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As will be shown in this article, elastog-
raphy techniques integrated to clinical ul-
trasound and MR systems now provide the 
capability to examine by imaging what once 
could be examined only by direct palpation, 
which is likely to open new opportunities to 
noninvasively diagnose disease, guide man-
agement, and improve outcomes.

Key Learning Points
First, the main current clinical indica-

tions for abdominal elastography tech-
niques are detection and staging of liver fi-
brosis. In general, elastography techniques 
provide good-to-excellent diagnostic accu-
racy for the detection of advanced fibrosis 
but have more modest performance for de-
tection of early or mild fibrosis. Most stud-
ies to date have been in adults; performance 
characteristics in children are less well 
known. Research is needed to better under-
stand the performance of elastography for 
monitoring longitudinal changes in fibrosis. 
Emerging indications of elastography in-
clude detection of hepatic inflammation, as-
sessment of portal hypertension, character-
ization of focal liver lesions, and evaluation 
of other abdominal organs.

Ultrasound Elastography and 
MR Elastography for Assessing 
Liver Fibrosis: Part 2, Diagnostic 
Performance, Confounders, and 
Future Directions

An Tang1,2,3 
Guy Cloutier2,3,4,5 
Nikolaus M. Szeverenyi6 
Claude B. Sirlin6

Tang A, Cloutier G, Szeverenyi NM, Sirlin CB

Gastrointest ina l  Imaging •  Review

AJR 2015; 205:33–40

0361–803X/15/2051–33

© American Roentgen Ray Society

I
n abdominal imaging, liver stiff-
ness estimated by elastography 
techniques may be used as a quan-
titative imaging biomarker for de-

tection, staging, and monitoring of liver fibrosis 
[1–3]. Liver stiffness is used to evaluate the se-
verity of the underlying chronic liver disease, 
guide treatment decision, assess disease out-
come, and evaluate response to therapy [4].

In this second article of a two-part series 
[5], we will discuss the clinical applications 
in the liver. We will focus on diagnostic per-
formance of ultrasound elastography and MR 
elastography techniques for detection, staging, 
and monitoring of liver fibrosis, the main cur-
rent clinical applications of elastography in the 
abdomen. We will discuss potential confound-
ers of stiffness measurements for assessment of 
liver fibrosis, which include technical and in-
strument-related factors (location and depth of 
measurements, wave frequencies, and device 
dependencies) and biologic and patient-related 
factors (concomitant hepatic steatosis, inflam-
mation, cholestasis; breathing; right heart fail-
ure and hepatic venous congestion; and fasting 
vs postprandial state). Finally, we will briefly 
discuss future directions and technical innova-
tions in this field of research.
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OBJECTIVE. The purpose of the article is to review the diagnostic performance of ultra-
sound and MR elastography techniques for detection and staging of liver fibrosis, the main 
current clinical applications of elastography in the abdomen.

CONCLUSION. Technical and instrument-related factors and biologic and patient-re-
lated factors may constitute potential confounders of stiffness measurements for assessment 
of liver fibrosis. Future developments may expand the scope of elastography for monitoring 
liver fibrosis and predict complications of chronic liver disease.

Tang et al.
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Second, potential confounders when us-
ing stiffness for assessment of liver fibro-
sis include technical and instrument-related 
factors and biologic and patient-related fac-
tors. The former include location and depth 
of measurements, wave frequencies, and de-
vice dependencies. The latter include con-
comitant hepatic steatosis, inflammation, 
and cholestasis; breathing; right heart failure 
and hepatic venous congestion; and fasting 
versus postprandial state.

Third, measured stiffness is frequency de-
pendent: in general, measured stiffness in-
creases as the frequency of the shear waves 
increases. Different techniques use different 
frequencies; hence, observed stiffness values 
are technique dependent.

Fourth, various elastography techniques 
have advantages and limitations, and no sin-
gle technique currently can be recommend-
ed as optimal for all indications and cir-
cumstances. Depending on the indication 
(screening, diagnosis, or monitoring of liv-
er fibrosis), different modalities may be pre-
ferred. Ultrasound elastography techniques 
are relatively inexpensive, portable, increas-
ingly available, and generally provide good 
diagnostic accuracy for advanced fibrosis. 
Nevertheless, they sample relatively small 
portions of the liver and they may be unre-
liable in obese patients and those with nar-
row intercostal spaces. MR elastography 
samples larger portions of the liver and of-
fers excellent diagnostic accuracy that proba-
bly slightly exceeds that of ultrasound-based 
techniques, but quality may be degraded in 
patients with marked iron deposition. Avail-
ability of the required hardware or software 
remains comparatively limited.

Finally, elastography techniques integrat-
ed to clinical ultrasound and MRI systems 
can assess mechanical properties in vivo. 
Radiologists should be familiar with these 
exciting new technical capabilities to exam-
ine by imaging what once could be examined 
only by direct palpation.

Clinical Applications in the Liver
Clinical applications of elastography in 

the liver include noninvasive assessment of 
fibrosis and characterization of focal lesions 
[6–9]. This article will focus on assessment 
of liver fibrosis. Most studies to date have 
been in adults. The performance charac-
teristics of elastography techniques in chil-
dren are less well known and require further 
study [10–15].

The clinical adoption of elastography tech-
niques for assessment of liver fibrosis is based 
on the observation that liver stiffness increas-T

A
B

LE
 1

: S
um

m
ar

y 
of

 M
et

a-
A

na
ly

se
s:

 P
oo

le
d 

D
ia

gn
os

ti
c 

P
er

fo
rm

an
ce

 o
f E

la
st

og
ra

ph
y 

T
ec

hn
iq

ue
s 

fo
r 

St
ag

in
g 

of
 L

iv
er

 F
ib

ro
si

s

Te
ch

ni
qu

e,
 S

tu
dy

N
o.

 o
f 

St
ud

ie
s 

(N
o.

 o
f 

Pa
tie

nt
s)

 
In

cl
ud

ed
Im

pl
em

en
ta

tio
n

Fi
br

os
is

 S
ta

ge
 ≥

 1
Fi

br
os

is
 S

ta
ge

 ≥
 2

Fi
br

os
is

 S
ta

ge
 ≥

 3
Fi

br
os

is
 S

ta
ge

 4

Cu
to

ff
AU

C
Se

ns
iti

vit
y

Sp
ec

ifi
ci

ty
Cu

to
ff

AU
C

Se
ns

iti
vi

ty
Sp

ec
ifi

ci
ty

Cu
to

ff
AU

C
Se

ns
iti

vi
ty

Sp
ec

ifi
ci

ty
Cu

to
ff

AU
C

Se
ns

iti
vi

ty
Sp

ec
ifi

ci
ty

Ul
tr

as
ou

nd
 

el
as

to
gr

ap
hy

Ta
lw

al
ka

r e
t a

l. 
[2

3]
9 

(2
08

3)
1D

 tr
an

si
en

t 
el

as
to

gr
ap

hy
—

—
—

—
—

0.8
70

1
0.

70
0.

84
—

—
—

—
—

0.
95

67
0.

87
0.

91

Fr
ie

dr
ic

h-
Ru

st
 

et
 a

l. 
[1

]
50

 (8
43

3)
1D

 tr
an

si
en

t 
el

as
to

gr
ap

hy
—

—
—

—
7.6

5 k
Pa

0.
84

—
—

—
0.

89
—

—
13

.01
 kP

a
0.

94
—

—

Ts
oc

ha
tz

is 
et

 a
l. 

[2
4]

40
 (7

72
3)

1D
 tr

an
si

en
t 

el
as

to
gr

ap
hy

—
—

—
—

7.0
 k

Pa
—

0.
70

0.
81

9.5
 kP

a
—

0.
80

0.
85

12
.0 

kP
a

—
0.

86
0.

88

Fr
ie

dr
ic

h-
Ru

st
 

et
 a

l [
3]

.
8 

(5
18

)
Po

in
t 

sh
ea

r-
w

av
e 

el
as

to
gr

ap
hy

—
—

—
—

1.3
4 m

/s
0.

87
0.

79
0.

85
1.5

5 m
/s

0.
91

0.
86

0.
86

1.8
0 m

/s
0.

93
0.

92
0.

86

Bo
ta

 e
t a

l. 
[2

5]
13

 (1
16

3)
1D

 tr
an

si
en

t 
el

as
to

gr
ap

hy
—

—
—

—
—

0.
87

0.
78

0.
84

—
—

—
—

—
0.

93
0.

89
0.

87

Po
in

t 
sh

ea
r-

w
av

e 
el

as
to

gr
ap

hy

—
—

—
—

1.
30

 m
/s

0.
85

0.
74

0.
83

—
—

—
—

1.8
0 m

/s
0.

93
0.

87
0.

87

M
R 

el
as

to
gr

ap
hy

W
an

g 
et

 a
l. [

2]
5 

(3
98

)
M

ag
ni

tu
de

 o
f 

co
m

pl
ex

 
sh

ea
r 

m
od

ul
us

—
0.

95
—

—
—

0.
98

0.
94

0.
95

—
0.

98
0.

92
0.

96
—

0.
99

—
—

Si
ng

h 
et

 a
l. 

[2
6]

12
 (6

97
)

Co
m

pl
ex

  
(G

′, G
″)

3.4
5 k

Pa
0.

84
73

79
3.6

6 k
Pa

0.
88

0.
79

0.
81

4.1
1 k

Pa
0.

93
0.

85
0.

85
4.7

1 k
Pa

0.
92

0.
91

0.
81

N
ot

e—
Fi

br
os

is
 w

as
 s

ta
ge

d 
on

 a
 5

-p
oi

nt
 s

ca
le

 0
 (n

on
e)

 to
 4

 (c
irr

ho
si

s)
 in

 th
e 

m
et

a-
an

al
ys

is
. D

as
h 

in
di

ca
te

d 
no

t a
va

ila
bl

e.
 G

′ =
 s

to
ra

ge
 m

od
ul

us
, G

″ =
 lo

ss
 m

od
ul

us
.

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 A

n 
T

an
g 

on
 0

7/
02

/1
5 

fr
om

 I
P 

ad
dr

es
s 

21
3.

16
0.

11
2.

18
. C

op
yr

ig
ht

 A
R

R
S.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d 



AJR:205, July 2015	 35

Liver MR Elastography

es with higher fibrosis stages [16–18]. The 
central concept is that collagen deposition 
and other microstructural changes associat-
ed with fibrosis impart parenchymal rigidity. 
Although fibrosis stages are categorized by 
pathologists using ordinal scores, typically 
from stage 0 to stage 4, the imaging literature 
has focused on the classification of patients 
into dichotomized fibrosis stages, mostly for 
the diagnosis of significant (stage ≥ 2) or ad-
vanced (stage ≥ 3) fibrosis. As opposed to di-
chotomized classification (e.g., stage 0–1 vs 
stages 2–4), prediction of exact fibrosis stage 
has not been explored in depth.

Histologically determined fibrosis stage is 
a semiquantitative assessment of cumulative 
liver injury based on the location and amount 
of excess collagen as well as associated re-
modeling of liver architecture [19, 20]. Be-
cause the location of collagen and the pres-
ence of remodeling contribute to the fibrosis 
stage, the fibrosis stage is not dictated solely 
by the total amount of collagen, and the re-
lationship of fibrosis stage to total collagen 
content is not linear [21, 22]. Instead, as the 
fibrosis stage increases from stage 0 (no ab-
normal fibrosis) to higher stages, the total 
collagen content remains fairly stable until an 
advanced fibrosis stage is reached and then 
the total collagen content increases exponen-
tially. It is likely that elastography is a more 
direct marker of total collagen content than 
fibrosis stage. Hence, we should not expect 
a linear relationship between stiffness and fi-
brosis stage, and clinical studies consistently 
have shown a curvilinear (exponential) rela-
tionship between fibrosis stage and stiffness. 
A corollary is that stiffness estimates tend to 
overlap in the lower fibrosis stages but to be 
separated in the higher fibrosis stages.

Diagnostic Performance
Several meta-analyses have been published 

on the diagnostic performance of 1D transient 
elastography [1, 23–25], point shear-wave 
elastography [3, 25], and MR elastography 
[2, 26] for noninvasive staging of liver fibro-
sis. These studies relied on histopathology as 
the reference standard. Although some stud-
ies have reported the diagnostic performance 
of shear-wave elastography [27, 28], other 
studies did not have liver biopsy as an inde-
pendent reference standard for all patients [29, 
30]. The pooled diagnostic performance and 
thresholds for staging of dichotomized liver fi-
brosis in the meta-analyses are summarized in 
Table 1 for ultrasound elastography and MR 
elastography techniques.

The estimates of diagnostic performance 
(AUC, sensitivity, and specificity) for ultra-
sound elastography techniques were similar in 
the three meta-analyses of 1D transient elas-
tography and the meta-analysis of point shear-
wave elastography. The two meta-analyses on 
the diagnostic performance of MR elastogra-
phy reported higher AUCs, although the sen-
sitivity and specificity were similar to those of 
ultrasound elastography techniques.

Comparison of Elastography Techniques
A few studies have directly compared 

different elastography techniques cross-
sectionally with histopathology as the in-
dependent reference standard. Most studies 
that have compared ultrasound elastograph-
ic methods (point shear-wave elastography 
vs 1D transient elastography) have reported 
similar diagnostic performance for fibrosis 
staging in patients with chronic liver dis-
ease [31–34], chronic viral hepatitis [35], 
and nonalcoholic fatty liver disease [36, 
37]. However, some of these studies have 
reported higher rates of technical failure 
or invalid measurements with 1D transient 
elastography than with point shear-wave 
elastography [31, 37, 38].

Two studies have reported higher diag-
nostic accuracy of ultrasound-based meth-
ods that generate shear waves using acoustic 
radiation-force impulses (point shear-wave 
elastography or shear-wave elastography) 
than with external vibration (1D transient 
elastography). A study by Rizzo et al. [38] in 
patients with chronic hepatitis C found high-
er accuracy with point shear-wave elastogra-
phy than 1D transient elastography for the di-
agnosis of significant (stage ≥ 2) and severe 
(stage ≥ 3) fibrosis (p = 0.024 and p = 0.002, 
respectively). Similarly, a study by Ferraioli 
et al. [39] in patients with chronic hepatitis C 
found higher accuracy with shear-wave elas-
tography than 1D transient elastography for 
staging significant fibrosis (stage ≥ 2) (p = 
0.002); the diagnostic accuracy, as estimated 
by AUCs, was similar for staging of severe fi-
brosis (stage ≥ 3) and cirrhosis (stage 4) [39].

Studies that have compared MR elastog-
raphy with ultrasound elastography methods 
have found different results depending on 
the techniques compared. A cross-sectional 
study by Huwart et al. [18] reported a higher 
technical success rate with an investigation-
al form of MR elastography (94%) than with 
1D transient elastography (84%). The AUC 
was significantly superior for MR elastogra-
phy (0.994 for stage ≥ 2, 0.985 for stage ≥ 3, 

and 0.998 for stage 4) than for 1D transient 
elastography (0.837 for stage ≥ 2, 0.906 for 
stage ≥ 3, and 0.930 for stage 4).

Recently, Yoon et al. [40] compared the fi-
brosis staging accuracy of shear-wave elastog-
raphy with MR elastography in patients un-
dergoing liver biopsy for suspicion of chronic 
liver disease before liver transplantation and 
before hepatectomy or liver donation. The 
technical failure rates were similar for shear-
wave elastography (2.33%) and MR elastog-
raphy (4.65%). Among patients who had re-
liable results on both techniques, the AUCs 
were similar for detection of significant fibro-
sis (stage ≥ 2) (0.852 for shear-wave elastogra-
phy and 0.853 for MR elastography).

Confounders of Stiffness Measurements
The accuracy of elastography techniques 

for assessment of fibrosis may be influ-
enced by technical and instrument-relat-
ed factors and biologic and patient-relat-
ed factors. Some confounding factors may 
be technique or instrument specific, but it 
is reasonable to assume that the physiolog-
ic underpinning of several biologic and pa-
tient-related confounding factors should be 
equally applicable to ultrasound elastogra-
phy and MR elastography.

Technical Confounders
Left Versus Right Lobe Measurements

In several studies, higher liver stiffness 
measurements were observed in the left than 
in the right liver lobe with ultrasound elas-
tography techniques [31, 41–44]. Moreover, 
better accuracy and a lower rate of invalid 
measurements were observed by the inter-
costal approach in the right lobe [37, 45]. It 
has been hypothesized that liver compres-
sion by the transducer, heart, or stomach may 
contribute to higher stiffness measurements 
in the left lobe. Hence, right lobe measure-
ments by the intercostal approach, unaffect-
ed by the effect of probe compression against 
the liver parenchyma, are preferred.

Depth of Measurements
Higher stiffness measurements were ob-

served close to the liver surface compared 
with deeper measurements performed with 
ultrasound elastography techniques [42, 46]. 
Correlation between liver stiffness and fibro-
sis stage is higher for measurements made at 
1–3 cm below the liver capsule than for su-
perficial measurements performed between 
0 and 1 cm below the liver capsule [47]. 
On the basis of these observations, stiffness 
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measurements acquired at least 1 cm below 
the liver capsule are advocated.

Wave Frequencies
The liver has been shown to display dis-

persive (i.e., frequency-dependent) behavior 
[48]. Hence, the choice of excitation frequen-
cy is critical in liver elastography to obtain 
the frequency-dependent viscoelastic prop-
erties of liver tissue. However, it is current-
ly unclear which shear-wave frequency will 
provide the optimal discrimination ability 
for fibrosis staging.

Prior studies relied on different excitation 
frequencies depending on imaging technique 
and study subjects. For example, 1D transient 
elastography uses a lower excitation frequen-
cy of 50 Hz [17], whereas point shear-wave 
elastography and shear-wave elastography 
typically use higher frequencies [49, 50]. 
The choice of frequency used in those studies 
was partly dictated by technical constraints, 
such as transducer configuration and depth 
of tissue studied, because a higher frequen-
cy would result in wave amplitude dissipa-
tion and signal-to-noise ratio decrease. Com-
mercial MR elastography typically uses a 
frequency of 60 Hz, although frequencies be-
tween 40 and 200 Hz have been investigated 
for clinical liver imaging [51–55].

Device Dependencies
Shear-wave speed measurement is not yet 

standardized across modalities, scanners, 
and transducers. These inconsistencies do 
not invalidate published results; rather, they 
make comparison of diagnostic cutoffs dif-
ficult, limit generalizability of results, and 
complicate the implementation of published 
cutoffs into individual practice. With time, 
we expect the terminology and the param-
eters to be standardized, which will facili-
tate meta-analysis, pooling of results, direct 
comparison of diagnostic cutoffs, and imple-
mentation of these techniques into clinical 
practice and clinical trials.

Because of the lack of standardization in 
terminology, shear-wave frequency, reported 
parameters, and other technical factors com-
paring different elastographic techniques 
can be challenging. The reported diagnos-
tic thresholds for a specific condition, such 
as liver fibrosis, are technique dependent. 
This translates into a wide range of pub-
lished elastographic thresholds for the stag-
ing of liver fibrosis [1–3, 56]. In particular, 
because shear-wave speed is related to the 
square root of the stiffness-related moduli 

(Young modulus, complex shear modulus), 
techniques that report shear-wave speed will 
appear to provide more closely spaced re-
sults than techniques that report a modulus. 
This should not be misinterpreted as signi-
fying that techniques that report shear-wave 
speed are more limited as tissue classifiers.

Biologic Confounders
Hepatic Steatosis

The effect of steatosis on liver stiffness re-
mains controversial. A clinical study evaluat-
ing point shear-wave elastography in patients 
with nonalcoholic fatty liver disease found 
lower stiffness in patients with simple ste-
atosis but not fibrosis compared with healthy 
volunteers [36]. However, some MR elas-
tography studies that assessed fat fraction on 
MRI did not find an effect of liver fat on liver 
stiffness [57–59]. Further studies are needed 
to determine definitively whether liver ste-
atosis affects liver stiffness and if so whether 
the effect is frequency dependent.

Inflammation
Elastographic imaging techniques, which 

measure the elasticity (springlike behav-
ior) and viscosity (dashpot-like behavior) of 
soft tissues, suggest that both elasticity and 
viscosity increase markedly with fibrosis, 
moderately with inflammation, and mildly 
with steatosis [36, 50, 60, 61]. Inflammation 
causes edema, which increases both elastic-
ity and viscosity [62].

Cholestasis
Liver stiffness is also influenced by extra-

hepatic cholestasis. A clinical study evaluat-
ing liver stiffness in patients with extrahepat-
ic bile duct obstruction showed elevated liver 
stiffness irrespective of fibrosis before ERCP 
and decreased liver stiffness 3–12 days after 
successful biliary drainage [63]. The relation-
ship between liver stiffness and extrahepatic 
cholestasis was reproduced in a pig model of 
bile duct ligation [64]. Therefore, liver stiff-
ness should be interpreted with caution in pa-
tients with biliary obstruction.

Breathing
Elastography measurements are acquired 

during breath-holding to minimize liver mo-
tion. Deep inspiration has been shown to in-
crease stiffness measurements compared with 
resting expiratory position [65]. Hence, breath-
hold at expiration is preferable to obtain con-
sistent liver position between acquisitions and 
to avoid overestimation of liver stiffness.

Right Heart Failure
Liver stiffness is affected by central ve-

nous pressure as shown in an experimental 
animal study [64]. A clinical study has also 
confirmed higher liver stiffness in patients 
with decompensated heart failure at admis-
sion than after correction at discharge [66]. 
The presence of heart failure as a potential 
confounding factor should therefore be tak-
en into consideration when measuring liver 
stiffness as a biomarker of liver fibrosis.

Hepatic Venous Congestion
Similarly, hepatic venous congestion also 

contributes to liver stiffness elevation. Serial 
measurements before and after treatment of 
venous stenosis either in the setting of an ex-
perimental murine model through partial li-
gation of the inferior vena cava [67] or in the 
setting of human liver transplantation have 
shown the potential confounding effect of he-
patic venous congestion on liver stiffness [68].

Fasting Versus Postprandial State
Elastography measurements should be ac-

quired in the fasting state because the post-
prandial state may increase liver stiffness 
in patients with chronic liver disease, as as-
sessed by ultrasound elastography [69, 70] 
and MR elastography [71]. However, in one 
MR elastography study, postprandial status 
did not significantly alter liver stiffness in 
healthy subjects [72].

Future Directions
Liver elastography is an active area of re-

search. Indications beyond cross-sectional as-
sessment of liver fibrosis are emerging. Liver 
elastography has been proposed for liver stiff-
ness monitoring, prognostication of hepatic 
complications, assessment of cirrhosis, and de-
tection of inflammation and portal hypertension.

Monitoring
Several studies have proposed elastogra-

phy techniques for monitoring liver stiffness. 
However, many of these studies have not in-
cluded paired biopsies for validation of elas-
tographic changes. A study that evaluated 
paired liver biopsy and 1D transient elastog-
raphy in the follow-up of patients for recur-
rent hepatitis C after transplantation showed 
that liver stiffness changes in parallel with 
recurrent hepatitis C [73]. However, when 
stiffness changes are observed, it is currently 
unclear whether stiffness changes are relat-
ed to fibrosis changes, inflammatory chang-
es, venous congestion, or other factors. The 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 A

n 
T

an
g 

on
 0

7/
02

/1
5 

fr
om

 I
P 

ad
dr

es
s 

21
3.

16
0.

11
2.

18
. C

op
yr

ig
ht

 A
R

R
S.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d 



AJR:205, July 2015	 37

Liver MR Elastography

biologic meaning of longitudinal stiffness 
changes requires further study.

Prognostication
Elastography has prognostic value for over-

all survival and survival without liver-relat-
ed death over a 5-year period in patients with 
chronic hepatitis C virus infection [74]. Elas-
tography may also be used to predict the risk 
of hepatic complications, including features 
of decompensation (variceal hemorrhage, as-
cites, hepatic encephalopathy, jaundice, hepa-
torenal syndrome, and spontaneous bacterial 
peritonitis), liver transplantation, and mortal-
ity in patients with chronic liver disease [75, 
76]. A study suggested that liver stiffness pre-
dicts future decompensation better than fibro-
sis stage [74]. Some studies [76–78] but not 
all [79] suggested that stiffness predicts future 
development of hepatocellular carcinoma.

Assessment of Cirrhosis
The clinical and pathophysiologic spectrum 

of patients with cirrhosis (which ranges from 
asymptomatic with normal or near-normal liv-
er function to debilitated terminally ill end-stage 
liver dysfunction) is greater than the clinical and 
pathophysiologic spectra of patients with all 
precirrhotic stages of fibrosis combined because 
these patients are usually asymptomatic and 
have normal liver function. Yet current histo-
logic staging systems do not subclassify patients 
once they advance to cirrhosis, in part because 
biopsy is not performed in patients with known 
cirrhosis because of the greater risk associated 
with this procedure in patients with cirrhosis 
and in part because until now cirrhosis has been 
considered irreversible and no treatments were 
available. Elastography offers promise for mon-
itoring patients with cirrhosis. This will be im-
portant as treatments for cirrhosis emerge.

Detection of Inflammation
Currently, both fibrosis and inflammation 

may contribute to stiffness [61]. An area of 
active investigation is to separate the contri-
butions of fibrosis and inflammation [60]. If 
this investigation is successful, elastography 
could permit identification of patients with 
inflammation who have not yet progressed 
to fibrosis and could additionally be used for 
monitoring the effects of intervention on each 
component separately.

Portal Hypertension
Some studies have suggested that spleen 

stiffness may be a marker of portal hyperten-
sion [80, 81]. Additionally, spleen stiffness may 

help predict the presence of esophageal varices 
and the risk of bleeding [82]. More research in 
this area is needed before these indications can 
be considered because of the limited accuracy 
of spleen stiffness estimation for diagnosis of 
esophageal varices in patients with cirrhosis 
when compared with esophagogastroduodenos-
copy as the reference standard [83].

Interpretation of Stiffness and Other 
Mechanical Properties

As experience and knowledge with elas-
tographic imaging accrue, we anticipate that 
stiffness and other mechanical properties 
will develop an intrinsic meaning without 
requiring translation to histologic markers, 
such as fibrosis stage. For example, at some 
point, a stiffness value of 4.5 kPa on 2D MR 
elastography will connote advanced liver 
disease at risk for decompensation without 
requiring the intermediate translation to the 
corresponding expected fibrosis stage. Simi-
larly, it is conceivable that patients may be 
classified on the basis of elastographic mea-
surements rather than histology.

Other Emerging Applications
Other emerging indications for abdominal 

elastography include characterization of fo-
cal liver lesions [6, 7, 9] and evaluation of 
other solid organs [84–86].

Technical Innovations
Several innovations may further refine liv-

er tissue characterization by elastographic 
techniques. This includes 3D measurement 
of tissue displacement, multifrequency elas-
tography, standardization of terminology, 
and calibration of measurements obtained by 
different elastography techniques.

Three-Dimensional Implementations
Commercially available ultrasound elas-

tography and MR elastography implementa-
tions sample wave propagation in only one or 
two dimensions. Future 3D implementations 
may permit assessment of a larger liver vol-
ume and measurement of tissue displacement 
fields using ultrasound [87, 88] or MRI [89]. 
This will enable analysis of more and thinner 
slices. In theory, this should help improve 
colocalization across time points, monitor-
ing for longitudinal change, and more com-
plete representation of wave propagation.

Multifrequency Elastography
To account for frequency-dependent me-

chanical properties of both healthy and path-

ologic liver, multifrequency shear waves 
may be used to characterize liver across a 
frequency range. An extension to the shear-
wave elastography technique has been used 
to acquire shear-wave spectroscopy at a wide 
frequency range from 75 to 500 Hz to ac-
count for the dispersive behavior of liver pa-
renchyma at higher frequencies [90]. Mul-
tifrequency MR elastography excitation has 
also been reported in a frequency range from 
25 to 62.5 Hz [91]. In addition to liver stiff-
ness (elasticity), a multifrequency acquisi-
tion scheme also permits calculation of vis-
cosity [51], which conceivably may help in 
the separation of fibrosis from inflammation. 
However, preliminary results indicate that 
multifrequency MR elastography does not 
provide higher accuracy than optimum sin-
gle-frequency MR elastography for staging 
hepatic fibrosis [92].

Terminology and Technique Standardization
The medical community has not standard-

ized the relevant terminology, which has 
been adapted inconsistently from engineer-
ing and physics. Different clinical investiga-
tors have used terms inconsistently, includ-
ing using the same term to refer to different 
parameters and different terms to refer to the 
same parameters.

The European Federation of Societies for 
Ultrasound in Medicine and Biology [93] has 
proposed terminology to reduce the number 
of commercial names for ultrasound-based 
techniques. In addition to generic terms to 
describe shear-wave techniques, there is a 
need to harmonize the terminology used to 
describe the mechanical properties and pa-
rameters in the field of elastography.

In 2008, the Radiological Society of North 
America created the Quantitative Imag-
ing Biomarkers Alliance (QIBA) to advance 
quantitative imaging and the use of imag-
ing-based biomarkers in clinical practice 
and clinical trials. The Ultrasound Modality 
Committee formed in 2012 performed an in-
terlaboratory study of shear-wave speed esti-
mation on phantoms [94]. The study revealed 
little difference between operators but sig-
nificant differences in shear-wave speed es-
timates related to depth of measurements and 
between systems. An MR elastography QIBA 
working group was launched in January 
2015. Ultimately the hope is that a kilopascal 
measured on one device will equal that mea-
sured on another device, assuming the same 
mechanical parameter (e.g., Young modulus) 
is being reported at the same frequency.
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Conclusion
The main clinical application for elastog-

raphy techniques in the abdomen is nonin-
vasive detection and staging of liver fibrosis. 
Both ultrasound elastography and MR elas-
tography techniques report very good to ex-
cellent diagnostic performance for diagnosis 
of advanced fibrosis. Radiologists who in-
terpret elastography examinations should be 
aware of several technical and biologic con-
founding factors that may affect the feasibil-
ity or fibrosis classification accuracy of these 
techniques. We envision future standardiza-
tion of elastography techniques so that quan-
titative parameters obtained by clinical sys-
tems from different vendors may provide 
similar results. This will ultimately improve 
reproducibility of elastography measure-
ments, facilitate comparison of diagnostic 
thresholds, and improve patient care.
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F O R  Y O U R  I N F O R M A T I O N

The reader’s attention is directed to Part 1 accompanying this article, titled “Ultrasound Elastography and MR 
Elastography for Assessing Liver Fibrosis: Part 1, Principles and Techniques,” which appears on pages 22–32 of this issue.
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