumes that the attenuation

increases linearly with frequency, which is an appropriate

assumption for agar-gelatin phantoms,29 and extracts the

attenuation coefficient from the decrease in the central fre-

quency of the wave as it travels away from the source. Shear

storage (l0) and loss (l00) moduli could then be calculated at

each frequency from the wave velocity cðxÞ and linear atten-

uation coefficient a0 with the relations

l0 xð Þ ¼ qx

x
c xð Þ

� �2

� a0xð Þ2

x
c xð Þ

� �2

þ a0xð Þ2
" #2

(26)

and

l00 xð Þ ¼ 2qx

x
c xð Þ � a0x

x
c xð Þ

� �2

þ a0xð Þ2
" #2

: (27)

These relations were obtained from the dispersion relation

k2 ¼ qx2=l, assuming k ¼ x=cðxÞ � i a0x, and finally sep-

arating the real (l0) and imaginary (l00) parts of the shear

modulus.

D. Elasticity maps from the time-of-flight method

The shear wave data were also processed using the

time-of-flight (TOF) method16 to compare its ability to

evaluate the inclusion geometry and elasticity compared to

the inverse problem approach based on the scattering model

developed here. First, a directional filter was applied to keep

only the forward (left to right) propagating shear wave, and

therefore to get rid of the reflected wave for reducing arte-

facts in reconstructed images.24 Then, a time-to-peak (TTP)

method was used to estimate the velocity of the forward

propagating wave. The arrival time of the waveform maxi-

mum was estimated at each lateral position away from the

push location. The velocity was then obtained as the inverse

of the slope of the arrival time vs lateral position. A kernel

size of 6 lateral pixel widths (about 1.8 mm) was used for the

slope estimation. Before velocity estimation, the signals

were averaged in the depth direction over 0.3 mm (8 pixels)

to improve the signal-to-noise ratio, and interpolated from

2.5 kHz to 50 kHz for accurate estimation of TTP. Finally, a

3� 3 pixel median filter was applied to the velocity images.

Elasticity maps were obtained with the relation l ¼ qV2
S

with q fixed at 1000 kg m�3. As the method was applied on

the particle velocity field (see Sec. V B) and not the displace-

ment field, it corresponds to the time-to-peak-slope (TTPS)

method.19

E. Inverse problem formulation

The inverse problem was based on the wave velocity

cðf Þ and attenuation coefficient a0. That way, the linear

dependency of the attenuation was automatically imposed to

constraint the problem, while it would be difficult to do so

with a parametrization using the shear storage and loss mod-

uli. No constraint, however, was put on the wave velocity

dependency with frequency, so that there were 2� N
unknown velocities cðfnÞ (surrounding medium and inclu-

sion), for the N discrete frequencies f1; …; fN in the fre-

quency band of analysis.

The unknown geometry was represented by a Fourier

series with a fixed order Q,

FIG. 6. (Color online) Experimental

setup used for the scattered wave field

measurements. A shear wave polarized

along the y axis was generated with

three radiation pushes emitted by

probe #1. This same probe was used to

image the y axis component of the

wave field, while probe #2 imaged the

x axis component. The recorded tran-

sient fields uxðx; y; tÞ and uyðx; y; tÞ
were Fourier transformed from time to

frequency domain at each pixel to pro-

duce stationary maps at frequencies

ranging from 0 to 1250 Hz.
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RðhÞ ¼ R0 þ
XQ

q¼1

aq cos ðqhÞ þ bq sin ðqhÞ: (28)

This contour was defined in an arbitrary coordinate system

whose position relative to the fixed coordinate system

defined by the probe was parametrized by two additional

unknown parameters x0 and y0. The incident wave was a

plane shear wave polarized in the y-direction with an

unknown incidence angle / (see Fig. 6), and unknown phase

uðf Þ and amplitude A(f) at each frequency.

All estimated parameters were grouped into the vector

p. The cost function to be minimized was the squared norm

of the difference between the (complex) experimental and

predicted stationary velocity fields, summed over all pixels

of the ROI, and all discrete frequencies inside the frequency

band of analysis

p ¼ argmin
Xfn

f¼f1

XNy

i¼1

XNy

j¼1

jv exp
i;j;f � vcalc

i;j;f ðpÞj
2

2
4

3
5: (29)

The non-linear Levenberg-Marquardt unconstrained minimi-

zation algorithm was used. The partial derivatives of the cost

function were obtained at each iteration of the algorithm by

a finite-difference approximation. For the initialization,

mean shear wave velocity values roughly evaluated with the

TOF method (Sec. V D) inside and outside the inclusion

were used. The inclusion geometry was initialized with a cir-

cle of 5-mm radius (i.e., R0 ¼ 5 mm, am ¼ 0, and bm ¼ 0,

8m placed in the middle of the ROI).

A correction factor was applied to the data to compen-

sate for the cylindrical diffraction, due to the actual shape of

the source that was not modeled by the 2D problem.

Experimental data were multiplied by a
ffiffi
r
p

factor, where r
is the distance from the focus line of the acoustic radiation

force push. Without this correction, the inversion algorithm

would artificially increase the attenuation to compensate for

the decrease in amplitude due to diffraction.35

Note that the model described above (Sec. II) was written

for the displacement field u, while the experimental data corre-

spond to particle velocity field v (Sec. V B). This is not a prob-

lem here, since in the frequency domain these two quantities

are simply related by an ix factor. As the amplitude and phase

of the incident wave at each frequency were free parameters in

the inversion, the complex proportionality factor was automati-

cally included in the fitted phase and amplitude.

VI. RESULTS AND DISCUSSION

The inversion algorithm converged to the solution in a

few tens of iterations, which involved several hundreds of calls

to the forward model (including the finite-difference approxi-

mation of the gradient at each iteration). This represents about

5 min of computation on a modest laptop computer [Intel core

i5-4210 (Santa Clara, CA), 4 GB of random access memory

(RAM)]. With our implementation of the semi-analytical

method, the computation time with respect to the FEM analy-

sis was about 3 orders of magnitude faster. Consequently, an

inversion based on the FEM implementation would have taken

several days to complete. Moreover, it should be noted that

because the shape of the inclusion was updated at each itera-

tion, this would have caused difficulties with FEM due to the

necessity to re-mesh the domain after each iteration. Even if

the semi-analytical inverse problem implementation was faster

than the FEM solution, the current time needed to obtain the

viscoelasticity moduli at convergence may not be appropriate

for clinical applications, but might be significantly decreased

with the use of much faster programming language instead of

MATLAB (MathWorks, Natick, MA), the parallelization of codes

on central and graphic processing units, and the use of a more

powerful computer.

Figure 7 compares pictures of the estimated inclusion

geometries with B-mode images and elasticity maps

FIG. 7. (Color online) (a),(d) Photographs of the inclusions visible by the

addition of graphite powders into the agar-gelatin gel; (b),(e) estimated

shapes obtained by the solution of the inverse problem (red contours) on top

of B-mode images; and (c),(f) elasticity maps obtained with the conven-

tional TOF method, with the shapes from the inverse problem also reported

for direct comparison.
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obtained using the conventional TOF algorithm. The inclu-

sion geometry and location estimated with the inverse prob-

lem solution are traced in red on B-mode images. It can be

observed that estimated shapes match well with photo-

graphed geometries, even for the rather complex star shape.

The contrast present on B-mode images was not used to help

estimating inclusion geometries, as the inverse problem is

based only on the recorded shear wave propagation movie.

This demonstrates the ability of the proposed approach to

localize and accurately reconstruct complex inclusion geom-

etries with minimal a priori information. In comparison, the

conventional TOF approach, while able to detect and local-

ize both soft (star) and stiff (bean) inclusions, is not able to

provide a clear representation of the actual geometry.

Moreover, elasticity images contain artefacts, as discussed in

the next paragraph.

As also depicted in Fig. 7 for the soft inclusion, the area

of low elasticity is smaller than the actual inclusion, and

there are areas of high elasticity in the surrounding medium,

particularly on the right of the inclusion. For the hard inclu-

sion, the area of high elasticity extends significantly outside

the actual inclusion and the variance is high. Figure 8 dis-

plays stiffness images obtained with the TOF method in the

reference homogeneous materials. It can be observed that

these maps have less variance than the corresponding

regions of the maps for the phantoms containing the inclu-

sions, particularly inside the stiff inclusion and outside the

soft inclusion. This indicates that the variance observed in

the maps for the phantoms containing the inclusions is linked

to the presence of the inclusions. Indeed, the TOF method

assumes plane wave propagation, which is no longer true in

the presence of stiffness contrasts. It can be observed (see

Figs. 11 and 12) that the wavefronts are significantly dis-

torted by the inclusions, e.g., on the right of the soft inclu-

sion or on the bottom right of the stiff inclusion. These

regions correspond to overestimated stiffness on the maps of

Fig. 7. A directional filter removing reflected waves,24 as

employed here, does not prevent these artefacts from appear-

ing. However, repeating the experiment with pushes on both

sides of the inclusion and combining the results would likely

reduce the error.

The discrepancy between B-mode and elasticity images

obtained with the TOF algorithm has been previously

reported.46 The proposed approach seems able to overcome

this difficulty, although it would have to be tested in vivo. As

described next, significant advantages over the TOF

approach are the estimation of the loss modulus (viscosity)

and the spectroscopic viscoelasticity analysis. However, a

limitation is that binary viscoelasticity values are obtained

inside and outside the inclusion (in other words, no visco-

elasticity images are produced).

Figures 9 and 10 (soft star and hard bean) compare esti-

mated viscoelastic properties, inside and outside the inclu-

sion, to the results of the reference method. It should be

remembered that these values are obtained from the esti-

mated frequency dependent velocity cðf Þ and constant

FIG. 8. (Color online) Elasticity maps

obtained with the conventional TOF

method in the homogeneous reference

materials for the surrounding region

and inclusions.
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attenuation coefficient a0 through Eqs. (26) and (27). For the

soft star phantom, the values of the attenuation coefficients

were 0.1784 and 0.1287 Np/m/Hz for the inclusion and sur-

rounding materials, respectively. For the stiff bean phantom,

these values were 0.0355 and 0.0853 Np/m/Hz for the inclu-

sion and surrounding medium, respectively. For both phan-

toms, the storage and loss moduli estimated within the

surrounding medium are in good agreement with values of

FIG. 9. (Color online) Estimated shear

storage and loss moduli for the soft

star-shaped inclusion and its surround-

ing medium, compared with the refer-

ence measurements in corresponding

homogeneous materials. Note that the

inverse scattering was solved for the

wave velocity cðxÞ and linear attenua-

tion coefficient a0, from which the

moduli were computed [Eqs. (26) and

(27)].

FIG. 10. (Color online) Estimated

shear storage and loss moduli for the

stiff bean-shaped inclusion and its sur-

rounding medium, compared with the

reference measurements in correspond-

ing homogeneous materials. Note that

the inverse scattering was solved for

the wave velocity cðxÞ and linear

attenuation coefficient a0, from which

the moduli were computed [Eqs. (26)

and (27)].
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the reference method, over the whole frequency bandwidth:

relative differences are <8% (average 3%) for the storage

moduli and <20% (average 6%) for the loss moduli. In the

case of the soft star-shaped inclusion, there is also a good

agreement: errors <14% (average 8%) for the storage mod-

uli and <29% (average 19%) for the loss moduli. In that

case, we could not get accurate reference measurements for

the inclusion properties above 600 Hz, due to a poor signal-

to-noise ratio and the short wavelength (because of the low

shear wave speed, see the next paragraph). Inside the hard

bean-shaped inclusion, there is a larger discrepancy in the

estimated storage moduli: the errors in the lowest frequen-

cies reached 39%, but are <14% for frequencies over

300 Hz. A possible explanation for the larger errors at low

frequencies is given in the next paragraph. For the loss mod-

uli, the errors are <23% (average 17%). The elasticity

contrast is about 4.5 for the soft case and about 2.5 for the

stiff inclusion, close to the contrast of 3 used in the numeri-

cal validation of the model.

Figures 11 and 12 compare experimental and modeled

wave fields after convergence of the inverse problem to the

best fitting parameters at low (195 Hz), mid (430 Hz), and

high (625 Hz) frequencies. Experimental and modeled wave

fields are comparable. All features, such as the change in

wavelength inside the inclusion, deformation of the wave-

front after the inclusion, attenuation, and interference pat-

terns, are captured by the model. This constitutes an

additional validation of the forward problem modeling. For

the soft star at high frequency, it becomes more difficult to

clearly distinguish the scattering pattern inside the inclusion.

This is because the wavelength is close to the resolution of

the imaging system and is very short (because of the high

FIG. 11. (Color online) Experimental

(top) and modeled (bottom) y-polar-

ized wave fields for the soft star-

shaped inclusion at low (195 Hz), mid

(430 Hz), and high frequencies

(625 Hz). The modeled fields are

obtained for the optimized geometrical

and mechanical parameters.

FIG. 12. (Color online) Experimental

(top) and modeled (bottom) y-polar-

ized wave fields for the stiff bean-

shaped inclusion at low (195 Hz), mid

(430 Hz), and high frequencies

(625 Hz). The modeled fields are

obtained for the optimized geometrical

and mechanical parameters.
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frequency and low shear wave speed). This set a high fre-

quency limit for the estimation of the mechanical properties

that is dependent on the shear wave speed. For the hard

inclusion, we can see that there is about half a wavelength of

propagation distance inside the inclusion at 195 Hz (Fig. 12).

This may explain why the estimation of the inclusion storage

modulus is not accurate in that case. Indeed, the storage

modulus is primarily linked to the wave speed, and hence to

the wavelength, which is difficult to precisely estimate over

such a short propagation distance. This difficulty was already

reported35 and is related to the physics of the wave propaga-

tion and not to the inversion method.

Figure 13 shows experimental and modeled x-polarized

fields (acquired by probe #2; see Fig. 6) for both inclusions

at a frequency of 350 Hz. These experimental data were not
included in the inverse problem, and therefore did not con-

tribute to the parameter estimation. Nonetheless, the mod-

eled fields match the complex experimental patterns of

scattered waves. This comparison with independent data

gives additional confidence in the estimated geometrical and

mechanical parameters, and further validates the scattering

model. These images also indicate that the wave field polar-

ized in the direction orthogonal to the ultrasound beam axis

contains information regarding the inclusion shape, location,

and viscoelasticity. This is mostly because the x-polarized

wave component is generated precisely at the inclusion

boundary from mode conversion of the incident y-polarized

wave. Adding these data in the inverse problem would surely

improve the estimation of parameters. However, as already

mentioned, this polarization cannot, as of today, be accu-

rately measured from a single probe configuration in clinical

elastography settings. An experimental system able to mea-

sure this component of the wave field, combined with a

proper processing method, would potentially yield signifi-

cant improvements to the field of SWE imaging.

The results presented so far were obtained for inversion

performed with the maximum Fourier series order Q [Eq.

(28)], which parametrizes the complexity of the shape, set to

the expected value [i.e., Q ¼ 2 for the bean shape and Q ¼ 5

for the star shape, according to the definition of the shapes in

Eqs. (24) and (25)]. However, this number would not be

known a priori in real situations. The inversion was there-

fore performed again for the soft star inclusion with Q vary-

ing from 0 to 8 to evaluate the ability of the method to

determine the correct order based on an analysis of the misfit

residuals. The results are presented in Fig. 14. It can be

observed that the norm of the residual decreases strongly for

Q ¼ 4 and Q ¼ 5, but is almost constant for Q > 5: This

indicates that, after Q ¼ 5, providing more degrees-of-free-

dom to the inversion (i.e., allowing more complex shapes)

does not significantly improve the fit to the experimental

data, and that this number is therefore appropriate to accu-

rately describe the shape of the inclusion.

The ROI was selected here so that the excitation does

not vary considerably over the considered depth (see Figs. 11

and 12), and the pushing depths (25, 30, 35 mm) were

selected according to the inclusion depth (about 30 mm). In

that case, the signal-to-noise ratio was sufficient over a height

of about 25 mm, from about 15 to 40 mm from the surface.

Larger inclusions, or inclusions lying closer to the surface or

deeper into the tissues, might require an adaption of the exci-

tation procedure. This might be done by adding a fourth

push, or by using an adapted beamforming strategy for an

increased excitation height.47

The loss moduli of the tested materials are relatively low

compared to what can be observed for real tissues. This is a

limitation of phantom studies, as it is difficult to reproduce

the level of attenuation observed in tissues with agar and gel-

atin gels, even with the addition of oil.29 Displacements

would likely be noisier far from the pushing line in real tis-

sues. However, it is important to consider that the present

approach is not local, as global moduli are estimated for the

surrounding medium and for the inclusions. Therefore, the

FIG. 14. Norm of the residuals at the end of the minimization problem for

increasing order of the Fourier series describing the shape in the case of the

soft-star inclusion. The excepted order, from the definition of the shape [Eq.

(25)], is Q¼ 5. It can be observed that, in practice, the misfit does not

decrease anymore for Q> 5, indicating that the additional degrees-of-free-

dom are indeed not necessary to describe the shape.

FIG. 13. (Color online) x-polarized wave fields for both inclusions at

350 Hz; the experimental fields (top) were not included in the inverse prob-

lem but still match well to the modeled fields (bottom).
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displacements observed in the whole frame contribute to the

estimations and the method can be expected to be less sensi-

tive than local inversion to a decrease in signal-to-noise ratio

far from the pushes. This should be tested on real tissues in

future works.

VII. SUMMARY AND CONCLUSION

In this study, we first developed a semi-analytical model

for the computation of elastic wave scattering by cylinders

of irregular cross section. This work is an extension of the

contribution of L�eon et al.39 on acoustic scattering by such

cylinders. The elastic case developed in the current study is

more complicated, due to the vectorial nature of the dis-

placement field, opposed to the acoustic scalar pressure field.

For the sake of simplicity, we have considered a normal inci-

dence on the cylinder. In that case, the problem decouples

into two separate smaller problems: one for SH waves, and

one for SV and longitudinal (compression) waves. The gen-

eral case of an oblique incidence could, however, be consid-

ered by the same approach.

The computation method was validated in the case of

soft viscoelastic solids against 2D FEM for two irregular

cross sections, a bean shape, and a more complex five

branches star. Good agreement was observed between both

methods at kR numbers of 5. At higher frequencies, numeri-

cal problems arose in the semi-analytical approach, mostly

due to the need of higher orders Bessel and Hankel func-

tions, which have a very large dynamic range that can rap-

idly exceed the computer double precision, as illustrated by

the shifted circular cylinder example. This method is there-

fore not able to compute scattering at high frequencies.

Numerical approaches such as finite differences or finite ele-

ments may be more appropriate in that case. Although it was

validated in the context of soft solids, the approach is general

and could be applied as well for hard solids in other domains

in which elastic waves are used for material characterization

such as non-destructive testing or seismology. Other applica-

tions would, however, require performing an analysis of the

optimal truncation numbers N and M as done here.

In the second part of this study, we experimentally mea-

sured the scattered field for a shear wave incident on irregu-

lar cylinders with different elasticity contrast (soft star and

stiff bean, as considered in the numerical validation). The

shear wave was generated using an acoustic radiation force

mimicking SSI. We then used the scattering field in an

inverse problem approach to jointly estimate the shape, posi-

tion, and viscoelasticity of the inclusions in the imaging

plane. After convergence of the parameters, we observed

good agreement between computed and measured wave

fields over the whole frequency bandwidth of the elastogra-

phy method. Notably, the field polarized in the x-direction,

which was not included in the inverse problem but used only

for a posteriori validation, also showed good agreement.

The parameters estimated by this approach were compared

to parameters measured on corresponding homogenous

materials and were found to agree. This experimental part,

therefore, validated the scattering model and demonstrated

its potential for material characterization.

The mechanical parameters estimated with the inverse

scattering method agreed within 	10% for the storage mod-

ulus (except for very low frequencies in the stiff inclusion),

and 	20%–30% for the loss modulus, with reference meas-

urements obtained from other elastography methods on

homogeneous materials. Similar accuracies were observed in

previous applications of similar approaches with quasi plane

shear waves34,35 or torsional shear waves,31 the latter method

originally proposed by Hadj-Henni et al.48 However, a sig-

nificant improvement over these previous studies is that the

location and shape of the inclusions were not known a priori
here, but estimated along with the mechanical parameters.

Moreover, the estimated shapes of the inclusions were in

good visual agreement with the photography and B-mode

images of the phantoms. This may allow, in the future, accu-

rate estimation of geometrical parameters of soft tissue

lesions, for example, in the context of breast cancer screen-

ing and treatment monitoring. In this context, the stiff

bean-shaped inclusion is a more relevant example than the

star-shaped soft inclusions, as most breast lesions, either

benign or malignant, are usually stiffer than the surrounding

tissues.46 However, the soft-star inclusion helps to demon-

strate the generality of the approach.

We have realized important steps for estimating viscoelas-

tic properties, shape, and position of soft tissue inclusions.

However, difficulties remain to be addressed for in vivo appli-

cations in the context of breast cancer diagnostic: (1) real

inclusions are 3D, and are not infinitely long in one dimension.

Therefore, a 3D scattering model might be necessary. It is

questionable, however, if the present 2D approach would still

be successful for 3D applications. This could be investigated

in future works. (2) In real cases, the inclusion and the sur-

rounding medium would not be homogenous, as is the case

here. The present method is, by construction, limited to piece-

wise homogeneous materials separated by a closed boundary,

and cannot be easily modified to handle more complex media.

It is therefore necessary to test the method under more chal-

lenging situations like, for example, viscoelasticity modulus

gradient in the inclusion and surrounding medium, or a smooth

transition between both media. It would be important to deter-

mine in which conditions the method can continue to provide

good estimates of the mechanical and geometrical properties.

To conclude, the present results demonstrated that it is

possible to extract more information from shear wave propa-

gation movies than it is extracted with the usual TOF method

in a setup close to clinical settings and using an efficient

semi-analytical model of wave scattering by irregular

inclusions.
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APPENDIX A: DISPLACEMENT AND STRAIN
EXPRESSIONS

From the Helmholtz decomposition (2) we can get the

expressions of the displacement and strain field components
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@uj
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The stresses are obtained from the Hooke’s law for isotropic

media
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APPENDIX B: BESSEL AND HANKEL
DECOMPOSITIONS

To simplify the expressions for the mechanical fields

obtained when inserting the Bessel decompositions Eqs.

(5)–(10) in Eqs. (A1)–(A15), we introduce the following

notation for the derivatives of the Bessel functions, where

the superscript L stands for longitudinal (compression)

waves and T means transverse (shear) waves:
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n ðrÞ ¼ JnðK1rÞ; (B1)
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The displacement and stress field components are, then, for

medium 1,

ur
1 r; hð Þ ¼

Xþ1
n¼�1

AnbL;1
n rð Þ þ in

r
BnaT;1

n rð Þ
� �

einh; (B15)

J. Acoust. Soc. Am. 142 (4), October 2017 Simon Bernard and Guy Cloutier 2361



uh
1 r; hð Þ ¼

Xþ1
n¼�1

in

r
AnaL;1

n rð Þ � BnbT;1
n rð Þ

� �
einh; (B16)

uz
1 r;hð Þ¼

Xþ1
n¼�1

a

r
Cn �bT;1

n rð Þ�rcT;1
n þ

n2

r
aT;1

n rð Þ
� �� �

einh; (B17)

rrr
1 r;hð Þ ¼

Xþ1
n¼�1

An k1 þ 2l1ð ÞcL;1
n rð Þ � k1

n2

r2
aL;1

n rð Þ � 1

r
bL;1

n rð Þ
� �� �

þ2l1Bn
in

r
bT;1

n rð Þ � aT;1
n rð Þ

r

� �)
einh;

(
(B18)

rhh
1 r; hð Þ ¼

Xþ1
n¼�1

An k1 þ 2l1ð Þ � n2

r2
aL;1

n rð Þ þ bL;1
n rð Þ

r

� �
þ k1cL;1

n rð Þ
� �

þ Bn2l1

in

r

aT;1
n rð Þ

r
� bT;1

n rð Þ
� �� �

einh; (B19)

rzz
1 r; hð Þ ¼

Xþ1
n¼�1

Ank1 cL;1
n rð Þ � n2

r2
aL;1

n rð Þ þ bL;1
n rð Þ

r

� �
einh; (B20)

rhz
1 r; hð Þ ¼

Xþ1
n¼�1

l1aCn �
in

r
cT;1

n �
in

r2
cT;1

n þ aT;1
n

in3

r3

� �� �
einh; (B21)

rrz
1 r; hð Þ ¼

Xþ1
n¼�1

l1aCn bT;1
n

1

r2
þ n2

r2

� �
� dT;1

n �
cT;1

n

r
� n2

r3
aT;1

n

� �
einh; (B22)

and

rrh
1 r; hð Þ ¼

Xþ1
n¼�1

An2l1

in

r
bL;1

n rð Þ � 1

r
aL;1

n rð Þ
� �

þ Bn

r2
l1 �n2aT;1

n rð Þ � r2cT;1
n rð Þ þ rbT;1

n rð Þ
	 
� �

einh: (B23)

Expressions for medium 2 can be easily obtained by changing the sub- and superscripts and replacing An, Bn, and Cn with

Dn, En, and Fn, respectively.

APPENDIX C: FOURIER COEFFICIENTS

To remove the dependence on the angular variable h in the boundary conditions, the Fourier series coefficients uk
q and rk

q

are defined for the incident fields
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