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Tissue Characterization of Equine Tendons With
Clinical B-Scan Images Using a Shock Filter
Thinning Algorithm

Ali Meghoufel*, Guy Cloutier, Nathalie Crevier-Denoix, and Jacques A. de Guise

Abstract—The fiber bundle density (FBD) calculated from ultra-
sound B-scan images of the equine superficial digital flexor tendon
(SDFT) can serve as an objective measurement to characterize the
three metacarpal sites of normal SDFTs, and also to discriminate
a healthy SDFT from an injured one. In this paper, we propose a
shock filter algorithm for the thinning of hyper-echoic structures
observed in B-scan images of the SDFT. This algorithm is further
enhanced by applying closing morphological operations on filtered
images to facilitate extraction and quantification of fiber bundle fas-
cicles. The mean FBD values were calculated from a clinical B-scan
image dataset of eight normal and five injured SDFTs. The FBD
values measured at three different tendon sites in normal cases show
a highest density on the proximal site (five cases out of eight) and a
lowest value on the distal part (seven cases out of eight). The mean
FBD values measured on the entire tendon from the whole B-scan
image dataset show a significant difference between normal and
injured SDFTs: 51 (£9) for the normal SDFTs and 39 (£7) for
the injured ones (p = 0.004). This difference likely indicates dis-
ruption of some fiber fascicle bundles where lesions occurred. To
conclude, the potential of this imaging technique is shown to be effi-
cient for anatomical structural SDFT characterizations, and opens
the way to clinically identifying the integrity of SDFTs.

Index Terms—B-scan images, equine tendon, fiber bundle
density, mathematical morphological operations, shock filter,
thinning algorithm, two-dimensional/three-dimensional (2D/3D)
anatomical structures, ultrasound imaging.

I. INTRODUCTION

LTRASOUND (US) imaging is a noninvasive diagnostic
tool used to evaluate equine superficial digital flexor
tendon (SDFT) structures after injury and during the healing
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process [1]. This technique is routinely used in everyday veteri-
nary practice for diagnostic purposes, for the serial assessment
of lesion healing, and for the evaluation of treatments. With the
help of a medical US scanner, clinicians can qualitatively and
subjectively evaluate tendon integrity or disruption; however
they still do not have a tool for objectively quantifying the
full internal structures or to offer an accurate prognosis for
recovery.

The SDFT consists of highly specialized connective tissues
organized into a hierarchy of structures which include collagen
(the main structural protein), fibrils, fibers, and fascicles [2]-[4].
As shown in Fig. 1(a), the fibers are arranged in primary fiber
bundles that are gathered together to form secondary fiber bun-
dles (fascicles), which are in turn joined together to form tertiary
fiber bundles. Fiber fascicle bundles are surrounded by loose
connective tissue, called the interfascicular space, which pro-
vides vascular supply, lymphatic vessels, and probably a circular
mechanical support. The fascicles are regularly parallel to the
SDFT loading axis.

Three preferential sites are usually chosen on the SDFT to
evaluate fiber bundle density (FBD) [5]: the proximal, middle,
and distal regions [see Fig. 1(b)]. The proximal metacarpal site
describes the point of attachment of the tendon to the upper
part of the horse’s leg and has an approximately circular cross
sectional area (CSA). The distal metacarpal site describes the
point of attachment of the tendon to the lower part of the horse’s
leg, and has a thin, flattened, crescent-shaped CSA. The central
part of the tendon (middle) has an elliptical CSA. The proximal,
middle, and distal sites occupy 25%, 50%, and 25% of the total
length of the tendon, respectively.

The main diagnostic criterion for assessing the integrity
of the SDFT is the B-scan image echogenicity [6], [7]. The
echogenicity feature of a normal SDFT is the presence of
parallel and linear hyper-echoic structures caused by coherent
specular reflections at the interfascicular spaces [8], when scan-
ning is performed by aligning such structures perpendicularly
to the US beam [Fig. 2(a) and (b)]. In the case of a lesion
[Fig. 2(c) and (d)], some disorganization of the interfascicular
spaces and loss in collagen density occur, resulting in a reduc-
tion in echogenicity [5].

The internal structure analysis of the tendon is very depen-
dent on what veterinarians observe on the B-scans. Therefore,
the analysis of the integrity of the tendon is subjective. To im-
prove diagnosis based on the postprocessing of acquired images,
veterinarians would benefit from an imaging tool able to iden-
tify automatically the structures of the tendon without recourse
to the human eye. To do this, we propose the use of an original
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Fig. 1. (a) Hierarchical organization of the tendon [2] and (b) three metacarpal
sites of the SDFT.
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Fig. 2. 2D B-scan images of metacarpal SDFTs. Cross sectional and longitu-
dinal views of a normal SDFT, (a) and (b), and of an injured SDFT, (c) and (d).

imaging technique that allows extracting accurately the internal
structure of the tendon. The next paragraphs focus on the state of
the art of imaging techniques applied to SDFT B-scan images,
and on the proposed technique and its mathematical foundation.

SDFT B-scan image processing requires several stages, first
the SDFT integrity assessment that was limited to content quan-
tification by texture analysis and first-order grey-level represen-
tation [9]-[11]. These studies have often led to conflicting re-
sults on the sources of the observed hyper-echoic structures of
the B-scans and on discriminating normal from injured tendon
[10]. Qualitative B-scan image analysis revealed that the hyper-
echoic structure density observed on the CSA B-scan image
planes decreases from the proximal to the distal metacarpal sites
[7], [12], which likely indicates less FBD in the distal region.
Such results (less FBD) may signify mechanical weaknesses
in traction and consequently explain the high occurrence of le-
sions at this site [5], [13]. Recently, more robust imaging tech-
niques have been designed in order to understand accurately the
content of those images: among them, the spectral analysis of
SDEFT echo signal has been proposed [12]. In this study, the au-
thors have described mathematical simulation models to clarify
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the relationship between the backscattering and structure thick-
nesses and also to correlate the echo spectra with high-reso-
lution images from several modalities; authors conclude that
the interfascicular space thicknesses and their ionization angle
are predominant factors explaining hyper-echoic structures. The
last study conducted by us [8] proposed an original imaging
technique based on simulations of B-scan images revealing that
the interfascicular spaces are most likely responsible for hyper-
echoic structures on B-scan images; and discrimination between
normal and injured B-scan images of SDFT.

Beside information on echogenicity density, it would be rel-
evant to quantitatively assess the structural integrity of tendons
and the extent of healing to support the decision as to whether or
not a horse can resume training and racing, and if so when. To do
this, the extraction of the interfascicular spaces corresponding to
the intact fiber bundle fascicles by an appropriate segmentation
method meets perfectly this goal.

Among segmentation methods in the literature that relate to
our problem are variational methods and specifically shock fil-
ters. A shock filter is a nonlinear hyperbolic partial differen-
tial equation (PDE) filter [14]-[17] regarded as a deconvolu-
tion filter used to segment an image on piecewise constant seg-
mentations. Inspired by the existing deconvolution shock filter
algorithms, we present an alternative approach that allows the
thinning (rather than the deconvolution) of the observed hyper-
echoic structures corresponding to the interfascicular spaces [8]
to facilitate their extraction. The algorithm is based on the ana-
Iytical shock filter form described in [14] and on the numerical
scheme developed in [18], adapted to handle B-scan images.
Closing morphological operations are subsequently applied to
the enhanced images.

The proposed thinning algorithm is presented first analyti-
cally and numerically in the 1D case to clarify its behaviour and
to compare it with the classical deconvolution algorithm, then
the 2D algorithm is applied to ultrasound images. The morpho-
logical operations are used in the final step to characterize fiber
fascicle bundles as binary closed structures. The quantification
of the FBD allowed the discrimination between normal and in-
jured SDFTs. It was also used to explain the mechanical strength
properties of the metacarpal in traction, and the frequent appear-
ance of lesions in its distal site [13].

II. PREVIOUS SHOCK FILTER MODELS

Shock filter algorithms rely on image deconvolution to
create sharp discontinuities (the “shocks”) between adjacent
grey-scale zones (influence zones) in the images and produce
piecewise constant segmentations. The concept of image shock
filter enhancement is adapted from nonlinear hyperbolic tech-
niques [17]. In the following equations, the u denotes the 1D
signal and the I denotes the 2D signal or the B-scan image. In
the 1D case, the signal u(z, t) verifies the following hyperbolic
equation:

U = Q- Uy 1
with the initial signal u(z, * = 0) = u°, and the scalar a > 0. u;
and u, are the first derivatives in time and in space respectively.
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Fig. 3. Piece-wise segmentation of a curved noise-free 1D signal.

The solution of (1) is u(z,t) = u®(x + at), and it corresponds
to the initial signal propagated at speed —a.

In order to integrate signal deblurring and enhancement into
the previous 1D model of (1), it was suggested to force the signal
propagation speed to depend on the signal itself [15], [16], and,
more precisely on the sign of the second spatial derivative u,,,.
This suggestion led Osher and Rudin [16], [17] to propose their
1D model, which is written as follows:

Uy = —Sign (uzr) |um| . ()

This model of (2) can be interpreted as mathematical mor-
phological operations [19]. Indeed, according to the sign of the
second derivative u,;, (2) can be decomposed into three parts,

as follows:
|uz|
Uy = — Uy
0

Shocks occur at signal inflection points (zero-crossings of )
and lead to piece-wise constant solutions. As shown in Fig. 3,
the shock process performs dilatation by solving u; = |ug]
in concave signal segments, whereas, in convex segments,
measurement of the erosion that takes place is achieved by
solving uy = — |u,|. The shock process maintains local ex-
trema (maxima and minima) constant in time, without creating
new ones.

The 2D shock filter model of Osher and Rudin [16], [17] has
the following form:

Upye < 0
Uge >0 . 3)
Ugpz = 0.

I, = —F (I,,) |VI] “4)
with the initial condition (original image) I(z,y,t = 0) = I°,
the gradient direction n = VI/||VI||, and the 2D shock func-
tion F', which must satisfies F'(0,0) = (0,0), and (z,y) X
F(z,y) > 0. F(z,y) = (sign(x),sign(y)) was chosen in
[16], [17] to be the shock function in the case of (4).

Osher and Rudin’s shock filter model is very sensitive to
noise: the second derivative amplifies noise, and so the loca-
tion of the real zero-crossings of wu,, in (2) is a very diffi-
cult task. Several studies have addressed this issue, and var-
ious solutions have been suggested. Authors in [14], [20]-[22]
have opted to convolve the signal’s second derivative with a
smoothing Gaussian operator GG, of standard deviation o ap-
plied to the argument of the shock function of (2)

up = —sign ((Gy xu),,) [usz]. 5)
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Fig. 4. 1D shock deconvolution process of (5) with various Gaussian

smoothing kernels o. Top row (from left): (a) original noise-free signal (sine
wave), (b) noise-free signal restored by the shock filter, (c) original signal +
white Gaussian noise defined with a SNR = 10; bottom: noised signal restored
using Gaussian deblurring, (d) witho = 1.5,(e) 0 = 3,and (f) o0 = 5.

The Gaussian operator is not generally sufficient to overcome
the noise problems. Indeed, the zero-crossings of (G, * u),,
depend on the width of the Gaussian support [—o,+0]. As
shown in Fig. 4, the inflection points of the entity (G, *u)_,
can change according to o, which makes the identification of
inflection points less accurate.

As mentioned in [23], Alvarez and Mazzora proposed a new
approach in [14], which combines enhancement and denoising:
smoother signal sections are denoised, while edges are enhanced
and sharpened. The main idea is to add an anisotropic diffusion
term with an adaptive weight to the shock term. This model is
written in 2D as follows:

I, =k - Iee — sign (Gy + 1)) | VI (6)
where the scalar k € [0,1], and £ is the perpendicular to the
gradient direction 7; i.e., £ = n*.

In [21], Kornprobst et al. modified the previous equation to
obtain

Iy = ag (helyy + Iee) — o (1 = hr) sign (Go * Lyy) [V

(N
where h, = h, (|G, *VI|) = 1if |G, *VI| < 7 and 0
otherwise. Parameters oy and «,- are positive scalars. Isotropic
diffusion occurs in homogeneous zones (h, = 1), whereas the
Alvarez and Mazzora shock enhancement behavior occurs in
non homogeneous zones (h, = 0).

Using a different approach, Coulon and Arridge proposed the
following in [20]:

I = div (¢ (V1)) — (1 = ¢ (V)" sign (Gy * Lyy) [VI| (8)
where ¢(VI) = exp (— \VI? /k) This filter has a similar
behavior to the Kornprobst et al. model (7), that is, isotropic
diffusion in the homogeneous zones where the smoothed image
gradient is low, while in zones where the gradient is high, the
model behaves as (5).

Gilboa et al. [23] proposed a model that relies on complex
diffusion:

2 I
I; =—— arctan (a im ( >) IVI|+ M1+ XIee (9)
T
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where \; is a complex number (r and 6 are its polar expres-
sions), Ay is a scalar, F'(.) = 2/x - arctan(.) is the shock func-
tion with its argument “a - imn(1/6),” im being the imaginary
part of the complex number and « is another scalar which con-
trols the sharpness of the slope at the discontinuity-points.

Finally, Remaki and Cheriet [18] proposed a parametric
shock filter to control shock positions, intensity, and propa-
gation velocity. The 2D model is a combination in the x — y
directions of the 1D model, as follows:

I; = —a(GJ*IO)

F((Go #1%) 455 (Go #1°) ) - f5(1)
0 = x,y directions. (10)
In this equation, a, F', and f are functions which control inten-
sity, shock positions, and shock propagation velocity.

Fig. 5 shows a series of enhancements of a synthetic image
[Fig. 5(a)] blurred and corrupted with noise [Fig. 5(b)]. The re-
sults (image and intensity cross-section profiles in (c)—(h) are
shown for the individual shock filters previously described. The
image deconvolution changes from filter to filter. The Osher
and Rudin [16], [17] shock filter [(4), Fig. 5(c)] does not re-
move the blur because the detection of inflection points is almost
impossible. Images enhanced by filters of Alvarez and Maz-
zora [14] [(6), Fig. 5(d)], Kornprobst et al. [21] [(7), Fig. 5(e)],
and Coulon and Arridge [20] [(8), Fig. 5(f)], which all rely on
Gaussian smoothing, are fairly similar. The enhanced images
obtained using the Gilboa et al. [23] filter [(9), Fig. 5(g)] are
quite clear, even though no smoothing is used, but the sharpness
of edges does not appear optimum. The Remaki and Cheriet [18]
results [(10), Fig. 5(h)] are less accurate: sharp discontinuities
are created in ox and oy directions (anisotropic along these two
directions), and weak discontinuities are created in other direc-
tions of the plane. In conclusion, shock filters are very useful in
the piecewise constant segmentations (deconvolution) process.
The shock function of the classical deconvolution algorithms
can be modified for a new algorithmic behaviors, this lead us
to introduce in the next sections an alternative thinning process
adapted for the segmentation of SDFT B-scan images.

III. SEGMENTATION METHOD

In this section, we describe the segmentation method that
consists in two steps: the proposed thinning algorithm and the
morphological operators. This method is used to characterize
the 2D/3D internal structures of the SDFT by extracting the
hyper-echoic structures observed in B-scan images and their
corresponding fiber fascicle bundles. An analytical and numer-
ical presentation of the proposed thinning algorithm is intro-
duced followed by a detailed description of morphological op-
erations applied to the enhanced images.

A. Thinning Shock Algorithm

To facilitate the understanding of the behavior of the 2D
shock filter thinning algorithm on images, its 1D representation,
which is easier to analyze analytically, is presented first.
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Fig. 5. Mosaic of images and their corresponding intensity profiles, as mea-
sured along the arrow seen in each frame. First row (from left): (a) original
image, (b) speckle noised image (additive Gaussian noise with a SNR = 10);
second row: (c¢) Rudin shock [16], [17] enhancement, (d) Alvarez & Mazzora
[14] enhancement (k = 0.3 and ¢ = 5); third row: (e) Kornprobst et al. [21]
enhancement (g = 0.6, . = 0.4, 7 = 0.1 and o = 2), (f) Coulon-Arridge
[20] enhancement (&« = 1, k = 10 and o = 2); fourth row: (g) Gilboa et al.
[23] enhancement (A, [r = 0.7,6 = 7/6], Ao = 0.3 and @ = 0.3); and (h)
Remaki and Cheriet [18] enhancement (o = 2).

1) One-Dimensional Thinning Shock Algorithm: Our imple-
mentation is inspired by the 1D shock filter model proposed in
[14], [18] and described as

up = —F ((G(, * uo)m , (Go * uo)m) |0pu| = 0in R x RT
(11)
where u”? = G, * u (z,t = 0) that is a prior smoothing of the
original signal by a Gaussian operator, and the shock function
F(.,.) is defined as described in the following sections.
The numerical scheme of the above hyperbolic model (11) is
an explicit upwind [18] and is written as follows:

0,0

ufth = ul — 2L (max (0, F;) - Atu?
+ min (0, F;) - A~ ul)

F,=F (“gﬁ—%?“’ﬂ?"’l u —u?*"l) "

Ax?2 ’ Az
Atup = £ (ufyy —ull).
The result features depend on the characteristics of the shock
function F'. In the following, we describe two implementations
of F providing either the classical deconvolution operation or
the proposed thinning of the signal.

The Shock Function of the Classical Deconvolution Al-
gorithm: For the classical case of deconvolution [14], [18], in
which we create sharp discontinuities at inflexion points (i.e.,
zero-crossings of u2;7), the function F that satisfies (12) is
chosen as follow:

Fl (uo’” uo’”) = (sign (uo’”) - 8ign (ug’”))i. (13)

K2 xx ' rT
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Fig. 6. Changes in shock algorithm properties according to the sign of the
shock function F'. Restoration after 30 iterations of the noise-free curved 1D
signal (u%% = sin(x)) by: (a) the classical 1D deconvolution shock algorithm
and (b) our original 1D thinning shock algorithm.

Inflection points Lobes (local maxima)

VYRS, ¢ VY
RQJWHIL| ® L‘v\_ﬁu’_’\ \J\_/

L o] L |

Fig. 7. On left-hand panels, the solution is shown using the classical decon-
volution shock algorithm for the initial smoothed signal u®* = sin(5x) +
cos(7x). We note discontinuities at the location of the zero-crossings of u?:°.
On right-hand panels, the solution is shown using our original thinning shock
algorithm applied on the same signal #°:°. The thinning occurs at the location
of the local maxima of u°-9, (a) original signal, (b) signal sequence at iteration
8 and (c) signal sequence at iteration 30.
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Here the subscript 1 is used to define the classical deconvo-
lution process property [14], [18]. Fig. 6(a) is an example
showing the evolution of the deconvolution process to create
sharp discontinuities in the original signal (the curve signal
described by u*° = sin(z), z € [0,3x]) that evolves into a
piecewise constant signal. The moving points of the original
signal ©%° are governed by the sign of F''. In the intervals
7/2,7[U]37 /2,27 [U]57/2,3w[, F' is positive and signal
points evolve by moving them to the right inducing the creation
of jumps at x = 7, 27—, and 37—, while F'lis negative in
the intervals |0, = /2[U]m, 37 /2[U]27, 57 /2] and signal points
evolve by moving them to the left inducing the creation of
jumps at z = 07, 77, and 27 (“~ and “+” indicate the left

and right values of the central point). We notice that the sign
of F' is null at points: x = 0, 7/2, 7, 37/2, 27, 57 /2, and 37
in which the signal remains invariant (extreme points).

Shock Function of Our Original Thinning Algorithm:
Since our objective is to extract the hyper-echoic structures
that are represented by local maxima of the intensity profile of
the SDFT B-scan image, and inspired by the shock function
properties of the classical deconvolution process F’ 11141, [18]
described above, the direction of movement of signal points can
alternatively be controlled by introducing a new shock function
that ensures an erosion process around those local maxima and
a dilation elsewhere. The chosen shock function must retain
local maxima and minima of the signal, while allowing signal
points to move according to the sign of the shock function. A
simple choice for the shock function, which can translate these
analytical properties into the proposed thinning algorithm, is

F? (u2?,ud?) = (1 x sign (uga))1 = sign (uﬂ“)q . (14
The subscript 2 is used here to describe the proposed thinning
process property. Fig. 6(b) shows the behavior of this algorithm
and moving points of the original signal u*°, which are gov-
erned by the sign of the proposed function F2. Around local
maxima of the signal at = /2, F'? is positive in the interval
10,7 /2[ and signal points evolve to the right of the signal in-
ducing the creation of jumps at x = 7/2~, while F? is nega-
tive in the interval |7 /2, 37 /2[ and signal points evolve to the
left of the signal inducing jumps at # = /2%, The sign of
F? is null and the signal remains invariant at the central point
x = w/2 (local maxima). This process simply reflects erosion
around & = /2. The algorithm erodes similarly the signal
around the local maxima at x = 57/2.

Fig. 7 shows the application of the proposed thinning algo-
rithm versus the classical deconvolution method. The input is
a 1D noise-free multimodal signal similar to intensity profiles
of SDFT B-scan images after smoothing by GG,,. Local maxima
mimic the hyper-echoic structures corresponding to the inter-
fascicular spaces. The deconvolution algorithm processes the
signal by creating a sharp discontinuity that evolves into a piece-
wise constant signal, while the thinning algorithm erodes the
signal around local maxima. The thinned process is more prac-
tical to our purpose since it thins hyper-echoic structures when
applied on SDFT B-scan images (as shown later); and it pre-pro-
cesses them to facilitate their extraction using complementary
morphological operations. Both algorithms are based on a stop-
ping criterion on the error between two consecutive signal se-
quences, with a maximum of 30 iterations.

2) Two-Dimensional Thinning Shock Algorithm: The 2D
thinning algorithm based on the same analytical properties as
in 1D is described by the following model:

L+F ((Ga 1), (G IO)U) I,|=0in R? x Rt
I(z,y,t=0)=1%(z).
15)
As in the 1D case, we use the notation 1% = G, * I° for the
smoothed initial image. The shock function is not easy to gener-
alize from the 1D model, however, it can be estimated using the
structural information contained in such images. Indeed, par-
allel and linear hyper-echoic structures are formed when the
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US wave propagation axis is perpendicular to the interfasci-
cular spaces; in such condition, the gradient vector 7 is par-
allel to that axis (7 is obviously perpendicular to the hypere-
choic structures). Therefore, we assume that the 7 is simply
the y directional derivative of the image (y: vertical direction
of the image, x: horizontal direction). The shock function F?
plays the same role in 2D as in the 1D case, and it is written
FfJ = sign (VyI"*O)Z.,j. The sign of each column of the ma-
trix F'2 is treated as a 1D signal.
The 2D thinning algorithm scheme then becomes

' =17 — At- R (I}) (16)
where
R(I7;) = max (0, FZ;) AF (I7))
+min (0, F7;) Ay (17;) 17
Ff] = sign (VyI"’O)”, 1n

AEIP =& (17, — 17) -

Y Tig i Y]

B. Complementary Morphological Closing Operations

The segmentation of enhanced B-scan images by 2D math-
ematical morphological operations was performed to facilitate
the extraction of quantitative data on fiber bundles, and also to
improve the 2D and 3D visualization of the SDFT internal struc-
tures. The mathematical morphological operations proceeded as
follows for each enhanced image.

1) Background subtraction using the structuring element

“rolling ball” with a radius of five pixels.

2) Watershed operation using the validated automatic wa-
tershed software (IMAGEJ software, NIH, Bethesda,
MD) [24]: an algorithm based on binary thickenings
with a structuring element of four connected pixels. The
Watershed operation was used to overcome the absence
of visible tendon structures parallel to the US beam on
B-scan images (see Fig. 2, Fig. 8(e) and (f) as examples of
this acoustical phenomenon).

IV. VALIDATION

The proposed imaging technique was first applied on a sim-
ulated B-scan image dataset to validate its accuracy and robust-
ness, and on clinical B-scan images to quantify FBD values
at various locations along normal SDFTs, and to discriminate
normal from injured SDFTs.

A. Simulated B-Scan Image Dataset

B-scan image simulations were performed using the system-
based linear model of Bamber and Dickinson [25] at a central
frequency of 7.5 MHz. The acoustical impedance of the simu-
lation model was set based on segmented regions representing
structural components of the tendon. Collagen and water were
identified as the two principal components of a normal tendon
[8]: the collagen is mainly located at fiber fascicle bundles and
the material within interfascicular spaces and that surrounding
the tendon was assumed to be water [26]. A simple thresholding
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Fig. 8. Simulation results by the Bamber and Dickinson model [25] at a 7.5
MHz central frequency. (a)-(b) macro-photography CSA of a normal and an
injured SDFT, (c)—(d) corresponding acoustical impedance map of (a) and (b);
and (e)—(f) corresponding simulated B-scan images based on acoustical imped-
ances in (c) and (d).

to segment macro-photography images, as the one presented in
Fig. 8(a), provided the realistic acoustical impedance model pre-
sented in Fig. 8(c).

Image CSAs where fibers were mimicked as disrupted
(pathological cases) were modeled as fresh blood [hemor-
rhage, dark area in Fig. 8(b) and (d)]. For both normal and
injured SDFTs, the assigned acoustical impedances were
obtained from [27]-[29] and defined as the scalar product of
the compressional wave velocity and the volumetric density
of each medium. Postmortem histology slides of two normal
SDFTs provided the acoustical impedance map to support the
B-scan image simulation [e.g., a normal case in Fig. 8(e), an
injured one in Fig. 8(f)]. After fixation of the SDFT tissue
with a straight phenolic resin solution, both tendons were cut
into 1.3-mm-thick cross sections, regularly spaced using a
microtome (Exakt 300 band system, Oklahoma City, OK).
CSA aspects of slices were carefully photographed by optical
microscopy (Nikon SMZ-U) with a camera (Nikon HFX DX),
digitized with a scanner (HP ScanJet 5590, 200 dpi), and stored
on a computer [30].

Our B-scan image dataset consist of 238 simulations of two
normal SDFT. A standard histomorphometry evaluation [30]
was performed to quantify the fiber bundle fascicles from the
238 macro-photography slice references. It consists of an auto-
matic 2D image segmentation followed by a statistical analysis
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to deduce the average number of fiber bundle fascicles for each
normal tendon.

B. Clinical B-Scan Image Dataset

Clinical B-scan images were obtained in vivo from eight
normal and five injured horses at the Ecole Vétérinaire d’Alfort,
Maisons-Alfort, Val-de-Marne, France. They were acquired
from the equine SDFT in freehand mode scanning with a
7.5-MHz linear array transducer (SSD-2000-7.5 Aloka, Tokyo,
Japan). Tendons were scanned along the loading axis direction
(CSA view), from the proximal to the distal part, with a free-
hand speed displacement of around 1 cm.s~*. The total number
of transverse images taken was 150 (£20) per horse tendon.
These were realigned longitudinally by rigid registration [31]
to obtain coherent 3D tendon structures.

V. RESULTS

A. Segmentation Results

The segmentation technique was first applied on simulated
B-scans. Typical US images of a normal and an injured SDFTs
are given in Fig. 8(e) and (f), respectively. The challenge of the
segmentation method was to recover hyper-echoic structures, on
those B-scans, to match the gold standard macro-photography
references, as depicted in Fig. 8(a) and (b).

The iterative thinning processing of hyper-echoic features
was based on a stopping criterion on the error between two con-
secutive image sequences (with a maximum of 30 iterations).
To obtain smoothed symmetrical curved surfaces (2D local
maxima) from processed B-scans, o in (15) and (16) was set to
5, which corresponds to the mean thicknesses of hyper-echoic
structures on all images (around 10 pixels). Results of Fig. 9
show that the thinning process closely matched the targeted
hyper-echoic structures of the intact interfascicular spaces. The
thinning process performed erosion around the hyper-echoic
structures and dilatation elsewhere [see Fig. 9(a) and (b)].
The region where the lesion is located [hypo-echoic structure
in Fig. 9(b)] underwent dilatation similar to an anisotropic
diffusion as expected, because of the absence of any bright
structures in this region.

The boundaries extracted by the closing morphological op-
erations are projected over the simulated B-scan images and
over the macro-photography image sources, in Fig. 9(c)—(f), for
comparison. As displayed, extracted contours are very realistic
for structures perpendicular to the US beam, but coarse in the
parallel axis, which is normal and predictable according to the
physics of US image formation.

In the case of clinical B-scan images [see for examples
Fig. 10(a) and (b)], the thinning process produced similar
results and also converged towards bright thin lines, which
are the targeted interfascicular spaces where fiber bundles
were intact [8] [Fig. 10(c) and (d)]. The corresponding 3D
surfaces of image close-ups (ROI within boxes) are shown to
reveal more effectively thinned structures. The surface of the
original selected ROI segment had two hyper-echoic structures
degraded by the speckle noise (zoomed panel a). The 3D
surfaces following applying our algorithm showed that the
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Fig. 9. Segmentation results on simulated B-scan images. (a)—(b) Thinned
structures of images in Fig. 8(e) and (f), respectively. Superposition of extracted
closed structures: (c)—(d) on the simulated B-scan images of Fig. 8(e) and (f),
and (e)—(f) overlay on the macro-photography images of Fig. 8(a) and (b).

thinning process removed speckle with bright structures be-
coming thinner (zoomed panel c). Overall, the thinning process
successfully converged to bright thin lines corresponding to in-
terfascicular spaces perpendicular to the US beam propagation
path through the tissue.

B. Quantification of Fiber Bundle Densities

Fiber bundles were defined as the smallest closed structures
in the segmented B-scan images [e.g., Fig. 9(c) and (d), Fig.
10(e) and (f)]. In the case of a damaged SDFT, the biggest
closed structure defined the injured area [e.g., Fig. 9(d) and Fig.
10(f)]. A spatial rendition of the tendon structure was obtained
by stacking series of 2D segmented images in the 3D space.

1) Fiber Bundle Densities in Simulated B-Scan Images:
Quantification of FBD has been applied on the simulated
B-scan image dataset (n = 238 images) and mean + one
standard deviation were 40 (£8). The gold standard FBD
was 42 (+5); as estimated by histomorphometry [30] on the
same specimens (from the 238 macro-photography image
references). The agreement between those values shows the ef-
fectiveness and accuracy of the proposed segmentation method
for the characterization on internal structures of the tendon.

2) Discrimination of in Vivo Normal Versus Injured SDFTs:
An additional evaluation was performed on the FBD counted
from the whole normal and pathological segmented clinical
B-scan images. The mean FBD was 51 (£9) for normal SDFTs
and 39 (£7) for injured ones. In the case of injured SDFTs,
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Fig. 10. Segmentation results of clinical B-scan images. (a)—(b) B-scan images
of normal (and corresponding 3D surfaces of the zoomed area of interest) and
injured SDFTs, (c)—(d) thinned hyper-echoic structures of panels (a) and (b),
and (e)—(f) superposition of extracted closed contours over original images in
panels (a) and (b).

only fiber bundles on intact fascicles were considered. The
computed FBD value was found to be significantly different
between groups, using a student t-test (p = 0.004). This
difference likely indicates the disruption of some fiber fascicle
bundles where lesions have occurred.

3) Fiber Bundle Densities at Three Sites Along the
Metacarpal of Normal SDFTs: 1t is generally accepted that the
mechanical strength of the tendon is proportional to its FBD
values. From segmented images, the mean FBD calculated for
the three sites of the eight normal tendons are presented in
Fig. 11. These results show that the mean FBD was highest in
five cases out of eight in the proximal part (Nor. 1, 2, 3, 6, and
8), two cases in the middle part (Nor. 4 and 7), and 1 case in the
distal part (Nor. 5). Inversely, the mean FBD value was lowest
in the distal part in seven cases out of a total of eight (all except
Nor. 5). When averaged over the whole dataset, the mean FBD
was 54 (£5) for the proximal, 50 (£7) for the middle, and
48 (£8) for the distal segments, respectively (not significantly
different based on an analysis of variance with the Bonferroni
test for multiple comparisons, p > 0.05).

Fig. 12 shows 3D reconstructions of the three parts of a typ-
ical normal SDFT: the reconstruction was achieved by stacking
successive realigned and segmented images, from which we can
appreciate the continuity of 3D structures and the mean FBD.
Images of Fig. 12 were taken from our clinical dataset.

VI. SUMMARY AND CONCLUSION

In this study, we have presented an original segmentation
method applied on B-scan images for the purpose of quanti-
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Fig. 12. Various 3D views of different sites of a healthy SDFT located in the
metacarpal region.

fying internal structures of SDFTs. This method consists of two
steps: the first step is the proposed algorithm dedicated to thin
hyper-echoic structures observed on the images to facilitate their
extraction and the second consists in morphological operations
applied on enhanced images to finalize the segmentation of bi-
nary closed structures.

The originality of this study is the proposed thinning algo-
rithm adapted to handle B-scan ultrasound images. After re-
viewing analytical properties of existing shock filters and their
control parameters [14]-[18], [20], [21], [23], we chose the an-
alytical form of Alvarez and Mazzora [14] and the numerical
scheme described in [18] to formulate the proposed shock filter
thinning algorithm. Inspired by analytical properties and the
stgn of the shock function of classical deconvolution algorithms
[14], [18], we were able to extract hyper-echoic structures “by
their thinning” using an adequate shock function. The behavior
of the thinning algorithm in the 1D case was related to analyt-
ical properties of the chosen function of shock. It is to note that
the existence of a unique solution, the stability and convergence
of the numerical scheme have already been proven in 1D [14],
[18].

The analytical and numerical 2D models of the thinning al-
gorithm, derived from the 1D formulation, are expected to be
mathematically and numerically well-posed. The 2D algorithm
involves one main parameter: the input standard deviation o of
the Gaussian operator G,,, which smoothes B-scan images. This
parameter was pre-estimated based on our whole database, as
the mean thickness of hyper-echoic structures and it was fixed
to 10 pixels (20 = 10 pixels). An optimal o could provide sym-
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metrical smoothed curve surfaces of 2D local maxima “similar
to the 1D sinusoidal signal” [14], [20]-[22], however, structures
whose thicknesses are smaller than 20 may not be enhanced ad-
equately (large smoothing can cause the loss of these structures).

The effectiveness and robustness of the segmentation method
have been tested by extracting the FBD on segmented-simulated
B-scan images (238 images), obtained from two normal SDFT
specimens, which were subject to a standard histomorphome-
tric evaluation (the gold standard) [30]. The agreement between
measured and ground truth values confirmed the accuracy of the
imaging technique. Also, the statistical analysis on FBD con-
firmed that our segmentation method could objectively discrim-
inate normal from injured SDFTs. Indeed, the mean FBD of in-
jured SDFTs was smaller (39 (£7)) than that of normal ones
(51 (£9)). This clearly reflects the disruption of the thinnest
interfascicular spaces and of their corresponding fiber fascicle
bundles where lesions occurred [5], [9]. The calculated FBD
corroborated values found by a method-based decompression
algorithm of B-scan images applied by us on the same B-scan
image dataset [8], where FBD values were found to be 50 (+11)
for normal and 40 (+7) for injured tendons.

The FBD statistical analysis of eight normal SDFT cases
could not confirm that the proximal and distal sites of the
SDFT had highest and lowest mean values. This seems to
reflect in vitro results [5], showing that mechanical properties
of a normal tendon are relatively homogeneous over its entire
length. Nevertheless, this disagrees with the observation of a
higher occurrence of lesions in the distal metacarpal site [13].
A larger database would certainly be required to confirm or
infirm the hypothesis of a link between the fiber bundle density
and occurrence of lesions.
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