
1 I n t r o d u c t i o n  
THE TIME/FREQUENCY properties of the Doppler blood-flow 
signal are usually characterised by computing a temporal 
sequence of power spectra, called a spectrogram. As the 
signal is due to the moving red blood cells, certain cardio- 
vascular diseases can be assessed by analysing the blood- 
flow pattern contained in the Doppler signal (PANIDIS et  

al., 1986; GIDDENS and KITNEY, 1985; CANNON et al., 
1982). Because of the random nature of the signal, the 
diagnostic information is usually extracted from an ensem- 
ble averaged spectrogram computed over several cardiac 
cycles. 

The periodogram has been the method most often used 
to compute the Doppler spectrogram owing to its rela- 
tively fast computation (CLoUTIER et al., 1990; RITTGERS, 
1987; CANNON et al., 1982). However, the periodogram has 
limitations, such as frequency resolution, frequency 
leakage and statistical variance. For instance, frequency 
resolution is inversely proportional to the duration of the 
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signal segment analysed. In the spectrogram of a time- 
varying Doppler signal, the frequency components can be 
smeared in the time domain if a long segment is used, or 
spread in the frequency domain if the signal segment is too 
short. Frequency leakage means that the energy of a spec- 
tral estimate leaks into sidelobes, distorting other spectral 
components. To reduce the leakage effect, smoothing 
windows such as the Hanning window are usually used. 
However, the use of windows results in an additional 
reduction of the frequency resolution. Finally, the stat- 
istical variance of the estimate depends on the duration of 
the signal segment and the number of segments averaged. 
Consequently, noninvasive assessment of the early stage of 
cardiovascular disease may be difficult owing to these limi- 
tations. 

Modern parametric methods offer better potential for 
achieving significant improvements in estimating the 
power spectral density of Doppler ultrasound signals. Such 
improvements may enable disturbed flow to be detected in 
a more sensitive manner and thus improve the diagnosis of 
cardiovascular pathologies. Recently, some authors pro- 
posed autoregressive (AR) modelling to carry out the 
power spectrum estimation of the Doppler signal 
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(KALUZYNSKI, 1989a; b; SCHLINDWEIN and EVANS, 1989; 
VAITKUS and COBBOLD, 1988; VAITKUS et al., 1988; YAMA- 
6UCm et al., 1987; KITNEY et al., 1986). KITNEY et al. (1986) 
explained that AR modelling improves the resolution of 
coherent features in a disturbed flow pattern. VAITKUS et 
al. (1988) found that AR modelling yields estimates with 
variances considerably smaller than that of the periodo- 
gram. KALUZYNSKI (1987) reported the better statistical 
stability of AR spectra in comparison with the periodo- 
gram. These studies confirmed the usefulness of AR model- 
ling for Doppler blood-flow signals. VAm~US et al. (1988) 
have also demonstrated that the AR and autoregressive- 
moving average (ARMA) are good methods for Doppler 
signal processing. However, AR modelling is preferred to 
ARMA modelling because of its reduced computational 
complexity. 

It has been shown in Part 1 of this study that the 
Doppler blood-flow signal over a short-time interval 
approximates a stationary complex Gaussian process. It 
was also shown that this approximation is more precise 
when the signal segment is shorter. Because the frequency 
resolution of AR modelling is higher than that of the FFT 
method for short signal segments, AR modelling should 
provide Doppler spectrograms with higher resolution than 
those obtained with the periodogram. Another advantage 
of using AR modelling is the reduction of the Doppler 
'speckles', the granular structure in the Doppler spectro- 
gram (Mo and COBBOLD, 1986). For a stationary signal 
segment, the power spectrum obtained by using the AR 
approach is an optimal estimate if the signal can be model- 
led by a true AR process. So far, however, no study has 
been carried out to verify that the Doppler signal is a 
complex AR process for which the model order can be 
selected by an objective criterion. The objectives of the 
present work are: 

(a) to study the consistency of spectrograms obtained by 
using complex AR modelling 

(b) to investigate objective criteria to determine model 
order automatically 

(c) to verify that the cardiac Doppler signal can be model- 
led adequately by a complex AR process. 

2 Mater ia ls  and methods 
The patient database and data-acquisition technique 

used in this paper were the same as those described in Part 
1 of this study (Guo et al., 1993). 

2.1 A R  model identification and Doppler spectrogram 
estimation 

The Doppler blood flow signal is a complex-valued 
signal expressed as 

x(n) = xa(n ) + jxq(n) (1) 

where xd(n) and Xq(n) are the in-phase and quadrature 
components. The forward and reverse flow components 
can be expressed as (VAmCUS and COBBOLD, 1988) 

xy(n) = xn(n ) + xH(n) (2) 

xr(n) = xd(n) - x~(n) (3) 

where the superscript H denotes the Hilbert transform. In 
the past, AR modelling was applied separately on xs(n ) 
and x~(n). According to HERMENT et al. (1990), it is possible 
to compute the forward and reverse flow components 
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directly from the AR model of the complex signal x(n). A 
complex AR process of order p, as described below, is 
required: 

P 

x(n) = - ~ %k x(n -- k) + e(n) (4) 
k = l  

where x(n) is a complex signal composed of the in-phase 
and the quadrature components of the Doppler signal, p is 
the model order, %k are the complex AR parameters, and 
e(n) is the complex modelling error. 

The Yule-Walker equations were used to compute the 
complex AR parameters apk and the modelling error 
variance 0-k z . The Yule-Walker equations relate the AR 
parameters to the complex autocorrelation function of 
x(n). This method is also known in the literature as the 
all-pole modelling with autocorrelation method. The 
Levinson-Durbin algorithm (KAY and MARPLE, 1981) pro- 
vides an efficient recursive solution for the Yule-Walker 
equations. This algorithm proceeds recursively to compute 
the parameter sets {all, 0-~}, {a21, a22 , 0 "2} . . . . .  {apl, ap2, 
.. . .  app, a2}, as follows: 

al l  = - Rxx(1)/Rxx(O) (5) 

0-~ = (1 -- lax1 I2)Rxx(O) (6) 

The recursion for k = 2, 3 . . . . .  p is given by 

a~k = - R x A k )  + Y~ ak_  l, m R x ~ ( k  - m 0-~-1 (7) 
m = l  

= * (i = 1, k -  1) (8) aki a k - l , i  "~ a k k a k _ l , k _ i  . . . ,  

0-~ = (1 - l akk hz)a~-i (9) 

where Rx.(k) is the complex autocorrelation function of 
x(n) computed by 

1 N - k - I  
Rxx(k ) = ~ ~ x(n + k)x*(n) 

n = 0  

(10) 

where x*(n) denotes the complex conjugate of x(n), and N 
is the number of data points. 

For each recursion, the final prediction error (FPE) or 
the Akaike's information criterion (AIC) was evaluated 
and tested. The recursion was initiated with the model 
order p = 1 and terminated when an increase in model 
order resulted in an increase of FPE or AIC function. The 
parameter set of the AR model of order p was {apl, ap2, 
. . . .  app, 0-2}. The definitions of FPE and AIC are (KAY 
and MARPLE, 1981) 

N + p + l  2 (11) 
FPE(p) - N - p -- 1 ~p 

AIC(p) = In (a 2) + 2(p + 1)/N (12) 

where a 2 is the variance of the modelling error corre- 
sponding to the model order p. 

Once the AR parameters had been estimated, the power 
spectral estimate SAR(f ) of x(n) was computed by 

o~ A t  

S a R ( f ) =  1 +k=l  ~ %ke ~2~IkAt 2 
(13) 

where At is the sampling interval. The rectangular data 
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window (10 or 5 ms) was applied to the in-phase and quad- 
rature Doppler components, and eqns. 5 to 13 were used 
to compute a 256-sample power spectrum with zero 
padding of the AR coefficients. This window was then slid 
over the entire cardiac cycle, and a power spectrum was 
computed at each increment of 5ms to produce an AR 
spectrogram of the Doppler signal. To reduce the ampli- 
tude variability and the beat-by-beat variance, an en- 
semble average of spectrograms for each patient was com- 
puted over five cardiac cycles synchronised by the QRS 
wave of the ECG. 

For  x(n) weighted by a temporal window w(n), the power 
spectral estimate based on the periodogram was computed 
by 

1 
SFFT(f) = ~ IX(f)12 (14) 

N - 1  N - 1  

where X ( f )  = ~" x(n)w(n)e -j2`I",  and U = y '  wZ(n) 
n = 0  n=O 

Here U is a correcting factor associated with the change in 
signal energy due to windowing. The spectrogram based 
on the periodogram was obtained by using the same 
window shift procedure as in the computation of the AR 
spectrogram and zero padding of the windowed signal to 
256 samples. 

2.2 Effect o f  window duration on the spectral envelope area 
It was shown in CANNON et al. (1982) and CLOUa'IER et 

al. (1990) that the spectral envelope area (SEA) can be used 
to assess aortic stenosis. In the present study, this param- 
eter was computed for window durations of 5 and 10ms, 
and it was compared for spectrograms estimated with 
periodogram and AR modelling. After having computed 
the mean spectrogram of each patient, minimum and 
maximum frequency contours were determined by using 

-1289'1 

- 2 5 7 8 . 1  I I I 

0 156 312 1.68 62/* 780 
time, ms 

Fig. 1 Spectral envelope area (SEA) of the negative frequencies 
of an averaged spectrogram obtained from a patient with a 
normal aortic valve 

2.3 Can a Doppler signal be considered as an A R  process? 

Spectral estimation is a procedure assuming an a priori 
model of the signal (VAITKUS and COBBOLD, 1988). For  
instance, a sum of sinusoids is assumed for the periodo- 
gram. If the signal can be appropriately modelled by a 
parametric model, then it is possible to obtain a better 
spectral estimate based on the model by determining its 
parameters. If the AR model is appropriate for the 
Doppler blood-flow signal, the modelling errors should 
have white-noise characteristics (Box and JENKINS, 1976). 
The essential check of a good AR model is thus to observe 
the modelling error signal e(n), where 

e(n) = x(n) + ~ a,k x(n -- k) = apk x(n -- k) 
k = l  k = O  

O <<. n <<. N - 1  (15) 

with aoo = 1. If we define the normalised autocorrelation 
function cxx(k) of the modelling error signal as 

cxx(k ) = rxx(k)/rxx(O ) (16) 

where rx~(k) is the autocorrelation function of the error 
signal, and compute a Q value 

K 

Q = U ~ c2=~(k) (17) 
k = l  

then it has been shown (Box and JENKINS, 1976) that the Q 
approximates the chi-square distribution if the model is 
appropriate (N is the number of samples in the signal 
segment, and K is the number of time lags of the normal- 
ised autocorrelation function). At a certain significance 
level of c~, the error signal is a white noise if the value of Q 
is less than the chi-square value with K degrees of freedom. 

In the present work, the whiteness of the error signal 
was tested on 10ms peak-systolic segments taken from 20 
patients. The peak-systolic segments were selected at the 
peak of the maximum frequency contour. For each 
segment, the whiteness test was carried out on the deci- 
mated signal with an effective sampling frequency just 
above the Nyquist rate. The decimation factor was based 
on the maximum frequency of the segment, as described in 
Part 1 of this study (Guo et al., 1993). The value of time 
lag K was selected to be 20 empirically, and the signifi- 
cance level was 0.05. 

3 Results 

3.1 The A R  Doppler spectrogram 

Fig. 2 shows an example of the mean AR spectrogram 
obtained using the Yule-Walker method. The negative and 
positive frequency components correspond to the forward 
and reverse blood flow through the aortic valve. The AIC 
was used to optimise the model order of each spectrum. 

Fig. 3 shows the histograms of the relative occurrence of 

the modified threshold crossing method described in 
CLOUTIER et al. (1990). By adequately thresholding each 
mean spectrogram, the blood-flow signal was separated 
from the background noise, and the frequency envelope of 
the spectrogram was determined accurately. The SEA 
value was then computed as the area between minimum 
and maximum frequency contours of the negative fre- 
quency portion of the spectrogram. Fig. 1 shows an 
example of SEA. A paired t-test was then used to evaluate, 
for the 20 patients, the statistical consistency of SEA for 
the two window durations and the two spectral estimation 
techniques tested. 

Fig. 2 Example of bidirectional AR spectrogram estimated from a 
normal aortic valve. The model order for each spectral line 
was optimised by using the AIC 
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Histograms of the optimal AR orders for the Doppler 
signals o['20 patients: (a) determined by FPE; (b) deter- 
mined by AIC 

model orders using the FPE (Fig. 3a) and the AIC (Fig. 
3b). Each panel shows the histogram from 20 patients 
computed for each spectrum over one cardiac cycle. As can 
be seen, the two histograms are almost identical, and no 
order larger than 16 was required to model the cardiac 
Doppler signal. This indicates that the Doppler spectrog- 
rams obtained by using AIC and FPE are essentially iden- 
tical. This observation is in agreement with the results of 
SCHLINDWEIN and EVANS (1990). 

3.2 Effect o f  window duration and spectral techniques on 
SEA  

Fig. 4 shows an example of the influence of window 
duration on the negative frequency portion of the mean 
spectrogram using the same data as in Fig. 2. Figs. 4a and 
b were obtained by using the periodogram with window 
durations of 10 and 5ms, respectively, and Figs. 4c and d 
were obtained by using AR modelling with AIC to select 

Table 1 SEA values, expressed in kHz, computed from the spec- 
trograms of 20 patients with the periodogram (FFT)  and AR 
modelling for window durations of 10 and 5ms. The last ten 
patients had aortic valve stenosis, which corresponds generally to 
larger SEA values. The p-values were obtained by using a paired 
t-test 

SEA (FFT) SEA (AR) 

Patient 10 ms 5 ms 10 ms 5 ms 

1 189 193 173 171 
2 147 167 112 110 
3 161 194 153 171 
4 217 255 203 209 
5 127 126 93 90 
6 44 48 36 35 
7 158 171 123 118 
8 79 73 43 40 
9 200 234 181 187 

10 162 166 116 107 
11 408 410 300 299 
12 210 227 177 175 
13 227 201 159 149 
14 237 246 200 198 
15 310 329 303 307 
16 273 274 217 208 
17 369 370 318 300 
18 249 268 233 235 
19 179 184 148 143 
20 214 244 187 199 

p = 0-0052 p = 0"93 

the model orders and the window durations of 10 and 
5ms, respectively. As can be seen from this figure, the 
shorter window duration widened the frequency com- 
ponents and thus decreased the frequency resolution of the 
spectrogram based on the periodogram. It resulted in an 
increased value of SEA. However, the change of window 
duration had less effect on the Doppler AR spectrogram. 
Consequently, SEA should be less sensitive to window 
duration if AR modelling is used. 

Table 1 shows the results of the paired t-test of SEAs 
from 20 mean spectrograms obtained by using AR model- 
ling and the periodogram with window duration of 10 and 
5 ms. When the window duration was reduced from 10 to 

5 O 0  

_o~_ 

8 _480L_ , v ~ , , - v , 
o 50 I o 0  150 2 0 0  

Fig. 4 Example of the influence of window duration on the nega- 
tive frequency portion of the spectrogram of the signal used 
in Fig. 2: (a) and (b) were obtained by using the period- 
ogram; (c) and (d) were obtained by using AR modelling. 
The window duration was 10 ms for (a) and (c) and 5 ms 

for (b) and (d). The AIC was used to determine the 
optimal order of each spectral line of the AR spectrogram 

o -40 ' J 
0 50 ]00 150 200 

s a m p l e s  

b 

Fig. 5 (a) In-phase component of a Doppler signal segment, and 
(b) corresponding real component of AR modelling error 
signal. The sampling frequency was 20 kHz 
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5ms, the values of SEA increased significantly for the 
periodogram (p = 0.0052) and were not significantly differ- 
ent (p = 0"93) for the AR modelling. The statistical test 
thus confirmed that SEA is less sensitive to window dura- 
tion when AR modelling is used. 

3.3 Modelling the Doppler signal as an AR process 

Fig. 5 shows a 10ms segment of the in-phase cardiac 
Doppler signal at peak systole and its corresponding real 
component of the complex error signal of AR modelling. 
Table 2 shows the maximum frequencies of the 20 peak- 
systolic segments of the 20 patients, which were used to 

Table 2 The maximum frequencies of peak-systolic segments of 
20 patients and the corresponding Q values. All Q values are less 
than the reference ehi-square value of 31.4 

Maximum Maximum 
frequency, frequency, 

Patient kHz Q value Patient kHz Q value 

1 3"1 25'1 11 2.5 14'6 
2 3.2 16'0 12 2-6 14.8 
3 2.4 14'9 13 2-0 27"7 
4 3.4 15"4 14 3.0 30'3 
5 3'0 19'8 15 5'0 30'9 
6 2"0 25"9 16 3.0 14"8 
7 2.6 18"4 17 2.7 16.2 
8 2"5 21-2 18 3.7 19-7 
9 3'0 14"2 19 2.5 12"9 

10 3"3 20-4 20 2.5 14-4 

determine the decimation factors, and the Q values corre- 
sponding to the error signals. As all the Q values were less 
than the chi-square value (31.4) with 20 degrees of freedom 
at a significance level of 0.05, the whiteness of the error 
signals for all segments was accepted. We can thus con- 
clude that the cardiac Doppler signal can be modelled 
adequately by a complex AR process. 

cycles was used in the past to reduce these fluctuations on 
the spectrogram (CLOUTIER et  al., 1992). The advantage of 
using an AR spectral estimator is to smooth these fluctua- 
tions, as a pth-order AR model is constrained to have 
fewer than p spectral peaks. As stated previously, the AR 
model order most often used for cardiac Doppler signals 
was around five in the present study. For  this small value 
of p, a smoothed spectrogram is consequently obtained. 
Thus to achieve the same reduction of amplitude variabil- 
ity, fewer spectrograms are required in the ensemble 
average if the AR method is used. 

When the periodogram is used, both the stationarity of 
the signal and the frequency resolution of the spectra are 
factors to determine window duration. A shorter window 
used to ensure signal-segment stationarity introduces a 
spread in the frequency domain and therefore reduces the 
spectral resolution. Thus, a compromise between frequency 
resolution and signal stationarity is required. However, 
when AR modelling is used, the choice of window duration 
only depends on the stationarity of the signal. Thus, a 
shorter sliding window can better reflect the nonsta- 
tionarity of the Doppler signal and describes the variation 
of blood velocity with time more accurately. 

4.2 The appropriateness of  the AR model for Doppler 
signals 

In the present study, the modelling error signals were 
used to evaluate the appropriateness of the AR process as 
a model of the Doppler blood-flow signal. It should be 
noted that, for power spectral estimation of a signal with 
unknown properties, the modelling error is not necessarily 
a white-noise process. However, it has the characteristics 
of white noise only when the model order p is very large or 
if the signal is a true AR process for a low order. The 
results listed in Table 2 confirmed that the Doppler blood- 
flow signal can be modelled as a true complex AR process. 

A complementary study was done to evaluate the effect 

4 Discussion and conclusion 

4.1 AR modelling of  Doppler blood-flow signal 

One concern with model identification is to obtain a 
reasonable estimate of the specific value of the model order 
p that best describes the finite duration of the signal, and 
to estimate these parameters from the signal. In the present 
work, two well known criteria were studied to select p. 
When the window duration was 10ms, FPE and AIC had 
almost identical behaviours, as shown in Fig. 3. This indi- 
cates that either the FPE  or AIC can be used for AR 
modelling of the Doppler signal. SCHLINDWEIN and EVANS 
(1990) showed that overestimating the order of the AR 
model introduces less error in the spectral estimation than 
underestimating it. Thus, a relatively high fixed-order 
implementation for cardiac Doppler spectrogram estima- 
tion would also be an acceptable approach. However, it 
has been noted that too high a model order can introduce 
spurious peaks in the spectrogram. Based on the results of 
Fig. 3 obtained from the 20 patients, the order most often 
used was five, and no order greater than 16 was required. 
Thus, a model order between five and 16 should be used 
when a fixed order is selected to estimate each spectrum. 

In practice, the Doppler spectrogram has a determin- 
istic structure related to the mean blood-flow field on 
which random fluctuations of scatters are superimposed. 
To reduce the amplitude variance of the spectrogram and 
enhance the flow field components, an ensemble average 
is usually used. Averaging between two and 20 cardiac 
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Two AR Doppler spectrograms of a patient with a stenotic 
aortic valve. The sampling frequency was (a) 20 kHz and 
(b) lOkHz. The model order of each spectral line was 
estimated by AIC 
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of sampling frequency on the Doppler  spectrogram estima- 
tion. Fig. 6 shows an example. The sampling rate of Fig. 6a 
was kept at 20 kHz, and that in Fig. 6b was reduced to 
10kHz. No important  difference was observed from these 
two spectrograms. Figs. 7a and b show the histograms of 
the model orders used for computing Figs. 6a and b, 
respectively. Lower orders were more often selected for 
Fig. 6b, which indicates that the model order also depends 
on the sampling frequency. A paired t-test was carried out 
on the two groups of SEAs obtained from the AR spec- 
t rograms of the 20 patients with sampling frequencies of 20 
and 10kHz, respectively. At a significance level of 0.05, no 
statistical difference was found between these two groups 
of SEAs. This implies that SEA is not sensitive to sampling 
rate when AR modelling is used. A proper low sampling 
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(a) and (b) show the histograms of the orders of the AR 
model used to compute the spectrograms of Figs. 6a and b, 
respectively. 

frequency is thus recommended, because it corresponds to 
smaller orders and less computat ional  complexity. Owing 
to the nonstationarity of the Doppler  signal, it is not easy 
to optimise the sampling frequency for each signal segment 
throughout the cardiac cycle. Because the Doppler  signal 
has the maximum frequency during the peak systole, using 
the sampling frequency just above twice the maximum sig- 
nificant frequency of the peak-systolic signal is recom- 
mended when carrying out the AR Doppler spectrogram 
estimation. 

In comparison with the periodogram, AR modelling is 
better for Doppler  spectrogram estimation, owing to the 
higher frequency resolution, higher statistical consistency 
and lower sensitivity to Doppler  speckles, window dura- 
tion and sampling frequency. The Doppler  blood-flow 
signal can be adequately modelled as a complex AR 
process when the order p is determined by either FPE or 
AIC. 
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