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Purpose: An iterative edge-preserving CT reconstruction algorithm for high-resolution imaging of
small regions of the field of view is investigated. It belongs to a family of region-of-interest
reconstruction techniques in which a low-cost pilot reconstruction of the whole field of view is first
performed and then used to deduce the contribution of the region of interest to the projection data.
These projections are used for a high-resolution reconstruction of the region of interest �ROI� using
a regularized iterative algorithm, resulting in significant computational savings. This paper exam-
ines how the technique by which the pilot reconstruction of the full field of view is obtained affects
the total runtime and the image quality in the region of interest.
Methods: Previous contributions to the literature have each focused on a single approach for the
pilot reconstruction. In this paper, two such approaches are compared: the filtered backprojection
and a low-resolution regularized iterative reconstruction method. ROI reconstructions are compared
in terms of image quality and computational cost over simulated and physical phantom �Cat-
phan600©� studies, in order to assess the compromises that most impact the quality of the ROI
reconstruction.
Results: With the simulated phantom, new artifacts that appear in the ROI images are caused by
significant errors in the pilot reconstruction. These errors include excessive coarseness of the pilot
image grid and beam-hardening artifacts. With the Catphan600 phantom, differences in the imaging
model of the scanner and that of the iterative reconstruction algorithm cause dark border artifacts in
the ROI images.
Conclusions: Inexpensive pilot reconstruction techniques �analytical algorithms, very-coarse-grid
penalized likelihood� are practical choices in many common cases. However, they may yield back-
ground images altered by edge degradation or beam hardening, inducing projection inconsistency in
the data used for ROI reconstruction. The ROI images thus have significant streak and speckle
artifacts, which adversely affect the resolution-to-noise compromise. In these cases, edge-
preserving penalized-likelihood methods on not-too-coarse image grids prove to be more robust and
provide the best ROI image quality. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3447722�
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I. INTRODUCTION

We take interest in high-resolution applications of computed
tomography �CT� imaging. More specifically, we consider
cases where a small region within the field of view �FOV�
must be examined at high resolution within its anatomical
context, the rest of the image being essentially ignored. Such
situations may occur in contrast-enhanced cardiac imaging1,2

and peripheral vascular imaging,3 for example. In those situ-
ations, the reconstruction method should be robust with re-
spect to various noise and artifact sources, such as the beam-
hardening artifacts that may be induced by endovascular

stents in vascular imaging.
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Such issues can be overcome by iterative reconstruction
algorithms formulated from a statistical data formation
model.4,5 However, the high-resolution requirement involves
the representation of the image on a grid of large dimension,
leading to a large memory footprint and heavy computational
burden per iteration. Moreover, the number of unknowns in
the resulting system of equations may approach and even
overshoot the number of measurements. This underdetermi-
nation or weak overdetermination yields an ill-conditioned
equation system, which needs to be regularized to obtain a
meaningful solution. However, the need for high image res-
olution limits the amount of regularization that can be ap-

plied.
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Yet, high image quality is only required in a small region
of interest �ROI�. Analytical methods allow for the recon-
struction of any subregion within the FOV from the subset of
data comprising all raypaths that intersect it. This contrasts
with iterative algorithms, which require the estimation of the
full field of view �FFOV� to avoid data truncation artifacts.
However, the only requirement for the reconstruction of the
rest of the field of view �the background� is that its union to
the ROI be consistent with the projections. In other words,
image quality in the background may be sacrificed to nu-
merical performance as long as the projections of the back-
ground and of the ROI are related to the measurements well
enough. This motivates the development of reconstruction
algorithms that take advantage of this background-ROI de-
composition to decrease the computation time.

ROI reconstruction algorithms have received a lot of in-
terest recently. Three families of such methods were de-
scribed in Ref. 6, including the family covered by this paper,
but without any reconstruction result. To our knowledge,
Ziegler et al.1,2 presented the first reconstruction results of
clinical data. Their implementation extracts the background
from a FFOV reconstruction by filtered backprojection
�FBP� and obtains the ROI with an unregularized maximum-
likelihood expectation-maximization �ML-EM� procedure.
This implementation was also reported in Ref. 7, where the
effects of smoothing the projections after the subtraction of
the contribution from the background were studied. A further
enhancement was proposed in Ref. 8, where the projections
of the background and the ROI were estimated in an alter-
nating sequence by a penalized-likelihood method. We pre-
sented an alternative approach in Ref. 9, where the ROI was
reconstructed simultaneously with a coarse-grid representa-
tion of the background using a penalized-likelihood method.
We generalized the approach to a polychromatic-source pro-
jection model to reduce beam-hardening artifacts.3 Note that
Ref. 3 uses a two-pass sequential approach: a first low-
resolution FFOV reconstruction is enhanced in the ROI by a
local high-resolution reconstruction. This approach was also
implemented by Ref. 10 over an iterative coordinate descent
algorithm. In Ref. 11, a similar approach for cardiac imaging
was independently developed and the impact of the dimen-
sion of the FFOV grid on the visual quality of the ROI was
investigated. An algorithm that generalizes this approach was
proposed earlier in the context of emission tomography:12 the
reconstruction is performed over an irregular mesh, with a
high vertex density in the ROI and low vertex density in the
background. Our own initial experiments had us leave out
this line of investigation, as local grid regularity yields much
better conditioning of the reconstruction problem.

Recent contributions have shown that a small subset of
projections is sufficient for the stable reconstruction of a
ROI, provided that the ROIs include a part of the comple-
ment of the support of the object.13–15 This local tomography
approach achieves image quality that matches that of full-
data reconstruction, at a low runtime cost thanks to reduced
dimensions of the local projection operator. It is an interest-
ing advance with respect to our goal of accelerating regular-

ized penalized-likelihood reconstructions. However, sticking
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to full-data techniques permits the reconstruction of any ROI
without prior knowledge of the object16 nor any constraint
over the position and extent of the ROI. These are desirable
features for the vascular imaging application under consider-
ation.

The literature cited above has reported on variants of the
ROI reconstruction procedure focusing on a single approach
for the initial, hopefully inexpensive, FFOV reconstruction.
Many such approaches seem interesting as they entail alter-
nate compromises between ROI image quality and numerical
performance. Thus arises the problem of choosing and pa-
rametrizing the method for the FFOV reconstruction. When
designing a ROI reconstruction procedure, one needs to
gauge what comes down to a compromise between image
quality and computational efficiency. The impact on ROI im-
age properties of various types of errors in the background
image is not obvious. On the one hand, an analytical ap-
proach to FFOV reconstruction may provide high back-
ground resolution, but may bear noise and systematic arti-
facts. On the other hand, coarse-grid iterative algorithms
may yield lower variance, but the poor resolution may in-
duce worse data inconsistency in the ROI.17

In this paper, we contribute a comparative study of itera-
tive ROI reconstruction procedures to guide the choice of the
FFOV reconstruction method. As these methods entail dis-
tinct artifact structures and resolution-to-noise compromises
in the ROI, the comparison is realized by both a qualitative
assessment of image noise and a quantitative evaluation of
image resolution under controlled image variance. Our re-
sults show that errors in the background reconstruction lead
to ROI data inconsistency, which introduce significant ROI
artifact systems. Approaches that take the background from a
penalized-likelihood reconstruction on a sufficiently fine grid
thus offer the best ROI image quality, in general.

The rest of the paper is organized as follows. The algo-
rithmic framework for ROI reconstruction is presented in
Sec. II. Experimental protocol and methods are exposed in
Sec. III. Results are shown in Sec. IV and discussed in Sec.
V. Final conclusions are drawn in Sec. VI.

II. ROI RECONSTRUCTION FRAMEWORK

We briefly recall the development of statistical reconstruc-
tion algorithms in x-ray computed tomography. The reader
interested in a more thorough exposition is referred to Refs.
4 and 5. The ROI reconstruction framework itself is then
presented, followed by implementation issues for the actual
procedure.

II.A. Statistical CT reconstruction

We consider a discrete representation of the object as a
pixel grid ��Rm, where m is the product of the width and
height of the grid. We also have a discrete set of data y
�Rn that correspond to the logarithm of the ratio of mea-
sured to incident photon counts. Under the assumptions of a
monochromatic x-ray beam and large measured photon
counts, the data may be related to the object through the

linear relation y=A�+b. Matrix A is a discrete projection
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operator that approximates the integrals over the discrete
object and b represents the stochastic uncertainty. Although it
detracts from the real noise process that takes place in trans-
mission tomography, the additive noise model b�N�0,�2��
works well in practice. Matrix � is taken from Ref. 5 as a
diagonal matrix, such that �ii=exp�yi�.

The reconstruction consists of estimating �. We consider
a maximum a posteriori estimator, which solves the
penalized-likelihood �PL� reconstruction problem,

min
��0

1
2 �y − A��t�−1�y − A�� + �R��� . �1�

The term �R��� penalizes undesirable variations between
neighboring pixels, making the solution more robust to data
perturbations. Formally, we choose

R��� = �
k=0

4

�k��D�k��� ,

where D�k�; 0�k�4 respectively denote the identity matrix
and the first difference operators aong the horizontal, verti-
cal, and diagonal directions. For any size-I vector u, ��u� is
a shorthand notation for �i=1

I ��ui�; parameters �k; 0�k�4
weigh the five components of the penalty term. We use the
l2l1 penalty function,18

��u� = �u2 + �2 − � , �2�

which effectively smoothes the pixel noise while preserving
the edges between distinct structures of the image. The pa-
rameter � acts as a threshold between essentially quadratic
and linear behaviors.

II.B. Background/ROI decomposition of the projection
operator

Define the ROI as a subvector �ROI�R�mROI�
2

of the ob-
ject that represents a square subimage of dimension mROI

	m; the remainder of the image, the background, is noted
�bkg. By reordering the components of the object vector so
that �= ��bkg,�ROI�t, we also reorder the columns of the
projection operator so that it may be decomposed as7,9

A = �Abkg
1 AROI

Abkg
2 0

� .

Provided the availability of a good estimate yROI of the
contribution of the ROI to the projection, the solution to
problem �1� involves only the submatrix AROI. On the one
hand, as AROI has smaller dimensions than A, one may ex-
pect a significant reduction in the runtime of projections �ap-
plication of AROI� and backprojections �application of
�AROI�t�, which dominate the computation time. On the other
hand, the determination ratio19 of the system of equations
yROI=AROI�ROI can be quite different from that of the FFOV
system. The resulting reconstruction problem can thus be

more difficult to solve from a numerical standpoint.
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II.C. Design of the reconstruction algorithm

To keep the total reconstruction time low, we have to find
a way to obtain a fast reconstruction of the background. We
exclude here the simultaneous PL reconstruction of the back-
ground and ROI, with the background represented on a
coarser grid than the ROI. In a previous investigation,9 we
found that the difference in discretization step between the
background and the ROI grids introduced a scale discrep-
ancy between the corresponding sets of pixels. This resulted
in severe ill conditioning of the reconstruction problem, for
which we were able to compensate with a heuristic rescaling.

A more interesting approach is to alternate between the
reconstruction of the FFOV, from which the background is
extracted, and that of the ROI. The one-pass algorithm pro-
posed in Refs. 2 and 3 is as follows.

�1� Obtain a low-cost FFOV reconstruction �̂FFOV �FBP or
coarse-grid PL method PL�.

�2� Extract the background image �̂bkg from �̂FFOV by set-
ting the pixels that stand in the ROI to zero.

�3� Remove the background contribution from the projec-
tions: yROI=y−Abkg�̂bkg. Note that Abkg matches the
coarse FFOV grid when using a PL method.

�4� Obtain the ROI reconstruction as the solution to

min
�ROI�0

1

2
�yROI − AROI�ROI�t�ROI

−1 �yROI − AROI�ROI�

+ �ROIRROI��ROI� , �3�

with �ROI a diagonal matrix, such that ��ROI�ii

=exp��yROI�i�.

When performing the reconstruction of the FFOV with a
penalized-likelihood algorithm, this framework may be ex-
tended with a fifth step where the contribution of the ROI is
subtracted from the projections, so as to further enhance the
background reconstruction. However, our initial experiments
with this multiple-pass approach have not resulted in images
of better quality with respect to the single-pass alternative.
Its runtime was also longer.

II.D. Numerical methods

In general, reconstruction problems �1� and �3� have to be
solved numerically. The choice of the numerical method and
of its stopping condition may have a significant impact on
the properties of the solution. The heart of the matter is that
the resolution and variance of the image obtained at the ter-
mination of the numerical method vary according to the ter-
mination condition. Hence, we need a reliable stopping rule
independent of and common to all the solvers.

In Ref. 20, we justified a stopping condition for uncon-
strained MAP estimation problems based on the majorization
of the mean square error �MSE� of each iterate. This ap-
proach stops the iteration once the l2 norm of the gradient of
the cost function drops below a tolerance level determined
by how close the MSE of the iterate should be relatively to
that of the exact MAP estimator. This condition cannot be

applied per se to problem �1�, because of the non-negativity



4580 Hamelin et al.: Design of ROI reconstruction procedures 4580
constraint, nor �3�, because its uncertainty model is not a
zero-mean white Gaussian noise. Nonetheless, we assume
that the iteration should be stopped according to stationarity
of the iterate, in the spirit of Ref. 20. For bound-constrained
reconstruction problems, we conjecture that iterate stationar-
ity can effectively be measured by the norm of the projected
gradient,21 with a tolerance computed from a process adapted
from that in Ref. 20.

This stopping condition can only be met by a convergent
algorithm. The importance of asymptotic convergence for
numerical methods is underscored in Ref. 22, where a non-
convergent method was found to produce images with less
desirable properties in comparison to a convergent method in
the same optimization transfer framework. This rules out or-
dered subset �OS� methods, such as the popular OS-EM,
which are known to asymptotically cycle among a set of
suboptimal images. In Ref. 23, we have shown that the direct
resolution of Eq. �1� with general-purpose nonlinear solvers
achieved proper convergence within a time-frame competi-
tive with OS methods. For the experiments reported in Sec.
IV, we use the L-BFGS-B

24 solver, which was found robust
and fast in Ref. 23.

III. EXPERIMENT DESIGN AND METHODS

Considering step �1� of the algorithm outlined in Sec.
II C, it seems likely that on the sole basis of numerical per-
formance, analytical reconstruction of the FFOV should
yield the lowest total �FFOV and ROI� reconstruction run-
time. However, since iterative FFOV reconstruction gives
some control over the resolution-to-noise trade-off in the
background, it is interesting to assess the effects of the
choice of the FFOV reconstruction procedure on the proper-
ties of the ROI image. Moreover, a parameter that signifi-
cantly affects the performance of iterative FFOV reconstruc-
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(a) Whole field of view (1240 × 1240).

FIG. 1. Representation of the phantom used in numerical experiments on a �
pixel indices.
tion is the coarseness of the image grid, controlled through
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the dimension of the grid, i.e., the number of pixels that
makes up each side. As dimension is decreased, the runtime
is reduced quadratically for an equal number of iterations.

Here, we design two experiments to assess the effects of
FFOV reconstruction �method and configuration� on ROI im-
age quality. Three performance indicators are considered.
First, we examine the ROI images to obtain a qualitative
comparison of the reconstruction noise between procedures,
which allows to determine if some low-runtime FFOV recon-
struction introduces specific ROI artifacts. Second, we quan-
tify how these artifacts affect the resolution-to-noise trade-
off for the ROI reconstruction. This is done by computing
modulation transfer functions for each FFOV reconstruction
method for ROI images obtained with equal noise level.
Third, image quality is checked against numerical perfor-
mance, measured in iteration counts and total wall-clock re-
construction runtime.

III.A. Comparison of FFOV grid dimensions

This experiment aims at assessing the effect of the grid
dimension on the ROI reconstruction, when obtaining the
FFOV reconstruction with a PL procedure. This extensive
qualitative and quantitative analysis complements the results
in Ref. 11.

III.A.1. Phantom and simulation

The comparison is based on reconstructions of two vari-
ants of a numerical resolution phantom, represented in Fig.
1. It is designed to measure the central scanner resolution.
The phantom is thus composed of a set of objects of varying
size in the ROI and small objects in the background. These
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(b) Central region of interest (186 × 186). The
pixel size corresponds to that of Figure 1(a).
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background objects are designed so as to make their recon-
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struction difficult for reconstruction algorithms. We assume
that should any background error arise, it would propagate to
the reconstruction of the ROI.

As described below, the data are simulated using a poly-
chromatic x-ray model. Thus, the materials of these objects
and the variation of their x-ray attenuation coefficients with
respect to photon energy are carefully modeled. We consider
two variants of this phantom that differ by the material of the
balls on the outer circle: aluminum for one �this variant is
thus named Al� and iron for the other �variant named Fe�.
The innermost ring, composed of very small iron pinheads, is
not expected to be well resolved on the reconstructed image
grid and is made to study how tiny but hard �high-energy and
high-frequency� structures are rendered by the reconstruction
algorithm.

Here, the actual ROI that is reconstructed is a 3-cm square
area in the middle of the phantom, which contains the two
inner rings. It is represented on a grid of dimension 186
�186, which yields the same pixel size as the representation
of the FFOV by an image grid of dimension 1240�1240.

Although the phantom in Fig. 1 can be described using a
set of ellipses, the data are simulated using a ray-driven pro-
jector based on the assumption of infinitely thin rays, using a
high-resolution discrete representation of the object and of
the projection process. This allows for the faithful modeling
of the nontrivial acquisition geometry �fan beam over 672
detectors, 1160 projection angles, angular flying focal spot,
asymmetrical detector array with respect to source-focus
axis� of the actual scanner used in the real data experiments
described in Sec. III B. In order to avoid the so-called in-
verse problem crime,25 an object map of dimension 2048
�2048 is constructed, which yields about half the pixel size
required for these experiments. The simulation takes into ac-
count the nonuniform spectrum of the x-ray beam �Fig. 2�
and the variation of attenuation coefficients to X photon en-
ergy. Poisson- and Gaussian-distributed pseudorandom
noises were generated and superposed to obtain a signal-to-
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FIG. 2. Spectrum of the polychromatic source used for data simulation
�x-axis in keV, y-axis in unitless normalized photonic intensity�.
noise ratio �SNR� of approximately 30 dB. This roughly
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matches the average SNR obtained from reconstructions with
the clinical scanner described in Sec. III B 1. Moreover, this
Poisson–Gaussian noise model takes a rather good account
of the various sources of noise that alter the actual
measurements.26

III.A.2. Protocol

The penalized-likelihood reconstruction software was
based on the original Fortran implementation of the L-BFGS-B

solver,24 launched from MATLAB. The objective and gradient
evaluation code was written in MATLAB, with the projection
and backprojection routines implemented in C over a custom
efficient storage scheme for the projection operator.27 This
operator was the same as described in Sec. III A 1; the back-
projector was the exact adjoint of the projector. All
penalized-likelihood reconstructions were executed on a per-
sonal computer equipped with a dual-core 2.83 GHz CPU,
and 4 GB of main memory, running on a GNU/Linux oper-
ating system.

We compared ROI images of each phantom variant, ob-
tained using a background image extracted from an iterative
FFOV reconstruction on grids of dimensions of 40, 80, 120,
160, 240, 320, and 480 pixels.

As mentioned at the beginning of Sec. III, the noise struc-
ture is qualitatively compared by visual inspection of ROI
images. The noise structure is associated with the weight of
the penalty term opposed to the log likelihood �Eqs. �1� and
�3��, which controls the noise-resolution trade-off of the PL
reconstruction algorithm.28 Thus, a first batch of images were
obtained with a common low penalty weight, in order to
expose the specific system of artifacts for each variant of the
ROI reconstruction procedure.

A second batch of ROI images was computed to assess
the change in the resolution-to-noise trade-off among recon-
struction approaches. The comparison was based on the mea-
surement of resolution, so the ROI penalty weight is cali-
brated in order to obtain similar variance �hence similar
noise level� in a uniform region for all ROI images. The
resolution was measured using the modulation transfer func-
tion �MTF� of each image, which corresponds to the power
spectrum of a 1D projection of the point-spread function of
the reconstruction algorithm.

For numerical phantoms, where the exact attenuation im-
age is known, the MTF could be computed by the Fourier
transform of the PSF, which itself could be obtained by blind
deconvolution. The reconstructed image was modeled as �̂
=�� �h+�, where � is the known image and � is the re-
construction noise. The PSF h, modeled as a 2D FIR filter,
was then estimated by maximum likelihood.

III.B. Comparison of FFOV reconstruction methods

This experiment investigates the impact of the choice of
the FFOV reconstruction method on the properties of the
ROI reconstruction. We expect that significant differences
will be observed with respect to phantom contents and data

acquisition protocols. Thus, the comparison is realized both
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FIG. 3. Analysis of ROI images obtained with a common low penalty weight. Axes are in centimeters. All images are computed from the difference between
Fig. 1�b� and a reconstruction image, and are represented on a gray scale of 
250 to 250 HU. Reconstructions with a very-coarse-grid background suffer from
severe shadow artifacts, especially with the Fe phantom. Finer-grid backgrounds yield better ROI reconstructions, but with some slight resolution loss with
respect to the reference. The low-resolution artifacts appear for 120-pixel �3�m�� and 160-pixel �3�l�� backgrounds for the Fe phantom, albeit with lesser
strength. Moreover, similar artifacts appear for the reconstruction with the FBP-FFOV method �p�, as the FBP reconstruction is altered by heavy beam-

hardening artifacts. This contrasts with the similar reconstruction of the Al phantom �h�, which is very similar to reference �a�.

Medical Physics, Vol. 37, No. 9, September 2010



4583 Hamelin et al.: Design of ROI reconstruction procedures 4583
on simulated and real data. The simulated data sets come
from the numerical phantoms presented in Sec. III A 1; the
real data set is described hereafter.

III.B.1. Phantom description and scanner protocol

We used the CTP528 segment of the Catphan600© �The
Phantom Laboratory, Greenwich, NY, USA�, since its con-
tents allow for the computation of the MTF of the recon-
struction algorithm �see Sec. III B 2�. It was composed of
aluminum bar groups of frequency ranging from 1 to 21
lp/cm, cast in an epoxy cylinder �20 cm in diameter� along a
circle centered on the rotation axis of the scanner. The phan-
tom could be fixed on the table of the scanner so that the
table was out of the FOV during acquisition. As the epoxy
cylinder was the only object within the FOV, we considered
a FFOV of 25 cm in diameter. The target reconstruction res-
olution for the phantom was 0.0244 cm, which is a little
more than the gap between bars in the 21 lp/cm group; this
corresponds to a 1024�1024 grid representation of the
FFOV.

The scanner used to image this phantom was a Siemens
SOMATOM Sensation 16 �Siemens AG Medical Solutions,
Computed Tomography, Siemensstr. 1, D-91301 Forchheim,
Germany� deployed at the Notre-Dame hospital of the Centre
Hospitalier Universitaire de Montréal �1560 Sherbrooke Est,
Montréal, Québec, Canada, H2L 4M1�. The CTP528 seg-
ment of the phantom was scanned using the InnerEarSeq
protocol �120 kV peak, current time of 120 mAs, slice colli-
mation of 0.6 mm, slice distance of 1.0 mm�, which acquires
projections on a 672-detector array at 1160 angles around the
object. The polychromatic x-ray source used for the scan has
an angular flying focal spot. This means that the focal spot
on the cathode shifts between two positions on the acquisi-
tion plane during a projection. This effectively doubles the
number of measurements �for a total of 1559040� and in-
creases the image resolution that can be obtained.

III.B.2. Protocol

As a first step, the ROI images computed from two FFOV
reconstruction methods were compared using the numerical
phantoms and comparison techniques described in Sec. III A
�qualitative artifact assessment, MTF plots, runtime tabula-
tion�. Second, the two approaches were compared over the
reconstruction of the Catphan600© phantom.

The first FFOV reconstruction method under scrutiny was
an analytical reconstruction method. For the simulated data
sets, we used filtered backprojection code from Jeffrey Fes-
sler’s IRT library29 setup with a ramp filter. This method is
named FBP-FFOV in the following. For the real data set, we
used the FBP images that were output by the scanner, so the
method is named scanner-FFOV. The second FFOV recon-
struction approach was estimation by penalized-likelihood
maximization, hence the whole ROI reconstruction proce-
dure is named PL-FFOV.

The MTF of the reconstruction could be readily computed
using the features of the CTP528 segment, as described in

Ref. 30. Each MTF data point was calculated from one of the
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parallel bar groups. When the bars are rendered well, the
variance within the region is higher than that outside of the
region. Reciprocally, when the bars are smoothed, they over-
lap, so the region is almost uniform and its variance is close
to that outside of the region. To produce the MTF, the con-
trast � of the bars to the medium and the variance s2 of a
uniform medium region were measured. For the bar group
disposed at frequency � lp/cm, the MTF point was derived
from the variance �2��� of the subimage containing the bar
group,

MTF��� =



��2
��2��� − s2.

Since the bar groups were disposed in a large volume within
the epoxy cylinder, a unique ROI that would have fit them all
would have been too large. Instead, the phantom was divided
into four ROIs, each computed in separate reconstruction
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FIG. 4. MTF of the ROI reconstruction for various PL-FFOV grid sizes and
the two numerical phantoms. Especially for the Fe phantom, we observe
significant resolution degradation for FFOV grid dimensions of 40 and 80.
Similar resolution is observed for all other FFOV grid dimensions over the
Al phantom. For the Fe phantom, there is slight degradation of the high-

frequency components for grids of lower dimension.



4584 Hamelin et al.: Design of ROI reconstruction procedures 4584
attempts from a common initial FFOV reconstruction. The
left part of Table II describes these ROIs; the right part will
be discussed in Sec. IV B 4.

A single batch of these real data reconstructions was per-
formed. For all four ROIs, the ROI penalty weight was cali-
brated for the equalization of variance within a uniform ep-
oxy subregion near the center of the ROI. Since the
calibrated ROI penalty weights were very close for both
methods, the qualitative artifact assessment was performed
from this set of images as well as the MTF measurement. In
other words, no further artifact information could be gar-
nered from ROI reconstructions with strictly equal penalty
weights.

IV. RESULTS

IV.A. Comparison of FFOV grid dimensions

IV.A.1. Artifact assessment

Figure 3 displays ROI images reconstructed with a com-
mon low penalty weight. The images for FFOV grid dimen-
sion of 320 were left out of this figure, as their appearance
was similar to the images calculated from the 240-pixel
FFOV grid. For phantom Al, we observe a structured speckle
pattern in the images obtained from the 40-pixel FFOV grid,
as well as some rare speckles for the 80-pixel FFOV grid.
The image computed from the 120-pixel FFOV grid has a
structure of artifacts in the soft tissue medium that is com-
parable to the uniform-grid reconstruction �Fig. 3�a��. ROI
artifacts are even more pronounced for the Fe phantom with
respect to the reference uniform-grid reconstruction �Fig.

TABLE I. Number of iterations and runtime needed �see Sec. III A 2 for the
description of the reconstruction software� to perform phantom reconstruc-
tions for each FFOV grid dimension and reconstruction approach �penalty
weight calibrated for equal variance in the ROI�. Obviously, total runtime
grows with the grid dimension for the FFOV reconstruction, so the smallest
adequate should be retained. In addition, the FBP-FFOV method converges
faster than the PL-FFOV method on the Al phantom, but not on the Fe
phantom. In this case, while the total runtime remains lower, twice as many
iterations are needed to achieve convergence.

Ph.
FFOV
method

Dim.
�pixels�

FFOV ROI
Total
�s��iter.� �s� �iter.� �s�

Al PL l2l1 40 49 6.62 320 74.2 80.8
80 50 12.0 194 44.2 56.2
120 62 22.8 165 37.8 60.5
160 78 44.8 149 33.2 77.9
240 115 125 172 29.7 155
480 168 364 149 25.7 389

FBP 1240 ¯ ¯ 178 31.1 31.1
Fe PL l2l1 40 106 13.8 147 29.8 43.7

80 137 32.2 207 44.6 76.8
120 182 66.8 184 38.1 105
160 221 110 177 28.4 138
240 281 248 169 27.6 275
480 421 869 177 28.8 898

FBP 1240 ¯ ¯ 354 81.7 81.7
3�i��. Here, images obtained using the 40-pixel and 80-pixel
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FFOV reconstructions have structured shadow artifacts in
addition to the speckle patterns. For 120-pixel and 160-pixel
FFOV grids, this shadow pattern is still observable but sig-
nificantly diminished, with contrast between dark and light
streaks of less than 100 HU. For higher-dimension FFOV
grids, the pattern is not observable on a �
250,250� HU gray
scale.

IV.A.2. MTF curves

Figure 4 shows MTF curves computed from ROI images
obtained with equalized variance �by penalty weight calibra-
tion�. For excessively coarse FFOV grids, heavy penalization
was necessary to reduce variance to the acceptable threshold,
leading to degraded image resolution in the ROI. However,
for grids of appropriate dimension, resolution is maintained
for the Al phantom and only slightly altered for the Fe phan-
tom. In the latter case, we see the images obtained from
FFOV grids of dimensions of 120 and 160 having slightly
worse resolution, as some background speckle noise had to
be smoothed off. However, this degradation is only signifi-
cant in the upper 20% of the frequency range.

For the Al phantom, the reference MTF curve, computed
from a ROI extracted from a full-volume reconstruction on a
1240-pixel uniform grid, is lower than all other MTF curves.
For this reconstruction problem, the forward model y=A�
+b is underdetermined, so regularization is necessary to
make the solution numerically stable. In the case of the
1240-pixel uniform grid, the background and ROI are both
obtained from a single reconstruction, calibrated with a
single penalty weight. This must be carefully balanced be-
tween the reduction of background artifact �by increasing it�
and the preservation of ROI resolution �by decreasing it�. For
other cases, the background and ROI are reconstructed sepa-
rately, with distinct penalty weights. Hence, it is possible to
choose a higher weight for the initial FFOV reconstruction,
which provides good elimination of the background artifacts,
while choosing a lower weight for the subsequent ROI re-
construction. We do not claim that resolution is higher for the
ROI reconstruction procedures than it is for regular uniform-
grid procedures. However, it is clear that separate reconstruc-
tion of the background provides advantages with respect to
the noise-to-resolution trade-off in the ROI.

IV.A.3. Numerical performance

Table I reports reconstruction runtimes of both the back-
ground and ROI for the methods of interest. While ROI re-
construction runtimes are close to one another �with the ex-
ception of the Fe phantom with a FFOV grid of dimension
80�, background reconstruction times grow with FFOV grid
dimension. We remark that the runtime increase is due both
to the rising cost of projection and backprojection operations
and to increasing counts of iterations to obtain convergence.
While the former was expected, the latter may be explained
by the reduction of the ratio of the number of measurement
to the number of variables as the grid dimension increases.
This leads to poorer conditioning of the normal operator

t
A A, which entails slower convergence.
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IV.B. Comparison of FFOV reconstruction methods

IV.B.1. Artifact assessment

Figure 3 also displays the rendered structure of artifacts
for all FFOV reconstruction methods. In the case of the Al
phantom, little difference may be observed: either the FBP or
PL reconstruction method may be chosen with no systematic
artifact on the ROI image. However, for the Fe phantom, the
ROI image obtained from a FBP FFOV reconstruction exhib-
its shadow artifacts similar to those of Figs. 3�o� and 3�n�,
albeit with a lower contrast.

IV.B.2. MTF curves

Smoothing away these artifacts to equalize soft tissue
variance yields images from which the MTF curves of Fig. 5
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FIG. 5. MTF of each FFOV reconstruction approach for both numerical
phantoms. Better resolution is obtained with the PL-FFOV algorithm, as it
does a good job of reducing reconstruction noise and resolving the edges of
the background balls. For the Fe phantom, the important artifact system
rendered in the ROI by the FBP-FFOV method translates to high soft tissue
variance. This variance can only be reduced by a significant increase of the
penalty weight for the ROI reconstruction, which effectively smoothes off
many salient image features.
were computed. Even for the Al phantom, the soft tissue in
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the ROI was rendered with some noise by the FBP-FFOV
method, which does not show clearly on Fig. 3�h�. Heavier
penalty weighting was then needed to bring the variance to
the level of the PL-FFOV method, so the resolution of the
former method appears worse on Fig. 5�a�. The loss of res-
olution is of greater magnitude with the Fe phantom, for
which the FFOV-FBP method must counter a high-contrast
system of artifacts, as shown on Fig. 3�p�.

As in Sec. IV A 2, the resolution of the uniform-grid ref-
erence reconstruction appears worse than that of the image
obtained from the PL-FFOV method, especially with the Al
phantom. This underscores the effect over ROI image quality
of separate regularization policies for the background and for
the ROI.

IV.B.3. Numerical performance

Table I reports specific and total time for both methods. A
lower total runtime is obtained with the FBP-FFOV method,
when compared to that of the PL-FFOV method based on a
120-pixel FFOV grid. For the Al phantom, we may effec-
tively deduce similar numerical behaviors, as the number of
iterations to convergence is similar between the FBP-FFOV
and PL-FFOV methods. However, for the Fe phantom, the
number of iterations needed by the FBP-FFOV algorithm is
almost twice that of most PL-FFOV variants.

IV.B.4. Real data

As for the Catphan600© data set, only results with equal-
ized ROI variance are reported, the variance being measured
from an epoxy subregion of each reconstructed ROI, since
for a common low penalty weight, nearly identical images
were obtained. Image resolution as reported through the
MTF curves of Fig. 6 is equivalent between scanner-FFOV
and PL-FFOV and both are very similar to the reference

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Uniform PL (1024)

PL/l
2
l
1

(160)

Scanner (512)

FIG. 6. MTF for phantom Catphan600 �segment CTP528� for methods
scanner-FFOV and PL-FFOV. Penalty weights are adjusted for equal vari-
ance of the epoxy medium. The MTF is only computed up to 11 lp/cm, as
the rendered bar patterns for both reconstruction approaches are utterly
blurred past that point. While the curve for PL-FFOV looks marginally
better in the higher frequency range, the two MTF curves do not appear
significantly different.
curve �computed from a high-resolution uniform-grid recon-
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struction�. While the ROI reconstruction runtimes �right part
of Table II� of the scanner method are twice that of PL-
FFOV, the background image is free from a runtime stand-
point. Hence, total runtime is systematically shorter for
scanner-FFOV.

However, a look at the reconstructed ROIs, displayed in
Fig. 7, raises a compelling issue. Images obtained through
scanner-FFOV present a dark boundary artifact that does not
appear in the images obtained from PL-FFOV. Also, the at-
tenuation coefficient of the epoxy medium for the ROI re-
constructions is compared to that of the ROIs extracted from
the uniform-grid reconstruction. The comparison is realized
by building two simultaneous confidence intervals over the
difference between paired epoxy pixels from the reference
ROIs and, respectively, the PL-FFOV and scanner-FFOV
ROI images. For a confidence level of 95% for both intervals
simultaneously, the intervals are �
0.003 61,0.003 08� for
the difference to the PL-FFOV images and �0.0171,0.0181�
for the difference to the scanner-FFOV images. Zero is in-
cluded in the latter but not in the former. Thus, the average
attenuation coefficient for the epoxy medium measured from
the scanner-FFOV images is significantly lower than that
measured from the reference uniform-grid ROIs, whereas the
comparison between the PL-FFOV images and reference
ROIs reveals no significant difference.

In addition, we observe from Table II that ROI runtimes
and iteration counts for the scanner-FFOV method are twice
that of the PL-FFOV approach.

V. DISCUSSION

Results show that in many ways, ROI image quality is
sensitive not only to the quality of the background image but
also to the models underlying the reconstruction method for
both the FFOV and the ROI.

First, let us consider the numerical phantom images. For
some background images, we observed structured systems of
artifacts for equal ROI penalty weight, as well as worse
noise-resolution trade-off for equal ROI variance. The arti-
fact systems in question are composed of shadows and
streaks that run along axes crossing opposed balls of the
background area. For very coarse FFOV grids, these artifacts
may be explained by the poor rendering of the balls in the

TABLE II. Description and runtime of the ROI reconstructions to compute
116 s runtime of the PL FFOV reconstruction to that of the ROI. All ROI
runtime, which suggests a certain quality to the background representatio
extraction are essentially free.

#
Bar groups

�lp/cm�
Center

�cm��x ,y�

Dimension

�cm� �pix

1 1,2 �4.06, 2.81� 3.75 154
2 3,4,5 �0.00, 4.69� 4.69 192
3 6,7,8 �
4.06, 2.66� 3.75 154
4 9,10,11 �
4.38, 
0.78� 3.75 154
5 12,13,14 �
2.50, 
4.06� 3.125 128
background image, which get spread over multiple large pix-
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els. The projection of this background in order to generate
the ROI data vector yROI describes high attenuation on a
subset of detectors that is larger than the projection of each
ball, which is inconsistent with actual data �projections larger
than expected from the model are measured�.

This observation also suggests a lower bound for back-
ground image dimension. In principle, the grid should be fine
enough to correctly represent the smallest object that can
significantly impact projection data. In the reconstructions of
the numerical phantom of Fig. 1, streaking appeared for
background resolutions that were too coarse to represent the
aluminum or iron balls with any accuracy. With a 120-pixel
grid, the balls could be represented on a 2�2 pixels patch.
In this case, this representation was sufficient to reduce the
streak artifact significantly. For an even better representation
over the 240-pixel background grid �4�4 patch�, the artifact
was altogether eliminated.

The shadow streaking phenomenon is similar to beam-
hardening artifacts, which were expected from the FFOV
reconstruction by FBP of the Fe phantom. These artifacts
appear when the hardening of the x-ray beam as it passes
through a highly attenuating component of the object is not
properly modeled, resulting in measureed photon counts
higher than expected. Hence, this measurement inconsis-
tency is passed on to the ROI data vector upon reprojection,
leading to the propagation of the beam-hardening artifacts to
the ROI image. It is therefore likely that mitigation of the
beam-hardening effects in the background image with the
FBP-FFOV method would have resulted in a better noise-
resolution trade-off for the ROI reconstruction, as in the case
of the Al phantom. The actual effects on ROI image quality
of background postprocessing deserve further investigation.

Let us now turn to the CTP528 images. With the recon-
struction method that extracts the background from scanner
images, peculiar dark boundary artifacts are observed in the
reconstructed ROIs, as well as a significantly lower mean
level of the background epoxy medium. The matter here is
subtly different from that of the numerical phantom recon-
structions. We interpret these artifacts as the consequence of
discrepancy between the forward model A used by the scan-
ner to compute its images and that used in the ROI recon-

s from the line pair circle of segment CTP528. The total column add the
PL-FFOV reconstructions were obtained in about half the iterations and

tal runtime remains higher, although, as scanner images for background

Scanner PL l2l1

�iter.� ROI �s� �iter.� ROI �s� Total �s�

91 49.5 34 19.9 136
131 92.5 41 29.0 145
100 51.6 33 17.0 133
95 49.8 32 16.9 132
91 41.4 27 11.4 127
MTF
s from
n. To

.�
struction code. The scanner model would account for a part
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of the attenuation larger than expected by the model used in
the ROI code. During the ROI reconstruction, this inconsis-
tency is compensated for by the darkening of the medium, so
the projection error is reduced. Data inconsistency is also
minimized by a darkening of greater magnitude at the image
boundary than elsewhere. While smooth background-ROI
boundary functions, such as the approach of Ref. 2, may
reduce this artifact, its complete characterization and elimi-
nation remain an open problem. We note that this model
mismatch between the background and the ROI is not an
issue when extracting the background from a PL reconstruc-
tion of the FFOV, so the background-ROI transition is natu-
rally smooth.

Finally, the measurement inconsistency phenomena con-
trast interestingly with the numerical performance of the
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ments. For the Fe and the CTP528 data sets, the FBP-FFOV
and scanner-FFOV methods have ROI reconstruction runt-
imes and iteration counts are about twice those of the PL-
FFOV methods. However, the very-coarse-grid PL-FFOV
variants perform similarly to the other PL-FFOV variants,
with the exception of the 40-pixel variant on the Al phantom.
This suggests that while the artifacts that result from ROI
data inconsistency might be tolerated in some situations,31

they may translate into slower convergence of the ROI re-
construction. However, with the FBP-FFOV and scanner-
FFOV methods, the runtime of the FFOV reconstruction is
negligible with respect to that of the FFOV reconstruction
with the PL-FFOV method. Unfortunately, it is likely that for
a 3D data set acquired over a common 50-cm FOV and an
adequate axial resolution, PL reconstruction of the FFOV
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VI. CONCLUSION

We have described a framework for the statistical recon-
struction of a region of interest in transmission tomography.
It involves an initial fast reconstruction of the full field of
view, which is used to remove the contribution of the back-
ground from the projections. The data thus modified are used
to perform the reconstruction of the ROI, using a tailored
projection model of low dimension.

The reconstruction results that were presented suggest
that image quality in the ROI is positively correlated with
that of the background. Edge degradation or beam-hardening
artifacts in the initial FFOV reconstruction introduce ROI
data inconsistency, which translate to shadow, streak, and
speckle artifacts in the ROI reconstruction. In this context,
FFOV reconstruction by a nonquadratic penalized-likelihood
algorithm yields the best ROI images. The higher runtime
cost of such an approach may be offset by using a coarse
FFOV image grid. The requirement is that all background
structures that contribute significantly to the projection data
be well resolved on this coarse grid. For the vascular imag-
ing application mentioned in the introduction, this specific
approach has provided consistently better image quality than
high-resolution FBP reconstruction, against an affordable
computational cost for 2D data sets.

Nonetheless, the runtime advantage of using analytical
algorithms or scanner image for the FFOV reconstruction is
highly compelling. However, background inconsistency arti-
facts may arise, as we have seen for the Catphan600© data
set. Since these artifacts stem from a discrepancy between
the forward models used for the FFOV and ROI reconstruc-
tions, they deserve a proper effort of characterization and
mitigation. The elimination of these artifacts could also en-
hance the numerical behavior of the ROI reconstruction, pos-
sibly so far as to halve the runtime.
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