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Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of

confined mechanical inclusions. It was developed for breast tumor imaging and tissue

characterization. This method relies on the polarization of torsional shear waves modeled with the

Helmholtz equation in spherical coordinates. To validate modeling, an in vitro set-up was used to

measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary

in vivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the

potential of SWIR elastography to detect and mechanically characterize breast lesions for early

cancer detection. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696300]

Ultrasound (US) B-mode imaging is a standard radiolog-

ical diagnostic modality to detect abnormal breast masses.

However, additional quantitative assessment would likely

enhance current accuracy of US. For this purpose, dynamic

elastography (DE) was introduced to quantify mechanical

properties of breast tissues.1,2 As a complementary DE mo-

dality, we recently proposed the shear wave induced reso-

nance elastography (SWIRE) technique. It relies on shear

resonance properties of confined mechanical heterogene-

ities.3 The technique consists to adapt the polarization of

shear waves to the geometry of the heterogeneous mass, per-

form a frequency scan to identify its eigenfrequencies, and

image corresponding eigenmodes. At resonance, SWIRE

enhances the identification of a mechanically soft mass em-

bedded in a harder medium. Results are demonstrated for

inclusions larger than 5 mm (16 mm diameter in vitro and

11 mm by 5 mm in vivo). This study introduces the theoreti-

cal and experimental validation of SWIRE for the imaging

and characterization of spherical masses.

Torsional shear waves were coupled to SWIRE. To

model this elastodynamic problem, a perfectly spherical het-

erogeneity diffracting an incident torsional wave was postu-

lated. In addition, the wave rotational axis was assumed to

coincide with one symmetry axis of the sphere. Under these

conditions, when a torsional incident shear wave is scattered

by a spherical inclusion of radius R, embedded in a mechani-

cally different material, it does not produce mode conver-

sions and both diffracted and refracted elastic waves are

purely circumferential. Let assume a plane torsional incident

wave polarized, in a spherical system of coordinates (o, er,

eh, eu), in the circumferential direction and propagating fol-

lowing the z axis, as represented in Figure 1. The materials

of the sphere (medium 1) and that of the surrounding tissue

(medium 2) are assumed homogeneous, isotropic, and linear

viscoelastic. Displacements have one non-zero component

following the circumferential unit vector eu and depend on

the radial (r) and angular (h) coordinates. In this case, the

Navier differential equation, which governs the displacement

field in both media,4 is simplified to the classical Helmholtz

equation. In the frequency domain, assuming an implicit har-

monic dependence eixt, this is expressed as

ljðDUjÞ þ qjx
2Uj ¼ 0; (1)

where j¼ {1,2} designates the medium, Uj¼Uj(r,h)eu is the

stationary displacement field in the medium j, whereas x, qj,

and lj are the wave angular frequency, density, and complex

viscoelastic shear modulus of the considered medium,

respectively.

In the following, the wave number in each medium is

defined by kTj¼x/cTj, where cTj is the torsional shear wave

velocity. In a spherical system of coordinates, an incident

plane torsional (circumferential) shear wave can be

expressed as5

Uðr; hÞinc ¼
Xþ1
n¼1

AmpðxÞin 2nþ 1

nðnþ 1Þ

� jnðkT2
rÞ @
@h
½Pm

n ðcos hÞ�cos mu; (2)

where Amp(x) is the incident wave amplitude, jnð:Þ is the

first kind spherical Bessel function, and Pm
n ð:Þ is the associ-

ated Legendre function. Since the displacement field does

not depend on the angle u, the m index equals zero. This

allows simplifying the incident shear wave expression. In the

same way, the scattered and refracted displacement fields are

solutions of Eq. (1), which can be solved in a spherical sys-

tem of coordinates by mean of spherical Bessel functions

and associated Legendre functions product series.5,6

In the surrounding medium 2, the resulting displacement

field is a combination of the known incident plane wave and
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the scattered one. This latter and the refracted torsional wave

can be expressed using series containing unknown coeffi-

cients An and Bn, as follows:

Uðr; hÞ1 ¼
Xþ1
n¼1

AnjnðkT1
rÞP1

nðcos hÞ

Uðr; hÞ2 ¼
Xþ1
n¼1

ðAmpðxÞin 2nþ 1

nðnþ 1Þ jnðkT2
rÞ

þ Bnhð1Þn ðkT2
rÞÞP1

nðcos hÞ; (3)

where hð1Þn ð:Þ is the first kind spherical Hankel function.

Coefficients An and Bn are calculated by taking into account

the continuity of displacements U1 and U2, and normal

stresses r1 and r2 at the boundary of the spherical

heterogeneity

U1ðr ¼ R; hÞ ¼ U2ðr ¼ R; hÞ
rru1ðr ¼ R; hÞ ¼ rru2ðr ¼ R; hÞ with h 2 ½0; p�

�
(4)

Using displacements of Eq. (3) and expressing the normal

stress at r¼R, one obtains a system of two equations con-

taining the infinite set of unknowns. The orthogonality prop-

erty of associated Legendre functions permits to separate

Eq. (4) into an infinite set of linear equations with respect to

the integer order n

Tn
An

Bn

� �
¼ bn; r ¼ R and n ¼ 0; :::;þ1: (5)

In Eq. (5), Tn and bn are a (2� 2) matrix and a vector con-

taining the nth order term of scattered and incident displace-

ments and stress fields at the heterogeneity boundary. An

expansion of coefficients Tn and bn can be found in Ref. 7.

Solving Eq. (5) for each order n (until a maximum trun-

cature order N), permits to determine coefficients An and Bn

and, from Eq. (3), the stationary displacement field into the

heterogeneity and the surrounding medium. One obtains the

displacement spectrum by calculating the displacement into

the spherical heterogeneity for different frequencies of the

incident torsional wave. In the case of a soft spherical hetero-

geneity embedded into a harder homogeneous medium, the

displacement spectrum exhibits resonance frequencies corre-

sponding to resonance eigenmodes. For qualitative descrip-

tion, an example of simulated eigenmodes of a spherical soft

heterogeneity with respect to the surrounding material is pre-

sented in Figure 2. In this example, the model served to iden-

tify eigenfrequencies (140 Hz and 184 Hz) of the first two

eigenmodes of a 7.5 mm radius sphere having a complex

FIG. 1. Left: Representation of the ex-

perimental configuration used to mea-

sure resonance spectra and to image the

spherical heterogeneity eigenmodes.

Right: 3D representation of torsional

waves scattering by a spherical heteroge-

neity embedded in a homogeneous me-

dium. A spherical system of coordinates

was used for the modeling.

FIG. 2. Qualitative 3D internal views of

the first (left) and second (right) simu-

lated eigenmodes (normalized displace-

ments) of a spherical heterogeneity

diffracting torsional shear waves.
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shear modulus of 2700þ 0.054 ix Pa, embedded into a ho-

mogeneous linear viscoelastic medium presenting a complex

shear modulus of 17600þ 0.7 ix Pa. One can observe that

the first eigenmode induces an in-phase rotation of the spher-

ical inclusion around the symmetry axis of the torsional inci-

dent wave, while the second eigenmode produces two

hemispheres rotating in phase opposition. In both cases, the

heterogeneity appears clearly from its background medium

suggesting the potential of SWIRE to segment spherical

masses. Both eigenfrequencies and resonance spectra depend

on the heterogeneity viscoelastic and geometrical properties.

Indeed, the more rigid is the sphere inclusion, the higher are

its eigenfrequencies. In the same way, the viscosity affects

spectra by reducing displacement amplitudes and the magni-

tude contrast between eigenfrequencies. It is also noticeable

that eigenfrequencies are inversely proportional to the heter-

ogeneity dimension (i.e., its radius).

Experiments were performed on agar-gelatin phantoms

and an in vivo breast fibroadenoma to assess the feasibility of

shear wave resonance induction of spherical heterogeneities.

The imaging system was coupled to a vibrating spherical cap

to generate and focus torsional shear waves into the region

of interest. Protocol details are given in Ref. 7.

Figure 3 presents the superposition of normalized displace-

ment spectra (normalization with respect to the maximum am-

plitude spectrum) corresponding to each harmonic torsional

wave into a 8.0 mm radius spherical in vitro inclusion embed-

ded within a harder medium. The measurement point M was

located into the heterogeneity at x¼þ0.5 mm, y¼þ3.0 mm,

and z¼�4.5 mm in the Cartesian system of coordinates. Three

resonance frequencies, i.e., eigenfrequencies, are observed:

f1¼ 120 Hz, f2¼ 172 Hz, and f3¼ 256 Hz, each of them corre-

sponding to a torsional eigenmode. Figure 3 also presents the

normalized spectral amplitude of the vibrational cap (correlated

to the wave amplitude) measured by an accelerometer. The

excitation did not exhibit characteristic eigenfrequencies of the

heterogeneity.

Eigenmodes of that phantom were experimentally imaged.

Figure 4 shows stationary displacement fields corresponding to

the first, second, and third eigenmodes. For the two first

eigenmodes, displacements into the spherical heterogeneity are

greatly enhanced compared with the torsional field in the exter-

nal medium. Another observation concerns the confinement of

the resonant torsional fields into the heterogeneity permitting a

clear delimitation of this latter from its background. The third

eigenmode in Figure 4(c) shows a less clear definition of the

heterogeneity boundary. This is due to the displacement con-

trast between the inclusion and its environment that is smaller

than contrasts observed for the first two eigenmodes.

By using the simulation model, theoretical eigenfre-

quencies corresponding to the abovementioned experimenta-

tion were calculated by using mean values of measured

geometrical and mechanical properties of media 1 and 2.

Simulated eigenfrequencies were f1¼ 127 Hz, f2¼ 175 Hz,

and f3¼ 230 Hz. Biases between theoretical and experimen-

tal eigenfrequencies are due to variability of viscoelastic

properties of material phantoms (as experienced by Hall

et al.8) and, because of finite dimensions of the medium, to

possible wave reflections on phantom boundaries. However,

since the maximum bias does not exceed 12%, one can con-

clude on the good agreement between experimental and the-

oretical eigenfrequencies.

Figure 5 shows experimental and simulated two-

dimensional images of the first two eigenmodes following a

plane parallel to (oyz) for the first mode and (oyx) for the

FIG. 3. Experimental resonance spectrum of a spherical 8 mm radius hetero-

geneity at position M (þ0.5 mm, þ3.0 mm, �4.5 mm). Three eigenfrequen-

cies clearly appear: f1¼ 120 Hz, f2¼ 172 Hz, and f3¼ 256 Hz. The shear

viscoelastic modulus of the inclusion was 2700þ 0.5 ix Pa, whereas that of

the surrounding agar-gelatin gel was 17000þ 0.7 ix Pa. The measured nor-

malized acceleration spectrum of the spherical cap (correlated to the excita-

tion amplitude) is also represented.

FIG. 4. Experimentally imaged tor-

sional eigenmodes of the spherical inclu-

sion. Displacement amplitude fields at

the first eigenfrequency of 120 Hz (a),

second eigenfrequency of 172 Hz (b),

and third eigenfrequency of 256 Hz (c).

A transparency mask was applied to

eigenmode images to facilitate the visu-

alization of the internal mechanical

response of the spherical heterogeneity.
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second one. For the first eigenmode, the whole sphere, and the

displayed cross-section, vibrates in phase. The second eigen-

mode is characterized by a phase opposition between two

hemispheres. For both eigenmodes, displacement concentra-

tion into the heterogeneity allows its clear visual segmentation

from the background material. This property is important for

future developments in the context of breast imaging and di-

agnosis. Indeed, a better detectability may allow identify sus-

pected lesions at an earlier stage of development.

Figure 6(a) shows an in vivo B-mode image of the

scanned 11-mm by 5-mm fibroadenoma at a depth of 30 mm.

Panel (b) presents the superimposed stationary displacement

map at the first resonance frequency of 80 Hz obtained after

a scan of the breast using a set of transient torsional shear

waves (having large bandwidths). Clear and confined

enhancements of the torsional displacement amplitude are

observed into the fibroadenoma.

In this study, shear wave induced resonance elastogra-

phy was proposed to image spherically shaped mechanical

heterogeneities. SWIRE enhances the mechanical dynamical

response of the heterogeneity, permits its direct segmentation

from resonant displacement images, and is strongly related

to the viscoelasticity of the mass. We used focused torsional

shear waves to excite resonances. Both experimental reso-

nance frequencies and eigenmodes were in good agreement

with the implemented theoretical model. Despite simplified

assumptions we made to formulate and to solve the idealized

diffraction problem (homogeneous and isotropic media, per-

fect spherical shape of the heterogeneity), this analytical

model had the advantage to facilitate the physical under-

standing of the resonance induction phenomenon and the

interpretation of experimental observations. An important

condition to optimally induce resonances of spherically

shaped heterogeneities is the use of non-convertible shear

FIG. 5. Experimentally acquired and simulated two-dimensional images of the first two eigenmodes (normalized displacements) of the spherical heterogene-

ity. Note that one cannot observe the rotation axis as in eigenmode simulated images of Figure 2. This is due to the relatively long wavelength of torsional

waves at resonance and to the low resolution of displacement maps. The heterogeneity geometrical imperfections can also make difficult the identification of

the torsional axis. In practice and in the context of elastography imaging, this does not limit the validity of the proposed method.

FIG. 6. (a) Ultrasound B-mode image of

an 11-mm by 5-mm fibroadenoma

(white ellipse) situated deep in the left

breast of a 44 year-old women. (b)

Superposition of the ultrasound B-mode

image and the normalized stationary dis-

placement map corresponding to an

eigenfrequency of 80 Hz.
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waves. This condition was satisfied by the use of torsional

shear waves that interact experimentally with spheres with

minimum mode conversions.

The SWIRE technique has potential for detection and

mechanical characterization of breast tumors for diagnosis

and therapy monitoring purposes. A preliminary in vivo
experiment performed using an external excitation set-up

presented in Ref. 7 to induce resonance of a fibroadenoma

was presented to demonstrate feasibility. Due to the ellipsoi-

dal shape of the scanned fibroadenoma, it was not possible to

compare experimental results with the theoretical model

since this later is dedicated to spherical heterogeneities. A

generalization of the theoretical modeling to consider more

complex structures is suitable. In the DE context, this would

allow characterizing the viscoelasticity of resonant heteroge-

neities of arbitrary shapes using an inverse problem

approach. The reader is referred to Ref. 7 for details on

potential clinical implementations of SWIRE.
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