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Abstract: This paper presents a semi-analytical model adishvave scattering by a viscoelastic
elliptical structure embedded in a viscoelastic el and its application in the context of
dynamic elastography imaging. The commonly usedrapson of mechanical homogeneity in
the inversion process is removed introducngriori geometrical information to model physical
interactions of plane shear waves with the confimedhanical heterogeneity. Theoretical results
are first validated using the finite element method various mechanical configurations and
incidence angles. Secondly, an inverse problerariadlated to assess viscoelastic parameters of
both the elliptic inclusion and its surrounding red, and appliedn vitro to characterize
mechanical properties of agar-gelatin phantoms.rébastness of the proposed inversion method
is then assessed under various noise conditioasetigeometrical parameters, and compared to
direct inversion, phase gradient and time-of-flighéthods. The proposed elastometry method

appears reliable in the context of estimating ewdilesion viscoelastic parameters.

1. Introduction

Mechanical properties of biological tissues mayywvdring pathological diseases/processes
such as cancer (Samagtial, 2007), fibrosis (Anderseet al, 2009), or with heating (Bharat
al., 2005). A wide variety of techniques has been kbpesl to map tissue elasticity for diagnosis,
screening or in the context of surgery (Par&eml, 2011). Within the last twenty years, the
ultrasound modality has been widely used to ingasti mechanical properties of biological
tissues (Lerneret al, 1990; Ophiret al, 1991). Static elastography takes advantage of the
Hooke’s law in the linear domain to establish ligkatstrain maps, called elastogramsvivo
studies using static elastography demonstrated réfevance of the technique for breast

(Wojcinski et al, 2010; Schaefeet al, 2011) and prostate cancer screening (Castaeedh



2009), despite operator dependency limitations.aBhgave elastography imaging (SWEI)
(Sugimoto et al, 1990; Rudenkcet al, 1996; Sarvazyaret al, 1998) is another technique
allowing quantitative estimation of the shear modyby assessing velocity of propagating shear
waves. The concept has also been applied to magrestbnance imaging (Muthupillat al,
1995; Plewest al, 2000; Sinkuset al, 2005) and magnetic resonance elastography (MRE) h

received attention in the last decade (Mariapgtaad, 2010).

Most inversion methods used in dynamic SWEI, sictha direct inversion (DI) (Sandrét
al., 2002; Nightingaleet al, 2003; Cathelinet al, 2004; Bercofet al, 2004), the phase gradient
(PG) (Chenet al, 2004), and the time-of-flight (TOF) (Tantet al, 2008) methods rely on
global or local mechanical homogeneity, linearitydasotropy assumptions. The DI method
estimates the shear modulus by solving the Helmteduation from displacement spatial and
time derivatives (Cathelinet al, 2004). PG and TOF methods estimate the shear s@aed
from the phase shift or the time-of-arrival betwéen distant points to quantitatively assess the
Young's elasticity modulu€ = 30c?, wherep is the density of the medium andhe estimated
shear wave speed. The last two methods assumeisymersive material because the shear wave

tracking only allows assessing the group velociignteret al, 2008; Palmerét al, 2008).

The major source of variability of the DI method tise computation of displacement
numerical derivatives on noisy data to solve thénteltz's equation. Data filtering may thus be
required to obtain reliable assessment (Nightingalal, 2003). For both PG and TOF methods,
since the shear modulus is proportional to the qoéthe celerity, the variability follows the
same quadratic non-linear relation, which incregsessmall regions of interest (Chest al,
2004). Moreover, during the propagation of sheavesa scattering and attenuation affect the
wavefront pattern challenging tracking algorithrivclLaughlin et al, 2006). To minimize those

effects, directional filtering has been proposeeéf(ieux et al, 2011), allowing suppression of



reflected waves in tracked patterns. Another adtibva is to take into account the pattern of shear

wave spreading along the propagation path (Kédtial, 2012).

Since biological tissues are not purely elastic Wstoelastic, viscous effects have been
introduced in theoretical models. Viscosity is tethto the shear wave attenuation during
propagation and to dispersiore( the frequency dependence of the shear wave speadjhis
goal, the DI method takes advantage of the imagipart of the wavenumber (Catheliee al,
2004), related to dissipative effects, whereas RGT@OF methods use dispersion curves (Giten
al., 2004; Deffieuxet al, 2009). Another way to highlight viscous effed4o take advantage of
the phase shift between applied stress and meastreed (Sridharet al, 2007; Vappolet al,

2009).

In the breast cancer screening context, the digimdetween benign and malignant lesions
is challenging and often leads to unnecessary lasp&Seltzer, 1997; Mitka, 2007). Such
procedure induces stress for the patient (Jetaal, 2006; Keyzer-Dekkeet al, 2012), and
avoidable high costs to health systems (Greif, 201® this context, increasing diagnostic
specificity using elastography is a recognized lelngle with potential high impact (Bery al,
2012; Choet al, 2012). In the current work, it was assumed tloat brade tumors can be
described geometrically by ellipses (Madjar and Mdson, 2008), and mechanically as
viscoelastic materials. Such geometrical fittingtled shape of breast tumors has recently been

proposed in static elastography, in the contexxidl-shear strain imaging (Thittat al, 2010).

Therefore, the problem of shear wave scatteringvisgoelastic elliptical inclusions was
addressed and presented as a generalization afrthear case (Hadj Henmt al., 2008). The
manuscript is organized as follows: first, a semadgtical model of shear wave scattering is
presented and validated using the finite elemenhoae(FEM) for an inclusion softer or harder

than the surrounding material. Then, an iterathweeise problem is formulated and appliednto



vitro results obtained using agar-gelatin phantoms ¢oige elastometry mechanical measures.
The robustness of the inversion method is finallgspnted considering input data with low
signal-to-noise ratios (SNR) and biased geometpeahmeters. The impact of the phase of the
stationary displacement field on elastometry edtsavas also evaluated. The viscoelastic
characterization was done without any assumptiotherrheological behavior of each material,

and did not necessitate computation of numericavatgves, likely improving robustness.

2. Methods:
2.1 Theoretical model:

Two dimensional (2-D) scattering of elastic plahea waves by a viscoelastic elliptical
structure (inclusion) embedded in an infinite vislestic surrounding medium is considered here
(figure 1). The polarization vector is containedhe ky)-plane (.e, shear vertical waves or SV-
waves). The incidence angi is defined as the angle between the incident waetor and the

x-axis, the latter corresponding to the large axisti&f ellipse. In the following, subscript

J :{incl,surr} refers to the elliptic inclusion and surroundingdioen, respectively. Time-
dependence terms & are omitted and assumed understood. The compkesr shodulusG,

can then be written as:
Gj =G +iG 1)

where G'j ,G; are storage and loss moduli, respectively of nmadiunserting (1) in the motion

equation gives (Achenbach, 1973):

p,afU; +(A +2G )00V, )-GOx@xU, )=0 2)



with o, @ Uj and/lj being respectively the density of medijifixed at 1100 kg/rhfor both

media, the angular frequency, the displacemend,fizhd the first Lamé coefficient. Using the

Helmholtz decomposition and by considerigigas an irrotational scalar potential related to the

compression wave, ang a vector potential describing the shear wave aimains:

U=U,(xy) U/(xy 0f =0¢+0xy ®3)
Two Helmholtz equations are obtained by insert®piig (2) for both shear and compressional

components of the displacement field (referred welly subscriptsS and C, respectively).

Namely,
0%p, +k5¢, =0 (4)

DZ‘I’J‘ +k52j‘llj =0 (5)

In (4) and (5), longitudinal and transverse wavebers are respectively:

K2 = v
L (A+26) < 6)
oF
G =B -2 )
j G

with ¢c andcs the longitudinal and shear wave speeds, respéctive

According to the geometry considered, Helmholtz atigms are solved in elliptical
coordinates (Abramovitz and Stegun, 1965), whgréf) are the angular and radial components,
respectively. Using the separation of variable meéttsolutions of the Helmholtz equations in
elliptical coordinates are expressed in terms dihite series of angular and radial Mathieu
functions (Chaos-Cador, 2002). A plane incidentasheave propagating in the infinite

surrounding medium with an incidence angles thus expressed in elliptical coordinates as:



\I’inc = zz 2| ncer? (’71 qsurr,S) qu)("t’ qsurr S) Ca(e’ q;ur,r 9 (8)
p n=0
¢inc = O
wherecel (17, g,), Ce’(£, g,) are respectively angular and radial Mathieu fuoreiof ordem,

with parity p=0,1 for even and odd functions, respectively. In (8),, s is a dimensionless

parameter that depends on the geometry and meehamaperties of the medium through the

wavenumbefChaos-Cador, 2002). It is given by:

2,2
—_ f kS,surr

qsurr,S - T (9)

where f =+/ a’—-b® with f, the distance interfoci of the considered elliga®]a, bits large and

small half axes, respectively. Refracted wavesciviare regular at the origin, are described using
radial Mathieu functions of the first kind, wheressttered waves, which are outgoing waves are
expressed in terms of radial Mathieu functionshefthird kind, called Mathieu-Hankel functions.

Scalar and vector potentials of both refractedsuadtered waves can therefore be expressed as:

00

Yi =22 Aul@cg (7, ) CE (¢, q) (10)
1)

p n=

where k ={C, 3 refers to longitudinal and transverse wave polénzarespectivelyf ={1,E}

denotes the kind of radial Mathieu function usetle parametersy, are determined from (9)
using wavevectors expressed in (6)-(7). In (1®)={0,1} is the first order of computation for

even and odd Mathieu functions, respectively, AABQ are unknown scattering coefficients to be

computed.

Since angular Mathieu functions of differeqtparameters are not orthogonal (due to
existing mechanically different media, as in thegent case), the angular dependency cannot be
easily removed as in the circular case (Faran antkd, 1951; White, 1958). In this sense, it has
been proposed to express angular Mathieu functiotise Fourier domain (Seyyed and Sanaei,

2008). Here, the difficulty is overcome by writietpstic boundary conditionse. the continuity



of both radial and tangential components of digplaent and stress, over a finite set of points

along the elliptic contoué =¢:

Ufmc\ £=&, _U‘(SU" §=6 -

Mnat | £=¢, _U”S“" =g =0 (11)
Oetalemg, ™ Pttuurlemg, 0
Tt |e-g, ~ Tenanle=g, ~ 0

Assuming a homogeneous isotropic and linear medsenpnd order stress and strain

tensors are expressed respectively as:

Qall

=A(0U)1 +2Gg (12)

g==(0U+U0) (13)

N

wherel is the identity matrix. Inserting (10) in (12) afti3) allows writing (11) as a linear
system of equations under the fornx = b, x containing unknown scattering coefficients
introduced in (10). Each line & describes one boundary condition of (11) expresgeghe
discrete point of the elliptic contouré & ¢&,,,70[0,27]). Since the displacement field in the
surrounding medium is the sum of the incident asattered displacement fields, known incident
terms are indexed i for each boundary condition. Finally, solving foemulated system allows
thereafter the computation of both refracted arattered waves at any point in space using (3)

and (10). Details on the construction of the linggtem are provided in Appendix.

2.2 Simulations with the finite element method:

The geometry of figure 1 and mechanical configorai listed in table 1 were

implemented using the finite element method (COMSR@L., Burlington, MA, USA, ver. 3.3) in



two dimensions, as considered in the theoreticalghd he surrounding medium was modeled as
a square region (2020 cnf). Plane shear wave generation was ensured by ingpasharmonic
displacement at each node of the left boundaryef@ounter the infinite medium assumption
made in the theoretical modele. to avoid undesired reflections on domain boundarie
mechanical absorbers were mimicked on the remaithiree boundaries by imposing the same
shear modulus as for the surrounding medium, btlt &n exponentially increasing viscosity with
thickness. The thickness of mechanical absorbessasfaitrary defined as four wavelengths to
allow vanishing of shear waves. The mesh elemergssiwere fixed at one quarter of a
wavelength. The elliptical inclusion embedded ir thurrounding medium was defined by
specifying elastic boundary conditiorise(, stress and displacement continuity at the boundary

Both media were mechanically described as lineandgeneous and isotropic.
2.3 Experiment protocol:

In vitro experiments were realized with two distinct onerliagar-gelatin phantoms
(product numbers G-1890 and A-9799 for gelatine agal, respectively, Sigma Chemical, Saint-
Louis, MO, USA), with mixture proportions given table 2. The mechanical heterogeneity
(inclusion) was a cylinder having an elliptic craesction with major and minor radii of 5 mm
and 3.8 mm, respectively. The ultrasonic beam-axs wriented normal to the cylinder axis to
assess displacements occurring in its cross-septigplane). As presented in figure 2, transient
excitation signals (typically 300 Hz central frequg, six-period long, weighted by a Hamming
window) were generated by a function generator @h88250A, Agilent, Palo Alto, CA, USA),
then amplified (type 2706, low frequency amplifi@rliel&Kjeer) before supplying a vibrator
(type 4810, Bruel&Kjeer, Neerum, Denmark) mechanictiiked to a plague embedded in the
phantom. To avoid any effects along the z-axis laace encounter 2-D assumption formulated
in both theoretical model and FEM simulation, zsagimensions of both plaque (120 x 120

mn?) and cylinder (110 mm) were fixed more than temet the major diameter of the inclusion



(10 mm). Radiofrequency data (RF-lines) were aeglirsing an ultrasonic scanner (Sonix RP,
Ultrasonix Medical Corporation, Burnaby, BC, Canadad a 10 MHz central frequency probe
(model L14-5/38, 38 mm width, 128 elements, Ultrasdedical Corporation). Synchronization
of excitation-acquisition sequences derived frontE&t-gated method (Chérat al, 2006) were
trigged by the scanner computer and allowed aahigsi reconstructed frame rate of 3850 Hz.
Such frame rate was obtained by receiving data fsaty two elements of the probe over a 8-cm
depth, while the transmission sequence consiste8lirlement aperture beams, with a 4-cm
depth of focus (F-number = 4). To cover the wholebp width, 64 acquisitions were
successively repeated, shifting active elements ftdo 128. One thousand frames were acquired

for each acquisition, and final images were reqorgtd from the 64 acquisition sequences.

Displacements were estimated from RF data usingdicdted parallel 1-D normalized
cross-correlation algorithm implemented on a greghprocessor unit (GPU) (NVIDIA CUDA,
2008; Montagnoret al, 2012). By taking advantage of the low latencytloé GPU cache
memory, the whole computing task was divided irltcks, each one processing data from one
element of the ultrasound probe. This allowed queedi-time processing of RF data, achieving a
processing frame rate greater than 150 framestsearf 80x 38 mnf field of view. From
temporal transient displacements, the complex daugaiof each pixel at the excitation frequency
was computed using temporal Fast Fourier TransfofffsI') leading to complex stationary
displacement maps (Schmdt al,, 2011). Three acquisitions were realized for egithntom by
translating the probe along the cylinder-axis (sp®ver a minimum distance of two millimeters
between each recording to consider data from varioylinder cross-sections. This allowed

assessing the reproducibility of the proposed isieermethod.

2.4 Inverse problem:

10



Due to the mechanical impedance contrast betweenirtblusion and surrounding
medium, the incident shear wave is simultaneowsacted inside the inclusion and scattered in
the surrounding medium. Displacements occurringh@ inclusion thus depend on mechanical
properties of both media; therefore, considerintnboedia as one global system is of interest. In
sake of generality, no assumption was made nedtheut the surrounding medium viscoelasticity
nor about rheological models; consequently, thelise problem allowed assessing shear storage

and loss moduli of both media.

Initial viscoelastic moduli for both media were irdxily fixed to: G; = 10 + 0.liwkPa,
for j = 1, 2. This configuration describes a mechanjcabmogeneous medium and thus ano
priori information about the elasticity contrast wasddticed in the inversion process. Since

experimentally assessed displacements are a pooject the real displacement vector on the
ultrasonic beam axis, theoretical displacement ccmapts(UX,Uy) were projected on an axis

corresponding to the experimental ultrasonic beaherefore, both displacement components
assessed by the theoretical model were fully taikeo account in the inversion process.
Viscoelastic parameters of both media were finadiiimated by minimizing a cost function using
a non-linear least square solver. The cost functi@s formulated as the distance between

normalized experimental and theoretical displacdmesfiles:

(Gya» Gur ) = arg mir{ |R¢ U]- RE 6]‘2] (14)

where Re indicates the real part operator, dndU® are theoretical and experimental

displacement profiles, respectively.

The minimum of the cost function (14) was determdinsing the non linear Levenberg-

Marquardt least-square solvdsdnonlinfunction of Matlab, The MathWorks Inc., Natick, MA

11



USA, version 6.5). The elliptical inclusion locatiovas determined from B-mode images,
allowing the definition of the elliptical system obordinates, which origin coincided with the
ellipse center. From Fourier transforms computedSiction 2.3, stationary experimental
displacement profiles at 250 Hz and 300 Hz foft"sand "hard" cases, respectively, were then
extracted along the line normal to the ultrasor@arh axisi(e., along the image width) crossing
the inclusion through its center (see figure 2)e Thase was arbitrarily chosen to zero for the
first point of considered displacement profiles.( atx = -2 cm). The effect of the phase on the

inversion is discussed later in sections on rolasstn
2.5 Robustness study

The robustness of the inversion method was firdregsed by considering variability of
estimated viscoelastic parameters from noisy ingata. Normalized displacement profiles
obtained by using the ‘hard’ configurati@in the FEM model were used as reference (table 1).
A zero-mean random noise following a standard unifdistribution was added to the reference
displacement profile and weighted to produce d&ifierSNRs. The noiseless data had an infinite

SNR that was reduced to values between 22 and 1THBBSNR was computed from:

(15)

RMS,
SNR= 20|ogm(ﬂj

RMSmise

where RM§jgn,, RMS e indicate the root mean square of the referenceasignd added

noise, respectively. For each SNR, the inversigorghm was applied ten times, with a different
random noise generation (new seed), at each aredince breast tumors are mostly expected to
be harder than surrounding tissues, robustnesdtgeste only presented for the hard case

inclusion.

12



As mentioned earlier, the inversion method requérgsiori on ellipse dimension (large
radiusa = 5 mm and small radius = 3.8 mm) and location to define the elliptic atioate
system. The effect of those parameters on the sieraccuracy was also addressed by
considering biased inclusion dimensions and looatidor both soft Am) and hard Bqy)
configurations used in the forward problem (tabje Biased input values were expressed in
percentage of the initial geometry and locationd arrors on estimated mechanical parameters

were computed using:

Err (%) = XEStim:(tEd_ X referenc (16)

reference

where Xagimated X referenc iNdicate estimated and reference values of eitBgl or G”ing.
Additionally, an evaluation was conducted to tds influence of the phase of considered
stationary displacement profiles @i, andG” .. The inversion process was tested for various

phase values in the ran{ﬁ;n] for both hard and soft configurations.

Mechanical configurations presented in table 1 \aithin the range of viscoelastic
properties of agar-gelatin phantoms (Hadj Hegtnal, 2011), which are known to exhibit low
G”IG’ ratios, also designated &&nod . For biological tissues such as the liver, kidoeyreast,
tand has been measured in the range [0.3; 0.6] (Siekwad, 2005; Valtortaet al, 2005). To
assess robustness of the proposed method for sisdhgibal materials, two additional
mechanical configuration<¢, andD+y,) derived fromAr, and By, were simulated by specifying

the inclusion loss modulus to half the shear maslgle., G*/G’ = 0.5).

3. Resaults:

3.1- Forward problem:

13



To simulate experimental configurations where irdudisplacements are parallel to the
illuminating beam (figure 2), theoretical displacar vector components were projected along
the y-axis of figure 1. Normalized displacement profitdstained using the FEM and the semi-
analytical model, using configurations of tableate presented in figure 3 (soft inclusion) and
figure 4 (hard inclusion). Normalized root mean aguerrors (NRMSE) between the reference
and the simulated profiles are 0.8% and 0.7% ferdbft and hard cases, respectively. Those
values become 3.5% and 5% when considering 2-Bfief view of 4 x 4 cfhcentered on the
ellipse. In figure 3, displacements are greate¢h@soft inclusion due to the lower shear modulus
than in the surrounding medium. Furthermore, atititerface inclusion/surrounding medium,
refracted waves are dominantly reflected with atééed transmission to the surrounding medium
due to the mechanical contrast impedance. Therefouttiple internal reflections contribute to
the enhanced displacements within the inclusionodserved in (Hadj-Henmt al, 2010; 2012),
reflected waves in the inclusion lead to constigctnterferences at specific frequencies, leading
to a mechanical resonance phenomenon. For theimzusion case in figure 4, opposite trends
are observed; due to the mechanical contrast,entitiaves are predominantly reflected by the

inclusion toward the external mechanical vibrator.

3.2- Inverse problem:

The experimental stationary displacement mapseridhg-axis of the inclusion were used to
formulate the inverse problem. To assess reprotlitgilihree data sets corresponding to three
positions of the probe along the cylinder axis wprecessed for each phantom. Means and
standard deviations of estimated storage and laskilinare presented in table 3. Angles between
the long-axis of the elliptic inclusion and theiglent wave vector were -15° and 45° for the soft
phantomA and hard phantorB, respectively. Such angle values were arbitrafiigsen in sake
of generality aimingn-vivo application of the proposed method. By considethng estimated

viscoelastic parameters in table 3, theoreticglldcsement maps are compared to experiments in

14



figure 5 for the soft inclusion and in figure 6 fthhe harder one. The NRMSE between
experimental displacement maps and theoretical @ossputed from estimated viscoelastic
parameters are 9% and 10% for sé¥,f and hard Bg,,) phantoms, respectively. Since shear
wave speed increases with shear modulus, wavefametdisturbed within the inclusion and
either decelerate for the soft case or acceleoatthé harder one, as seen in both theoretical and

experimental maps.

3.3- Robustness study:

Estimated mechanical parameters for different naisglitudes are presented in figure 7.
Estimated shear moduli are little affected by nddiéferences of 1.94% for the hard inclusion
and 1.3% for the surrounding medium in the cag@®iminimum SNR of 10 dB). However, loss
moduli are more variable with errors on mean assests, at a SNR of 10 dB, of 16.4% and
11.6%, for the inclusion and surrounding mediunspeetively. An example of solution for a
SNR of 10 dB is presented in figure 8. With thaiseanagnitude, mean estimated storage moduli
from 10 measures are 16670 + T2 for the inclusion and 2961 + Za for the surrounding
medium, instead of the simulated values of 17P@0and 3000Pa for the same components.
Estimated loss moduli are 786 £ 76 and 168 + 18Pa instead of 940 Pa and 190 Pa,

respectively.

Errors on estimated viscoelastic parameters ircdise of biased large and small elliptic radii
for both hard and soft configurations wi/G' = 0.05 and5"/G '= 0.5 are presented in figure 9.
Biases applied to both large and small axes ramge 15% to 15% of initial ellipse dimensions.
As seen in figure 9, the largest impact of thedaagis dimension variation was on the accuracy
of the inclusion loss moduluS”. It was maximum for the hard case inclusion ahl®t/G'
values. Errors foiG"/G' = 0.5 were globally lower than for the low viscoasnfiguration,

especially for the hard configuration.

15



Changing the location of the inclusione(, of the displacement profile line used in the
inversion process) was done by shifting the origfirthe elliptical coordinate system alorng (
and §) axes from -15% to 15% of initial ellipse dimensio(figure 10). Again, largest errors
were noted forG” of the hard inclusion, especially for the Id®/'/G' ratio. Shear modulus

estimations were little affected by biased locatibaxes, especially foraxis shifts.

Figure 11 presents the impact of various phasethefreference stationary displacement
profile on storage and loss moduli. As noticed dtiner abovementioned robustness teGts,
presented few variations, where@ were more variable. The initial phase had thedsirg
impact onG” of the hard inclusion. Loss modulus estimatiommsricould achieve 90% for the

low viscous inclusion (figure 11-a), but did noterd 16% foG"/G' = 0.5 (figure 11-b).

4, Discussion:

4.1 Forward problem based on simulated results:

An excellent agreement between semi-analytical BBl results was obtained for
various configurations of viscoelasticity contrastgidence angles and frequencies. The main
advantage of the semi-analytic simulation is th#itglio compute displacement fields at any
points in space, once scattering coefficients aterchined, with a better time efficiency than

FEM. This property makes the proposed approackastdn a clinical context.

4.2 Inverse problem validation with phantoms:

The formulated inverse problem converged and akbt@eassess viscoelastic parameters
of both media with good reproducibility for the typbantoms. It is important to note that unlike
the DI method, no spatial derivatives are needdtamproposed inversion algorithm; therefore no

additional post-processing such as filtering ofneated displacements were required.

16



The accuracy of the solution depends on the fortedl@ost function (14). Here, we
considered displacement profiles determined byniieehanical property of the inclusion and
surrounding medium, and by the inclusion geomédigwever, a challenge was to obtain reliable
solutions for inclusion sizes at a fraction of tha&velength. Indeed, as one can see in figure 4 for
the inclusion domain (between the two dashed linem)ghly half a wavelength is observed
within the hard inclusion at the vibration frequeraf 300 Hz. Estimating the loss modulus for
the soft inclusion was less critical because ctose complete wavelength could be available at a
frequency of 250 Hz, as seen in figure 3. Therefareinverse problem formulation estimating
only inclusion mechanical parameters might be mnolaltic and encounter more than one solution
(i.e.,local minima). In our formulation, since the despément profile was extracted along a line
crossing both media (inclusion and surrounding mn&jlj both reflected and scattered waves
were taken into account to estimate viscoelasegasimoduli of both structures. Reflected waves
are thus considered valuable in the inversion netBaich approach is at the exact opposite of
directional filtering techniques (Deffieust al, 2011) where reflected waves are suppressed to
minimize decorrelation in the shear wave trackikgrthermore, the low NRMSE obtained
between experimental and theoretical displacemesndemonstrate the goodness of estimated
viscoelastic parameters. Thus, from a 1-D experiailedisplacement profile, the proposed

method allowed estimating viscoelastic parameteb®th media and retrieving 2-D maps.

4.3 Robustness study:

As one can see in figure 8, the elasticity estiomatemained robust and not significantly
affected by noise. Such robustness to noise islynaiplained by the 2-D formulation of the
scattering phenomenon. Indeed, twqy components of theoretical displacements are used t
retrieve the 1-D displacement on which the invgnsilem was formulated. Another explanation

for robustness is the absence of numerical deviestio assess the viscoelasticity. However, as

17



discussed above, the inclusion loss modulus estmatas more sensitive to noise than the

storage modulus assessment.

Introducing biased inclusion dimensions in the nseeproblem did not affect drastically
the storage modulus estimation for both configoregj whatever tad (figure 9). Indeed, despite
geometrical variations, shear wave scattering acooughly under similar conditions compared
to the unbiased case. However, while errors on inedulus for the soff\;, case remained
acceptable for geometrical variations withtd5%, the hard inclusion exhibited large errors
(figure 9). This trend for thBr, case was generally reduced for the la@¥G' ratio (figure 9-c,

d).

Figure 10 reported errors on viscoelastic pararetdated to biased inclusion locations,
corresponding to an elliptical coordinate systerh aentered on the inclusion geometry. As in
previous cases, the real part of the complex smealulus remained stable, unlike the imaginary
part, especially in the case of the inclusion stithan the surrounding medium at the IBWG'
ratio. Estimation errors related to changes inrédierence displacement profile phase, presented
in figure 11, exhibited the same general trendmdigures 9 and 10,e. that the loss modulus
estimation for the low viscous condition was séwsitto input parameter variations. These
observations naturally raise the question as totheneviscous parameters are really achievable
using the proposed model for |d®//G' ratios, and more generally, does small inclusigoosity

really affect shear wave scattering for such caoomkt?

To address this question, we present in figure ffieareference profile obtained for the
hard case using FEM and the theoretical profilepuaied from estimated parameters considering
an initial phase of zero ar@"'/G' = 0.05. As notice, an excellent agreement is abth(NRMSE
= 0.7%), despite a large error on the estimatetusian loss modulus (81.4%). Therefore, it

clearly appears that for the hard inclusion configjon, its loss modulus has a very weak
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influence on observed displacement profiles. Thas e explained by the fact that for a
viscoelastic medium with a low tad) the loss modulus mainly affects displacement ritade
over distance and time. In the hard case, sincevéhvelength became greater than the inclusion
dimension 4 = 1.13 cm for the example of figure 12-a), therdase in displacement magnitude
had little impact. In the case of the soft inclusithe wavelength within its boundary was much
smaller @ = 0.59 cm), thus reducing errors @i’ estimates. Overall, the performance of the

proposed inversion approach was improved for tise chmore viscous contrase(, high tand).

According to our observations, errors on the inclndoss modulus are expected to
decrease in the case of larger inclusions, highearswave excitation frequencies, and higher tan
o. As an example, changing the excitation frequefocythe hard configuration from 300 Hz to
450 Hz, which is still a frequency achievable iagiice with shear wave imaging, the error in the
estimate of the inclusion loss modulus droppedlt&@(figure 12-b), which is roughly four times
smaller than at 300 Hz. At the opposite, for veny frequencies, if wavelengths are larger than
the inclusion dimension, no scattering occurs, #ng errors on viscoelastic parameters are
expected to increase. This robustness study allowghlighting key parameters for reliable
viscoelastic measurements using the proposed meFied, at a constar®"/G' ratio, the loss
modulus estimation is affected by the “elastograpsignature”,i.e. displacement profiles
containing few but enough oscillations in both naediighlighting elastic and viscous effects
through changes in wavelength and attenuation. rigiégoit has been shown that for poorly
viscous media, despite excellent fittings (figur2-a), errors can still achieve unacceptable
values. However, considering materials WBWG' ratios in the same range as those measured on

biological tissues, both storage and loss moduliteasuitably assessed.

4.4 Approximation of the elliptic model by the wglical case:
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In continuity of the above discussion on robustné@sshe case the inclusion would be
close to circular, a 2-D shear wave scattering rbgeylinders (Hadj Henret al, 2008) would
be applicable. However, to prove the flexibility tife current model and to assess how the
cylindrical scattering model would depart from exfeel results in the case of elliptical inclusions
with differentb / a ratios (.e., different ellipticities), displacement profile$ the current study

were fitted to both models. The circular incluswith radiusr was matched to the area of the

ellipse by usingr =./ab. Results for the hard configurati@y, (table 1) andz'"/G' = 0.05 or 0.5
with b / a ratios from 0.40 to 0.76 are plotted in figure E3rors reported using the circular
model are highly variable and most results ardewant. Such errors can be explained by the
combination of the inability of circular Bessel fiions (see Hadj-Henmit al, 2008) to describe
displacement fields related to elliptical geometriand the presence of local minima during the
inversion process. For the elliptical model/ a ratios were obtained by decreasing small axis
values. An increase in estimation errors is obskfee low b / a values. This can be explained
bacause for "flat" ellipses, the small axis digien is smaller than the incident wavelength and
thus scattering is barely inexistent. In such caseseasing the excitation frequency, and thus
reducing incident wavelengths, is expected to pl®Wbetter accuracy. Nevertheless, this figure
clearly highlights limitations of the cylindrical adel and demonstrates the flexibility of the

elliptical one to fit different tumor geometries.
4.5 Comparison with other dynamic elastography mdsh

To assess the impact of the mechanical homogeaedyone dimensional displacement
assumptions on the inversion accuracy in the chaeneterogeneous medium, the DI (Sanétin
al., 2002; Bercoftt al, 2003; Nightingaleet al, 2003) and PG (Chest al, 2004) methods (both
aiming quantitative estimation of the complex shaadulus) were implemented and applied to
previously validated displacement profiles presgmtefigure 4. The goal was not to presume on

the relevance or validity of those algorithms imest elastography contexts, but to highlight
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consequences of assuming mechanical homogeneitigeircase of a heterogeneous medium,
without directional filtering. We recall here that and PG methods have been applied to map
elasticity even in the case of heterogeneous ntadiagh spatial variations of shear wave speeds
(ignoring diffraction and scattering effects), wehithe present approach requires the inclusion
geometry to be known and assumes its homogeneditynvthe heterogeneous medium in order to
take into account physical interactions. As memdrearlier, low noise and high frequency
sampling are required to compute numerical deneati Here, noiseless analytical displacements
are considered, with a spatial sampling of 0.2 ness(than roughly the 0.3 mm pitch of the
probe). From the Helmholtz equation, the shear westerity corresponding to the direct

inversion method was assessed as (Nightingadé, 2003):

_ AU (x,w)
k(w) = /W (7)

_ w
c(a)) = m (18)

The phase gradient inversion method was appliedhensame datasets; the celerity of shear

waves was computed as (Chetral, 2004):

C. = — (19)

with w the angular frequency anfl ¢ the phase shift between two points separated by a

distanceAr fixed to 1 mm in this case.

To provide fair comparisons, the time-of-flight Homethod with directional filtering
was also implemented and applied to simulated degdor phantom experiments, the temporal
excitation signal was modeled as a 300 Hz trangilame shear wave with a length of six periods.

The simulated frame rate was 4 kHz. Using the &gzl model, displacement profiles were
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computed over the frequency range of the excitagignal (as in Hadj Henrét al,, 2008) and
weighted by respective complex amplitudes in theurieo domain. Transient temporal
displacements resulting from shear wave interastioith the elliptic cylinder were retrieved

through inverse Fourier transforms.

Directional filtering, as described in (Deffiewet al, 2011), was applied to simulated
displacement profiles. Briefly, negatikespace components of the displacement spatio-texhpor
2-D Fourier transform, which are related to re#ectvaves in the time domain, were set to zero.
Directionally filtered temporal displacements weexovered by using inverse 2-D Fourier
transforms. Shear wave pattern tracking was peddromsing a cross-correlation algorithm on
filtered data. To increase the accuracy of the shveae speed estimation, the cross-correlation
function was oversampled ten times before maximearch. Finally, estimated shear moduli

were obtained from estimated velocities usi@gs oc”.

Results are presented in figure 14. As one cantsrl,DI and PG methods are affected
by the presence of the mechanical heterogeneitgicBarly, the PG method presents strong
oscillations over the whole profile. Those oscitlas are most likely due to the presence of
reflected and scattered waves. On the other haad)t method, despite the absence of noise and
a high spatial resolution, highlights variabilitycaunderestimates the inclusion shear modulus by
approximately 15%. In figure 14-b, the unwrappedigds of studied profiles are presented.
Variations of the phase slope depending on thegmagng medium were low, even with an
elasticity contrast greater than 5. It is importemtecall that an infinite medium is considered
here; therefore all changes in wavefront are dubdadnclusion only, which are unavoidable even
in transient elastography. Therefore, DI and PGhodd may appear more appropriate for large
homogeneous areas because the inversion accuramyages in the presence of a mechanical
heterogeneity since physical interactions are akern into account. One has to note that results

obtained using ten times oversampled data exhiiitedame trends.
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According to figure 14-c, the ToF method with difenal filtering allowed good
estimation of the inclusion storage modulus andusion delineation, but overestimated the
surrounding storage modulus by about 40%. For ¢hisfiguration, the ToF method clearly
outperforms DI and PG. The incident wave was a elahear wave propagating in a non
dispersive mediumi,e. with equal group and phase velocities. Thereftire,shear wave pattern
did not change when propagating in the surroundireglium. At the opposite, shear waves
induced by an acoustic radiation force are affedigdgeometric scattering, thus leading to
deformation of the induced shear wave pattern dber propagation path. Such behavior
challenges pattern tracking methods (McLaughkliral, 2006) and might affect elasticity maps.
Furthermore, it has been demonstrated in (Tagitat, 2008) that breast parenchyma highlighted
frequency dependant shear wave speeds and thire camsidered as dispersive. As presented in
(Deffieux et al, 2011), shear wave spectroscopy allows estimagirgpr wave speeds over a
large frequency range. However, for dispersive io@af mechanical heterogeneities such as
tumors, errors on velocity measurements over sHistances are expected to increase with

frequency, likely affecting the accuracy of dispenscurve fitting.

4.6 Limitations and future perspectives

Sincein vivo applications are ultimate goals, assuming a mechiy homogeneous
surrounding medium along the whole probe widthpasur experiments, might be irrelevant and
a source of noise in the inversion process. Consiglanultiple short displacement profiles or
scattering patterns in the cost function might ewvadditional characteristic information about
the inclusion. In the current form, the method myocapplicable to visible lesions since an
priori on the geometry is needed. In the case of noblgisesions, it would be feasible to use
other elastography methods as an initial stepnéf assumes that those methods provide a better
detection than clinical B-scans (Hiltawskyal, 2001), for localization and geometrical fittingy o

the lesion. According to results previously obtdimgth various elastography methods, the ToF
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combined with directional filtering appears mositatle for inverse problem initialization in the
case of non-visible lesions. The model of the aurstudy can easily be extended to consider
cylindrical waves either by using plane wave decositipn or by expressing incident shear
waves as outgoing waves using Hankel functionsni&s, 1995). Such a model thus might be
efficiently applied to radiation force experimenespecially in the case of supersonic shear
imaging (SSI) excitations since plane waves areotely induced (Bercoffet al, 2004).
Moreover, the proposed inversion strategy is moitéid to ultrasound elastography and would be

relevant to process magnetic resonance elastogcgihy

In term of computational time, the semi-analytiocathod proposed in this paper only
requires solving one linear system (11), for corapah of scattering coefficients and
displacements at desired spatial positions (with Othe case of the FEM, the whole geometry
must be consideredi.€., surrounding medium, inclusion, boundary condiijo The FEM
execution time depends on various parameters sitheamesh density, size of the surrounding
medium and mechanical absorbers. Without claimmgrovide a computationally optimized
FEM model, one displacement profile computatiom,tfee hard configuration, required 41.1 +
0.85 seconds compared to 0.82 + 0.11 secondsdadimi analytical model (mean and standard
deviations obtained from 10 iterations). The corapiah time required for the inversion is related
to various parameters, such as initial mechanieahrpeters or search ranges, and typically
requires 90 seconds using the semi-analytical madsich barely equals two iterations of the

finite element model.

The extension of this work to a three-dimensioraktering problem appears as a logical
next step. However, such model would require the atk non-orthogonal spheroidal wave
functions (Abramovitz and Stegun, 1965), discreiira of three dimensional volumes, and
finally inversion of large ill-conditioned systemdoreover, on a practical point of view,

estimating mechanical properties of 3-D structwresild require a 3-D scan, then segmentation
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procedure and finally the assessment of the plandigplay within the entire volume. Such
procedure would considerably complicate the clineseam. This question highlights the global
trade off between estimation accuracy and algoritbomplexity, with in mind clinical

applications.

In this study, scattering coefficients were comguising discrete points along an elliptic
contour. Malignant tumors are known to exhibit gu&r contours (American College of
Radiology, 2007). Because small fluctuations of teatour geometry are much smaller than
considered wavelengths in elastography, this isexpected to induce major effects on shear
wave scattering, and the elliptic contour approtiomamay still be valid (see Schmét al., 2013
for such assessment in the context of shear walced resonance elastography of deep vein
thrombi). The model can consider more complex geoese by writing elastic boundary
conditions on contours slightly different from alfipse. However, in the case of very complex
shapes, basic functions used to describe the deplent field might be irrelevant, leading to ill-

conditioned linear systems. In those cases, FEMintig more appropriate.

5. Conclusion

In the context of viscoelastic characterizationcohfined mechanical heterogeneities, a
semi-analytical model of shear wave scattering besen presented and validated. Experimental
results demonstrated a good reproducibility andisbiess to added noise. In our approach, the
lesion geometry was ampriori measurable parameter that was fitted by ellipadstfaen used as
an input parameter to the proposed model. Comp@ingnd G" over a wide frequency range
would allow the determination of the underlying geal rheological model, which could be
assesse@ posteriori At the opposite, viscoelasticity quantificatioretimods using dispersion

curves rely ora priori known rheological models (which choice may be uaicker biological

25



tissues). To conclude, it is to note that the psggoplane incident wave model can be extended
to consider cylindrical waves, offering perspediver radiation force applications with situ

localized shear wave generation.
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Appendix

This appendix aims to detail the construction @& limear system used to describe the
scattering of shear waves by ellipsoids. Let ust fitonsider the first boundary condition
expressed in (11),e. the continuity of radial displacements acrossitiotusion boundary. Both
scattered and incident waves propagate througtstin®unding medium. Therefore, one can

write:

U surr — U scattered+ U incider (20)

According to the Helmholtz decomposition (3):
U =%, % 21)
h\oé an

with h a scale factor related to the coordinate systesd:us

h, =h,=1 (sink? & + sinzly)% (22)
h,=1

From (11) rewrites a8 x = b, (20) can be expressed in terms of infinite seviesadial
and angular derivatives of Mathieu functions. Doethe parity of Mathieu functions, each
potential is described as a series of two distiogefficients. Since displacements are a

combination of two distinct potentials (see 3),rfearies of coefficients are to be computed for

each component of displacements= (Us’Un)' Finally, eight series of unknown coefficients

are determined andis then a (8B1x1) column-vector.
For each discrete point of the contour geometryndej the mechanical lesion, four
boundary conditions were imposed to meet viscdelasnditions defined by (11). Matri&k was

built such that each row describes one boundardition at one discrete point, leading ti,4

rows, withN,s the number of discrete points consideredNinc8lumns. Owing to that, in order to
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obtain a square matrix, one can see that the numbeontour points considered and the
truncature ordeN are linked by a factor of 2. The matAxof (11) thus has a dimension ofN &

AN).

As explained by Leoet al. (2004), the truncature orddrdepends on the "ellipticity” of
the geometry and increases when ellipse flattinalso depends on the prodikzt with k the
wavenumber and the large axis of the ellipse. Considered fregie=nand ellipse dimensions in
our application typically lead tka close to unit. We used = 25, which is close to the value

proposed by Leost al. (2004):N = 2N* + 1 with N* = ka + 10.
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Figure 1 Geometrical configuration of the 2-D semi-analttishear-wave scattering model. Plane shear
vertical waves polarized alon, (red arrows) propagate into an infinite mediunb@fore impinging an

elliptic inclusion 1, stiffer or softer than thersaunding medium. The dimensions of the inclusioxee= 5
mm andb = 3.8 mm.
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Figure 2 Flow chart of the experimental setup and data m®ing. Transient displacements are
mechanically induced using a mechanical shakersé& ldisplacements are assessed from RF data acquired
at an ultrafast frame rate using a standard 1-Bseoorrelation algorithm. Stationary displacemeaps

are computed using Fourier transforms. Experimettitadlacement profiles are then extracted to comput
the cost function defined as the distance betweeoretical (U) and experimental (&) profiles.

30



1

| |
0.61

0.4}
0.2f
ot

-0.2

Normalized Amplitude

0.4t
-0.6f
-0.8f

-3'.02 -0.015 -0.01 -0.005 O 0.005 0.01 0.015 0.02
x(m)

Figure 3 Normalized displacement profiles obtained by ughm finite element method (dashed line) and
the semi-analytical model (dots) in the case obfa isclusion (configuratiorA of table 1). The NRMSE
between both theoretical models was 0.8%.
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Figure 4 Normalized displacement profiles obtained by udhmgfinite element method (dashed line) and
the semi-analytical model (dots) in the case o&lhinclusion (configuratioB of table 1). The NRMSE
between both theoretical models was 0.7%.
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Figure 5 Experimental (left) and theoretical (right) statoyn displacement maps obtained by using the
solution of the inverse problem at 250 Hz (phan®mith a soft inclusion). The blue ellipse indicatbs
location of the inclusion insonified at an andgleof -15 degrees. Field of view depth and widthsaaee
centered on the ellipse.
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Figure 6 Experimental (left) and theoretical (right) statioy displacement maps obtained by using the
solution of the inverse problem at 300 Hz (phan®mith a hard inclusion). The blue ellipse indicaties
location of the inclusion insonified at an angleof 45 degrees. Field of view depth and width axes
centered on the ellipse.
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Figure 7 Viscoelastic parameters estimated for increasirigenamplitudes applied to FEM results in the
case of the hard inclusidB. G’ indicates the storage modulds; the loss modulus, the subscriptl
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Figure 8 Theoretical displacement profiles obtained at tiptingization convergence of the inverse
problem for a signal-to-noise ratio (SNR) of 10 @8d line) compared with simulated data corruptéth w
noise at the same SNR (blue line).
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Figure 9 Errors on inclusion viscoelastic parameters (inf%teference values given in table 1) obtained by

using biased ellipse large and small radii as sieer input parameters for soft and hard configoreti
with G"/G' = 0.05 (a, b) an&"/G' = 0.5 (c, d).
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Figure 10 Errors on inclusion viscoelastic parameters (imfteference values given in table 1) obtained

by using biased inclusion locations along ¥h&xis andy-axis as inversion input parameters for soft and
hard configurations witks"/G' = 0.05 (a, b) an&"/G' = 0.5 (c, d).
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Figure 11 Errors on inclusion viscoelastic parameters (imfteference values given in table 1) obtained

for various phases of the reference stationarylalignent profile for soft and hard configurationghw
G"/IG'=0.05 (a) an@"/G' = 0.5 (b).
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Figure 12 Reference (full line) and estimated (dots) dispfaent profiles at convergence of the
optimization procedure for the hard inclusion cas800 Hz (a); the NRMSE was 0.7% while the ermor o
the inclusion loss modulus was 81.4%. Same asutaatb450 Hz (b); the NRMSE was 1.3% and the error
on the inclusion loss modulus was 21.0%. The evrothe inclusion loss modulus estimation decreases
with frequency.
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Figure 13 Errors on inclusion storage and loss moduli obthimg applying an inverse problem, based on a
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Figure 14. (a) Simulated displacement profile along the laagis of the hard inclusion (configuratidy,

of table 1). (b) Unwrapped phase correspondinght displacement profile in (a). (c) Shear moduli
obtained using the direct inversion method (dotke line), the phase gradient method (dashedimedl |
the time-of-flight method (green line, circles) asithulated shear moduli (full black line).
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Table 1. Mechanical parameters, excitation frequencies acidénce angles used in the forward
problem approach; subscriph indicates “theory”.

Medium  Gy(kPa) Ggn(kPa) f(Hz) Incidence deg

SoftAn 2.4+i 0.09 174 1.0 250 -15
HardB;, 17+i0.94 3+ 0.19 300 20

Table 2. Agar and gelatin concentrations (in % of water Wwidor phantom#\ andB
mimicking the theoretical conditions of table 1.

Phantom Inclusion Surrounding
medium
Agar  Gelatin  Agar Gelatin
(%) (%) (%) (%)
Soft Agx 1 3 3 4
Hard Bgy, 3 5 1 3

Table 3. Means and standard deviations of estimated st@adéoss moduli for inclusions and
surrounding media; subscripkpindicates “experiments”.

Phantom G (kPa) Gina’ (kPa) Gaurr (kPa) Ggyy' (kPa)
Soft Agx 2.24 + 0.09 0.32+0.09 16.40 +0.02.26 + 1.34
Hard Bey, 15.67 +0.12 2.3+0.19 5.0+ 0.03 0.32+0.03
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