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Comparison of Pattern Recognition Methods for 
Computer- Assisted Classification of Spectra of 

Heart Sounds in Patients with a Porcine 
Bioprosthetic Valve Implanted in the 

Mitral Position 

Abstract-The diagnostic performance of two pattern recognition 
methods (or classifiers) to detect valvular degeneration was evaluated 
in 48 patients with a porcine bioprosthetic heart valve inserted in the 
mitral position. Twenty patients had a normal porcine bioprosthetic 
valve and 28 patients had a degenerated bioprosthetic valve. One 
method was based on the Gaussian-Bayes model and the second on the 
“nearest neighbor” algorithm using three distance measurements. 
Eighteen diagnostic features were extracted from the sound spectrum 
of each patient and, for each method, a two-class supervised learning 
approach was used to determine the most discriminant diagnostic pat- 
terns composed of 6 features o r  less. The probability of error of the 
classifiers was estimated with the leave-one-out approach. The perfor- 
mance of each method to discriminate between normal and degenera- 
ted bioprosthetic valves was verified by clinical evaluation of the valves. 
The best performance in evaluation of the sound spectrum (98% cor- 
rect classifications) was obtained with the Bayes classifier and two pat- 
terns of six features each. The percentage of false positive classifica- 
tions of valve degeneration was 0% and the percentage of false negative 
classifications was 4%. Sensitivity for the detection of valve degenera- 
tion was 96%, specificity was loo%, positive predictive value was 10076, 
and negative predictive value was 95%. The best performance of the 
nearest neighbor method (94% correct classifications) was obtained by 
using the Mahalanobis distance and five patterns composed of three, 
four, five, or six diagnostic features. Using a pattern composed of only 
three features, the percentage of false positive classifications for de- 
generation was 10% and the percentage of false negative classifications 
was 4%. Sensitivity was 96%, specificity was 90%, positive predictive 
value was 93%, and the negative predictive value was 95%. 

I. INTRODUCTION 
HE principal advantage of porcine bioprosthetic heart T valves is a low incidence of thromboembolism and, 
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therefore, the absence of a need for prophylactic therapy 
with anticoagulants [ 11. However, the main disadvantage 
of bioprosthetic valves is their low durability (7- 12 years). 
Morphological studies by Thiene et al. [2], Levy er al.  
[3], and Stein et al. [4] have shown that the deposition of 
calcium, which leads to stiffening and stenosis, is an im- 
portant contributor to bioprosthetic valve failure. Because 
of the inevitable degeneration of bioprosthetic valves, pe- 
riodic evaluation of their structural and functional integ- 
rity is essential to detect early malfunction. Such a fol- 
lowup is ideally based upon a method of evaluation which 
is both noninvasive and sensitive. 

Previous studies by Stein et al. [5]-[7], Foale et al. [8], 
and Joo et al. [9] emphasized the diagnostic potential of 
spectral analysis of bioprosthetic valve closure sounds for 
the detection of valvular degeneration. These studies 
showed that the dominant frequency (or the two dominant 
frequencies) of porcine valve closure sounds shifts toward 
higher frequencies following valve leaflet calcification and 
stiffening. 

More recently, Durand et al. [ lo]  developed a pattern 
recognition algorithm using a Gaussian-Bayes model for 
automatic detection of valvular degeneration. This inves- 
tigation was performed by use of nine diagnostic features 
(features 1-9, Table 11) extracted from the sound spec- 
trum of 57 patients with normal porcine bioprosthetic 
valves and 49 patients with degenerated porcine bio- 
prosthetic valves. Results showed that the mean correct 
classification rate of the classifier, evaluated with the 
“holdout” approach, was 74 % for the automatic classi- 
fication of normal and degenerated bioprosthetic valves. 
The percentage of false positives was 13% while that of 
false negatives .was 40%. Separating mitral and aortic bio- 
prosthetic valves in two subgroups allowed reduction of 
the percentage of false negatives to approximately 30%. 
The performance of the classifier was improved to 77% 
correct classifications for mitral bioprosthetic valves, and 
reduced to 71 % correct classifications for aortic bio- 
prosthetic valves. 
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Stein et al .  [ 1 11 evaluated in combination with the dom- 
inant frequency, nine different features of the sound spec- 
trum (features 10-18 in Table 11) and showed that the use 
of these characteristics of the spectrum of the closure 
sound of bioprosthetic valves in the mitral position mark- 
edly improved the ability to identify degeneration. 

In the present study, the nine features described by 
Durand et al .  [lo] as well as those identified by Stein et 
al .  [I I ]  were evaluated by two pattern recognition meth- 
ods, the optimal Bayes’ rule and the nearest neighbor 
method. This data base of 18 diagnostic features of the 
spectrum of the first heart sound was tested to determine 
if the performance of the classifier could be improved for 
the detection of degenerated porcine valves implanted in 
the mitral position. 

11. CLASSIFIER DESIGN 
The most popular parametric technique of supervised 

pattern recognition, the Bayes classifier, is the optimal 
technique when the probability density functions of the 
patterns in the feature space are known (a pattern is de- 
fined as a D-dimensional vector composed of D features). 
Even though this classifier is robust, it is generally worth- 
while to evaluate a nonparametric approach like the near- 
est neighbor classifier, especially when the probability 
density functions are difficult to estimate or cannot be es- 
timated. The nearest neighbor method is an intuitive ap- 
proach based upon distance measurements and motivated 
by the fact that patterns belonging to the same class should 
be near each other in the feature space. In this method, 
the nearest neighbors of a pattern of unknown status are 
found by computing distance measurements (Euclidian, 
Mahalanobis, etc.) between the unkown pattern and a 
given number of patterns from the training set. The status 
of the unknown pattern is then associated with that of the 
K nearest neighbors. It has been shown by Bailey and Jain 
[12] that increasing the K value does not monotonically 
increase the performance of the classifier. A useful guide- 
line in practice is to select a value of K proportional to 
the square root of the number of patients in the training 
set [13]. The choice of the distance measurement is not 
easy since various distance measurements have been de- 
veloped and tested. The Euclidian distance is the most 
commonly used but the Mahalanobis distance provides 
better performance when the statistical properties of the 
data are explicitly considered [ 141. 

The design and evaluation of a classifier is straightfor- 
ward when, in addition to the basic training set, an inde- 
pendent test set is available to evaluate its performance. 
In some instances, and particularly for detection of bio- 
prosthetic valve degeneration, it may be difficult to obtain 
a large number of samples in each class. In such cases, 
splitting the sample population into two mutuallyexclu- 
sive sets as done by Joo et al. [9] (which is known as the 
holdout method) may appear to be an inefficient use of the 
data [15]. Other approaches such as the resubstitution 
method and the leave-one-out method minimize this prob- 
lem [15 ] ,  [16]. 

The resubstitution method uses the entire sample pop- 
ulation as both training and test sets. Consequently, the 
probability of misclassification obtained with this tech- 
nique is underestimated. The leave-one-out method pro- 
vides a better estimate of the probability of error because 
it uses the complete sample population minus one ( N  - 
1 )  as the training set. Once the classifier is trained, the 
isolated sample is classified. The procedure is repeated N 
times until all samples have been classified individually. 
Since this method uses almost all of the data to classify 
one sample at a time, its bias is small. However, its main 
disadvantage is that it requires extensive computing time 
( N  classifiers must be designed). 

In practice, the performance of the classifier increases 
up to a given point as the number of features is increased 
and then begins to deteriorate as further features are 
added. When the ratio of the sample dimension to the 
number of features per class is increased above three, the 
error rate of the classifier approaches the true error rate 
attained by the minimum probability of error classifier 
[17]. A number of features (m) of five or more times 
lower than the number of training samples per class ( N ; )  
ensures that the real performance of the classifier is not 
overestimated [ 181, [ 191. 

111. METHOD 

A.  Patient Population and Valve Status 
Heart sounds were recorded in 48 patients with porcine 

bioprosthetic valves implanted in the mitral position. 
Among these patients, 28 patients had clinically apparent 
bioprosthetic valve degeneration that we detected on the 
basis of auscultation and echocardiography [20], and con- 
firmed by cardiac catheterization. These patients under- 
went valve replacement. Their heart sounds were re- 
corded a few days before surgery. The valves in these 
patients had been inserted for 92 k 33 months (mean +_ 

standard deviation; range 11-135 months). Twenty pa- 
tients had a normally functioning bioprosthetic valve, as 
determined by clinical assessment. In these patients, the 
valve had been inserted for 5 6  months (2 -+ 2 months). 

The gross appearance of all of the degenerated bio- 
prosthetic valves was examined, and the presence or ab- 
sence of calcification was evaluated by palpation and in- 
spection. Color photographic slides of the inflow and 
outflow surfaces, obtained soon after the valves were re- 
moved, were also examined to determine the extent of 
gross calcification. Only bioprostheses that underwent 
spontaneous degeneration were studied. If the patients had 
perivalvular regurgitation or if they, at any time, had 
prosthetic valve endocarditis, the heart sounds were not 
examined. A bioprosthetic valve was considered to have 
undergone spontaneous degeneration if there was valvular 
incompetence or stenosis in the absence of an identifiable 
cause. Table I describes the distribution of degenerated 
valves as a function of the degree of calcification. The 
patients whose valves were inserted 5 6 months served as 
controls. None had regurgitant murmurs. All aspects of 
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TABLE I 
DISTRIBUTION OF THE DEGREE OF CALCIFICATION OF THE DEGENERATED 

VALVES 

Number of Degree of 
valves Calcification Description 

No calcification 
One circumscribed nodule 
Two circumscribed nodule 
Three circumscribed nodule 

One third area of one leaflet 
One third area + one or two 

One third area of two leaflets 
One third area of two leaflets 

One third area of three leaflets 

or single confluent equivalent 

nodules 

+ nodules 

clinical examination showed normal prosthetic valve 
function. 

B. Recording and Analysis of Phonocardiograms 
Although there has been disagreement in the literature 

over the contribution of the tricuspid valve to the first heart 
sound, it seems that vibratory motion of both the mitral 
and tricuspid valves initiate vibrations recognized as the 
first heart sound [21]. Intracardiac recordings of heart 
sounds in normal men showed that the mitral component 
of the first sound is of greater amplitude than the tricuspid 
component ( 136 f 9.5 Pa versus 40 f 4.6 Pa; 1 Pa = 
10 dyn/cm2) [21]. The power spectrum of the first sound 
recorded at the point of maximal impulse, therefore, 
would be dominated by vibrations induced by the mitral 
valve. For this reason, it seemed reasonable to assess the 
spectrum of the entire first sound, although we cannot ex- 
clude some contribution of the tricuspid valve. 

In all patients, heart sounds were recorded with an Irex 
Medical Systems model 120- 13 1 aircoupled microphone. 
The microphone was held in position on the chest wall by 
a suction cup. This permitted a uniform and consistent 
technique for the application of the microphone. The di- 
ameter of the air cavity of the microphone was 24 mm, 
the height of the air column was 6 mm, the thickness of 
the housing was 25 mm, and its total mass was 75 g. The 
sensitivity of the microphone was 12 mV/Pa, and the 
noise level was 42 dB above the audibility threshold of 20 
X lop6 Pa at 1000 Hz. 

In each patient, the phonocardiogram was recorded on 
an 8-track magnetic tape recorder (Hewlett-Packard model 
88688-A). The sound signal was filtered below 50 Hz and 
above 500 Hz. The frequency response of the sound am- 
plifier and microphone combination was flat (within 1 dB) 
between 80 and 300 Hz. In the lower frequency range, at 
40 Hz there was a 6-dB attenuation and at 20 Hz there 
was a 14-dB attenuation. In the higher frequency range, 
at 600 Hz there was a 6-dB attenuation and at 1200 Hz a 
20 dB attenuation. 

The tape recorder was operated at a speed of 95.25 
mm/s and had a passband frequency of 0 to 1250 Hz. The 

frequency response of the passband was + 1.0 dB refer- 
enced to 10% of the upper band edge frequency. The sig- 
nal-to-noise ratio, measured with carrier deviation of 
+40% at 10% of the upper passband and without flutter 
compensation, was 46 dB. The level of flutter at a speed 
of 95.25 mm/s and a passband of 0.2 to 626 Hz was 
0.40% peak-to-peak. 

Sounds were processed through a 12-b data translation 
analog-to-digital converter board (DT2801 -A) contained 
in an IBM-PC/XT personal computer. The board had a 
calibrated bandwidth of 10 kHz +_ 0.1 dB and was linear 
within this bandwidth. All data files were recorded at a 
sampling rate of 10 kHz. Fast Fourier transform (FFT) 
analysis of the first sound was performed on the micro- 
computer using Signal Technology Software (ILS-PC). 
The entire first sound was analysed. If a systolic murmur 
began close to the first sound, it was difficult to determine 
where the first heart sound ended and the murmur began. 
Occasional beats in patients with a pansystolic murmur 
showed a space between S1 and the murmur. Patients in 
whom the first heart sound was not identifiable were not 
included in the present study. In all 48 patients investi- 
gated, the first heart sounds were selected with a rectan- 
gular window having a duration varying between 70 and 
100 ms. The selected sounds were padded with zeros and 
a 2048-point FFT computed. The frequency spectrum was 
obtained in polar form and the magnitude in decibels was 
transformed into linear coordinates in terms of a power 
ratio. The amplitude of the power spectrum was then nor- 
malized to the amplitude of the dominant frequency on a 
relative scale varying from 0 to 100%. Examples of power 
spectra of the first heart sound of a patient with a normal 
porcine bioprosthetic valve and of a patient with a degen- 
erated porcine bioprosthetic valve in the mitral position 
are shown in Figs. 1 and 2, respectively. 

C.  Diagnostic Feature Extraction and Selection 
A description of the 18 features extracted from the 

phonocardiogram of each patient is given in Table 11. The 
first nine features are those of our first study [lo]. The 
dominant frequency F1 is defined as the frequency with 
the highest magnitude (0 dB) in the sound spectrum. DF1 
and Q1 are features related to the damping factor of the 
heart-valve system. F2, the second-most dominant fre- 
quency, is defined as the frequency of the peak of the 
spectrum having the second highest magnitude. No re- 
striction was imposed on the minimum value separating 
the two lobes of F1 and F2. F-3, F-10, and F-20 are fea- 
tures associated with the frequency bandwidth of the 
spectra (as defined in Table 11) while IM20 is an area mea- 
surement used to take into account the morphology, or 
profile, of the spectra. IR12 is used to extract information 
from the relative peak-to-peak intensity of S1 and S2 (the 
second heart sound). 

The selection of these nine diagnostic features was 
based upon analyses of valve vibration which produce 
heart sounds [22]-[25] and it was based upon studies by 
Stein et al .  [5]-[7], Foale et al. [8], and Joo et al. [9]. 
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Fig. 1. Relative power spectrum of the first heart sound in a patient with 
a normally functioning porcine bioprosthetic valve (PBV) in the mitral 
position. The valve had been inserted for 2 years, 4 months. The dom- 
inant frequency was 45 Hz. 
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Fig. 2. Relative power spectrum of the first heart sound in a patient with 
a degenerated porcine bioprosthetic valve (PBV) in the mitral position. 
The valve was removed a few days after the sounds were recorded; it 
had been inserted for 11 years 8 months. The dominant frequency was 
164 Hz. 

TABLE I1 
DESCRIPTION OF VALVE SOUND DIAGNOSTIC FEATURES 

No. Feature Description 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

F1 
DF 1 
Q1 
F2 
F-3 
F-10 
F-20 
IM20 
IR12 

AREA 
A20 1 
A1002 
A2003 

R201 
R 1002 
R2003 
FM 

lTllS 

: The dominant frequency peak (0 dB) 
: Bandwidth of F1 at -3 dB 
: Quality factorof F1 (Q1 = FI, /DFl)  
: The second dominant frequency peak 
: Highest frequency found at -3  dB 
: Highest frequency found at - 10 dB 
: Highest frequency found at -20 dB 
: Integrated mean area above -20 dB 
: Intensity ratio of the first heart 

: Total area of the spectrum 
: Area in the 20-100 Hz bandwidth 
: Area in the 100-200 Hz bandwidth 
: Area in the 200-300 Hz bandwidth 
: rms value of the spectrum 
: rms value in the 20-100 Hz bandwidth 
: rms value in the 100-200 Hz bandwidth 
: rms value in the 200-300 Hz bandwidth 
: The median frequency 

sound to second heart sound (SI /S2) 

The 0 dB intensity reference corresponds to the maximal value 0 1  spectrum 
(100% on the linear scale; see Figs. 1 and 2 ) .  

The analysis of valve vibration and factors that effect the 
frequency of heart sounds showed that the natural modes 
of resonance of biological valves increase with stiffening 
of the valve leaflets [22 ] - [25 ] .  Clinical studies confirmed 
this and also showed that the second dominant frequency 
shifts toward higher frequencies [SI, [9]. 

The second series of features was derived on the basis 
of visual inspection of several sound spectra from normal 

and degenerated valves [ 111.  It appeared that area mea- 
surements of the sound spectra in three frequency bands 
could provide additional discriminant features. The area 
features were obtained by summing the values of the spec- 
tral coefficients in the various frequency ranges of interest 
while the rms values were obtained by summing the 
squared value of the spectral coefficients in the same fre- 
quency ranges, dividing by the number of frequency coef- 
ficients included in the computation, and taking the square 
root of this mean value. The median frequency was also 
investigated. It was computed as the frequency that cor- 
responds to the median of the spectral coefficients. For 
each patient, the 18 diagnostic features were extracted 
from the spectrum of the first heart sound. Because of the 
large amount of data involved in the analysis of these 
spectra, we visually selected three typical appearing beats 
in each patient. Each spectrum was then analyzed sepa- 
rately and the values of the diagnostic features averaged. 

Feature selection is a process used to choose the best 
patterns from the ensemble of features considered to have 
a discriminant power among the different classes. The ap- 
proach used in the present study was to test the discrimi- 
nant value of all diagnostic patterns composed of a num- 
ber of features varying between two and the optimal ratio 
m = N i / 5 .  Since the population of the degenerated valves 
was 28, the optimal ratio was chosen as m = 6. This rep- 
resents a huge amount of computation since each classifier 
had to be designed and tested 31 161 times (all combi- 
nations of 2, 3 ,  4, 5 ,  and 6 features chosen among 18). 
The algorithms were written in the C language and run on 
an Intel 301 computer system (a 16 MHz 386 IBM-PC/ 
AT compatible personal computer). 

D. Classzjier Evaluation 
The performance of the Bayes method (assuming that 

the probability density functions were Gaussian) and that 
of the nearest neighbor method to identify the status of 
the bioprostheses were compared with the clinical classi- 
fication of the bioprostheses. The leave-one-out algorithm 
was utilized to estimate the probability of error of the 
classifiers. The Euclidean distance (ED), the normalized 
Euclidean distance (NED), and the Mahalanobis distance 
(MD) were investigated to find the best measurement of 
pattern similarity for the nearest neighbor method. These 
distance measurements, computed between two patterns 
XI and X2 were evaluated by using the following formu- 
lae: 

D 

ED = ,Z ( x l i  - ~ 2 ~ ) ~  ( 1 )  
r = l  

D 

NED = C ( x l i  - ~ 2 i ) ~ / ~ i ~  
i = l  

MD = (XI - XZ)"-' (XI - X 2 )  ( 3 )  
where D is the dimension of the patterns, xi is defined by 

- N  
1 
N;=I xi = - c ( X j i ) ,  (4) 
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C-’ is the inverse of the covariance matrix estimated by 
N N 

j =  1 i =  I 
C - C M M  

N - 1  ( 5 )  C =  

(6) 
l N  

M = - - C X , .  
Nj=1  

and 

Parameter N is the total number of vectors (bioprostheses) 
included in the study while the vectors used in these equa- 
tions are defined by 

x: = (Xil, X i 2 ,  * ,  X i D ) .  

The number of neighbors included in the decision rule of 
the nearest neighbor algorithm was varied from 1 to 13 
(range of JN +_ 6)  to find the best value of K.  

For both methods, the performance of the classifiers was 
evaluated by computing the percentage of correct classi- 
fications (%CC’s) ,  false positives (%FP’s) ,  and false 
negatives (%FN’s)  by using 

%CC’s = 100 * (TP + TN)/N 

%FP’s = 100 * FP/(TN + FP) 

%FN’s = 100 * FN/(TP + FN) 

(7) 

(8) 

(9) 
where TP was the number of true positives, FP the num- 
ber of false positives, TN the number of true negatives, 
and FN the number of false negatives. A true positive was 
a degenerated valve classified as degenerated while a false 
positive was a normal valve classified as degenerated. 
Similarly, a true negative was a normal valve classified 
as normal while a false negative was a degenerated valve 
classified as normal. Sensitivity (SE), specificity (SP), 
positive predictive value (PPV) , and negative predictive 
value (NPV) were also estimated by using the following 
equations [26] : 

SE = 100 * TP/(TP + FN) 

SP = 100 * TN/(TN -t FP) 

PPV = 100 * TP/(TP + FP) 

NPV = 100 * TN/(TN + FN). 

(10) 

(11) 

(12) 

(13) 

IV. RESULTS 

As a first step, we tested, using the holdout method de- 
scribed in our previous study [lo], the performance of 
patterns composed of various subset combinations of the 
nine features (features 10 to 18 in Table 11) evaluated by 
Stein et al. [ll]. The results (80% of CC’s, 14% of FP’s, 
and 25.5% of FN’s) were only slightly better than those 
obtained during the first study (77% of CC’s, 15% of 
FP’s, and 30% of FN’s). In a second step, we decided to 
combine all features thus creating the data base used in 
the present study. 

The numbers of patterns providing a percentage of cor- 
rect classifications of 90% or higher for the automatic 
classification of normal and degenerated mitral biopros- 
thetic valves for the different methods evaluated are shown 
in Table 111. Results are presented for four different clas- 
sifiers. Each classifier had two to six features of the sound 
spectra selected from Table 11. Table 111 also indicates 
how many patterns provide the highest performance of 
each classifier. As shown by this table, the performance 
of all classifiers improved as the number of features was 
increased. The best performance of the classifiers varied 
between 85 and 98% correct classifications. With the 
Bayes classifier, a total of 51 1 different patterns can gen- 
erate a performance equal or higher than 90% correct 
classifications. For the nearest neighbor method, a per- 
centage of correct classifications higher than or equal to 
90% can be reached by using seven different patterns with 
the Euclidean distance, 169 patterns with the normalized 
Euclidean distance, and 11 1 patterns with the Mahalan- 
obis distance. The Mahalanobis and the normalized Eu- 
clidean distances were the best measurements of similar- 
ity between the patterns of each class. They provided the 
best results (94% correct classifications) for the nearest 
neighbor method. However, the Mahalanobis distance was 
slightly superior to the normalized Euclidean distance be- 
cause five patterns, each containing between three and six 
features, provided 94 % correct classifications compared 
to only one of dimension 6 with the normalized Euclidean 
distance. In most cases, the best results of the nearest 
neighbor method were obtained with a K value of 1, 3, or 
5, irrespective of the type of distance measurement used. 

The Bayes method provided the best performance (98% 
correct classification ) but required patterns composed of 
six features to reach this level. However, with this num- 
ber of features in the patterns, there were 500 combina- 
tions of features that provided 90% or more correct clas- 
sifications. On the other hand, the nearest neighbor 
algorithm based on the Mahalanobis distance showed a 
good performance ( 94 % correct classifications) with a 
pattern composed of only three diagnostic features. In ad- 
dition, the performance of this algorithm was unchanged 
irrespective of whether 3, 4, 5, or 6 features were used. 
The detailed descriptions of the combinations of features 
providing the best performances for the nearest neighbor 
algorithm using the Mahalanobis distance and the Bayes 
algorithm are given in Tables IV and V, respectively. 

Table IV shows that the most discriminant features to 
use with the Mahalanobis distance were: the highest fre- 
quency at - 10 dB (F  - lo), the total area of the spectrum 
(AREA) and the rms value in the 20-100 Hz band (R201). 
These three features appeared in four of the five most dis- 
criminant features (94 % correct classifications). Among 
the other discriminant features, we found the integrated 
mean area above -20 dB (IM20), the area in the 20-100 
Hz band (A201), that in the 100-200 Hz band (A1002) 
and that in the 200-300 Hz band (A2003). Sensitivity, 
specificity, positive predictive value and negative predic- 
tive value were always higher than 85 % . 
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TABLE 111 
NUMBER OF PATTERNS PROVIDING 2 90% CORRECT CLASSIFICATIONS FOR NORMAL A N D  DEGENERATED 

MITRAL BIOPROSTHETIC VALVES 

# of 
# of # of Patterns Patterns 

Features Providing 2 90% Providing 
Highest the Highest Type of Per of Correct 

Classifier Pattern Classifications Performance Performance 

Nearest 2 0 85 % 1 
Neighbor 3 1 90 % 1 

4 2 90 % 2 
(Euclidean) 5 2 92 % 1 
(Distance) 6 2 92 % 1 

Nearest 2 0 88 % 1 
Neighbor 3 6 90 % 6 
(Normalized) 4 14 92 % 3 
(Euclidean) 5 52 92 % 12 
(Distance) 6 97 94 % 1 

Nearest 2 1 90 % 1 
Neighbor 3 6 94 % 1 

4 25 94 % 2 
(Mahalanobis) 5 31 94 % 1 
(Distance) 6 48 94 % 1 

2 1 90 % 1 
3 0 88 % 9 

Bayes 4 3 90 % 3 
5 7 90 % 7 
6 500 98 % 2 

TABLE IV 

DEGENERATED MITRAL BIOPROSTHETIC VALVES 
BEST PERFORMANCES OF THE NEAREST NEIGHBOR ALGORITHM WITH MAHALANOBIS DISTANCE FOR AUTOMATIC CLASSIFICATION OF NORMAL AND 

K 

1 F-10 
1 F-10 
1 F-10 
5 IM20 

5 IM20 
1 F-3 

1 F-10 

1 F-10 
1 IM20 
1 F-3 
3 F-10 
3 F-10 
1 F-10 
1 F-10 
1 F-10 

3 F-10 

13 IM20 

3 F-10 

3 F-10 
5 F-10 
3 F-10 

3 F-10 

3 F-IO 

Correct 
Most Discriminant Patterns Classifications 

IM20 AREA A201 R201 R2003 94 % 
IM20 AREA A201 A2003 R2003 92 % 
IM20 AREA A201 A2003 R201 92 % 
DF1 AREA A201 A2003 R1002 92 % 
IM20 MF A201 R201 R1002 92 % 
DF1 AREA A201 A1002 A2003 92 % 
DFI rms A201 A2003 R1002 92 % 

IM20 AREA A201 R2003 94 % 
Q 1  AREA A1002 R201 92 % 
IM20 MF A201 R1002 92 % 
MF AREA rms A1002 92 % 
MF AREA rms R201 92 % 
IM20 AREA A201 A2003 92 % 
IM20 AREA A2003 R201 92 % 
IM20 AREA R201 R2003 92 % 

AREA rms R201 94 % 
AREA A1002 R201 94 % 
DFI AREA rms 92 % 
AREA rms A1002 92 % 
AREA R201 R1002 92 % 

AREA R201 94 % 
AREA rms 92 % 
rms A1002 92 % 

False 
Positives 

10% 
10% 
10% 
10% 
10% 
10% 
10% 

5% 
10% 
10% 
10% 
10% 
5 %  
5% 
5 %  

10% 
10% 
10% 
10% 
10% 

10% 
15% 
10% 

False 
Negatives Sensitivity 

4 %  96.4% 
7 %  92.9% 
7 %  92.9% 
7% 92.9% 
7 %  92.9% 
7 %  92.9% 
7 %  92.9% 

7 %  92.9% 
7 %  92.9% 
7% 92.9% 
7 %  92.9% 
7 %  92.9% 

11% 89.3% 
11% 89.3% 
11% 89.3% 

4% 96.4% 
4 %  96.4% 
1% 92.9% 
7% 92.9% 
1% 92.9% 

4 %  96.4% 
4 %  96.4% 
7 %  92.9% 

Specificity 

90.0% 
90.0% 
90.0% 
90.0% 
90.0% 
90.0% 
90.0% 

95.0% 
90.0% 
90.0% 
90.0% 
90.0% 
95.0% 
95.0% 
95.0% 

90.0% 
90.0% 
90.0% 
90.0% 
90.0% 

90.0% 
85.0% 
90.0% 

Positive 
Predictive 

Value 

Negative 
Predictive 

Value 
~ 

93.1% 
92.9% 
92.9% 
92.9% 
92.9% 
92.9% 
92.9% 

96.3% 
92.9% 
92.9% 
92.9% 
92.9% 
96.2% 
96.2% 
96.2% 

93.1 % 
93.1% 
92.9% 
92.9% 
92.9% 

93.1 % 
90.0% 
92.9% 

94.7% 
90.0% 
90.0% 
90.0% 
90.0% 
90.0% 
90.0% 

90.0% 
90.0% 
90.0% 
90.0% 
90.0% 
86.4% 
86.4% 
86.4% 

94.7% 
94.7% 
90.0% 
90.0% 
90.0% 

94.7% 
94.4% 
90.0% 

Table V shows that the best performance of the Bayes 
classifier (98% correct classifications) was obtained by 
using patterns composed of the following two sets of di- 
agnostic features: The dominant frequency (Fl), the in- 

tegrated mean area above - 20 dB (IM20) or the total 
area of the spectrum (AREA), the rms value of the spec- 
trum (rms), the area of the spectrum in the 100-200 Hz 
frequency band (A1002), the rms value of the spectrum 
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TABLE V 
BEST PERFORMANCES OF THE BAYES ALGORITHM FOR AUTOMATIC CLASSIFICATION OF NORMAL AND DEGENERATED MITRAL BIOPROSTHETIC VALVES 

F1 
F1 

F1 
F1 
F1 
F1 
F1 

F2 
F2 
DF 1 
F-3 
IM20 
F1 

F-3 

Q1 

Most Discriminant Patterns 

IM20 rms A1002 R1002 
AREA rms A1002 R1002 

F2 rms A1002 RI002 
Q1 rms A1002 RI002 

F2 F-20 AREA R1002 
MF rms A1002 R1002 
MF A1002 R201 RI002 
Q1 rms A1002 R1002 
QI A1002 R201 RI002 
Q1 A1002 R201 R1002 
Q1 A1002 R201 R1002 
Q1 A1002 R201 RI002 
DF1 AREA A1002 RI002 

F-10 DFI Q1 AREA 

F-3 AREA A1002 RI002 

R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 
R2003 

Correct False 
Classifications Positives 

False 
Negatives Sensitivity Specificity 

Positive Negative 
Predictive Predictive 

Value Value 

98 % 0% 
98 % 0% 
96 % 10% 
96 % 5 %  
96 % 5 %  
96 % 5 %  
96 % 5 %  
96 % 5 %  
96 % 0% 
96 % 0% 
96 % 0 %  
96 % 0% 
96 % 0% 
96 % 0% 
96 % 0% 

4 %  
4% 
0% 
4 %  
4% 
4 %  
4 %  
4 %  
7 %  
7 %  
7 %  
7 %  
7 %  
7 %  
7% 

96.4% 
96.4% 

100.0% 
96.4% 
96.4% 
96.4% 
96.4% 
96.4% 
92.9% 
92.9% 
92.9% 
92.9% 
92.9% 
92.9% 
92.9% 

100.0% 
100.0% 
90.0% 
95.0% 
95.0% 
95.0% 
95.0% 
95.0% 

100.0% 
100.0% 
100.0% 
100.0% 
100.0% 
100.0% 
100.0% 

100.0% 95.2% 
100.0% 95.2% 
93.3% 100.0% 
96.4% 95.0% 
96.4% 95.0% 
96.4% 95.0% 
96.4% 95.0% 
96.4% 95.0% 

100.0% 90.9% 
100.0% 90.9% 
100.0% 90.9% 
100.0% 90.9% 
100.0% 90.9% 
100.0% 90.9% 
100.0% 90.9% 

in the 100-200 Hz frequency band (R1002), and the rms 
value of the spectrum in the 200-300 Hz frequency band 
(R2003). For both patterns, the percentage of false posi- 
tives was 0% and that of false negatives was 4%. Sensi- 
tivity was 96 % , specificity was loo%, positive predictive 
value was loo%, and negative predictive value was 95 % . 
Various combinations of these and other features pro- 
vided 96% correct classifications. The m s  value in the 
200-300 Hz band (R2003) appeared in every discriminant 
pattern while the rms value in the 100-200 Hz band 
(R1002) appeared in almost every discriminant pattern 
(Table V). 

Finally, the first-to-second sound intensity ratio (IR12) 
was the only feature that did not appear in any of the most- 
discriminant patterns of the four algorithms tested. 

V. DISCUSSION 

Joo et al. [9] demonstrated the diagnostic potential of 
a Gaussian-Bayesian classifier for detecting degenerated 
bioprostheses implanted in the aortic position. They es- 
timated the performance of their classifier using the hold- 
out method and the two most-dominant frequencies (F1 
and F2) of the bioprosthetic closure sound spectra as di- 
agnostic features. Spectral analysis was done with pole- 
zero modeling using the Steiglitz-McBride method. Their 
training set was composed of 14 normal and 6 degener- 
ated bioprostheses while their test set was composed of 
13 normal and 7 degenerated bioprostheses. Their results 
showed that their classifier correctly classified 17 of the 
20 patients. The three misclassifications were false posi- 
tives. Their results were subsequently reevaluated by 
BeMent and Veeneman [27] and some computational er- 
rors corrected. The performance of the corrected classifier 
was found to be higher: the three false positive classifi- 
cations were reduced to only one. 

As a first step, we attempted to reproduce the results of 
Joo et al. [9] by using only F1 and F2 as diagnostic fea- 
tures and the FFT to estimate the sound spectra. The per- 

formance of the Bayesian classifier was disappointing with 
45% correct classifications, 0% false positives, and 61 % 
false negatives. Better results ( 65 % correct classifica- 
tions) were obtained with the nearest neighbor method 
based on the Mahalanobis distance. By excluding bio- 
prostheses having no calcium deposits from the degener- 
ated class, the performance of the Bayesian classifier was 
increased to 63% correct classifications, 0% false posi- 
tives, and 54% false negatives. The performance of the 
nearest neighbor classifier was decreased to 62% correct 
classifications, 40 % false positives, and 36 % false nega- 
tives. 

The difference between the results of Joo et al. [9] and 
ours, when using the two dominant frequencies of the 
valve closure sound spectra, can be ascribed to: 1) the 
better spectral resolution of the Steiglitz-McBride pole- 
zero method compared to that of the FFT method, and 2) 
the small number of degenerated valves included in the 
study of Joo et al. [9]. The performance of a classifier can 
be overestimated when the number of samples in a given 
class is very small. This is because the true statistical dis- 
tribution of the patterns can be overestimated or biased at 
the advantage of the samples available. 

Studies by Durand et al. [28] and Cloutier et al. [29], 
[30] showed that the FFT is the best method for the esti- 
mation of the most dominant frequency (Fl) of the pros- 
thetic valve sounds while the Steiglitz-McBride pole-zero 
method is the best for estimating its second most-domi- 
nant frequency (F2). The results of these studies [28]- 
[30] suggest that the performance of the classifier tested 
by Joo et al. [9] was overestimated by the small number 
of patients with degenerated bioprostheses (six in the 
training set and seven in the test set) since the holdout 
method is known to generate an unreliable estimate of the 
real performance of the classifier unless the training and 
test set populations are very large [ 151. 

A secondary conclusion of the study of Joo et al. was 
that the FFT algorithm does not have sufficient frequency 
resolution to extract the diagnostic information associated 
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with the two dominant frequencies, F1 and F2, of the 
sound spectrum. The present study shows on the contrary 
that a simple FFT algorithm can provide significant di- 
agnostic information. However, the diagnostic informa- 
tion is not extracted in the same way. With the FFT al- 
gorithm, the diagnostic information is associated with the 
rms value or the area of the spectrum in various frequency 
bands combined with point measurements such as F1 or 
F-10. The advantages of rms or area values, compared to 
secondary peaks like F2, is that they are less sensitive to 
the spectral resolution of the power spectrum estimation 
technique used because they are obtained by computing 
some averaging functions over the frequency bands of in- 
terest. 

According to the rule of thumb suggested by Trunk et 
al. [ 181 and Kalayeh and Langrebe [ 191, the optimal ratio 
of sample dimension to the number of features used per 
class should be five or higher. In the present study, this 
ratio is respected by the nearest neighbor algorithm (94 % 
correct classification with three features ) but not by the 
Bayes method for the normal population. For example, 
there were 20 patients in the normal valve population, 28 
in the degenerated population, and the best results were 
obtained with patterns composed of six diagnostic fea- 
tures. Thus, the ratio of sample dimension to the number 
of features is 3.3 for the normal bioprosthetic valves and 
4.7 for the degenerated bioprosthetic valves. This sug- 
gests that the best performance of the Bayes classifier ob- 
tained in the present study (98% correct classification) 
may be slightly overestimated. However, these ratios (3.3 
and 4.7)  are in agreement with the criterion of Foley [17] 
which states that a ratio of sample dimension to the num- 
ber of features greater than or equal to three is sufficient 
to provide a good estimate of the performance of the clas- 
sifier. 

Our study also shows that the number and the type of 
discriminant diagnostic features that must be extracted 
from the valve closure sound spectra depend upon the type 
of pattern recognition algorithm used. Identification of the 
best discriminant patterns for each algorithm tested re- 
quires a careful evaluation of all possible combinations of 
these diagnostic features. Since this process is computa- 
tionaly intensive, it has become acceptable only with the 
advent of more powerful computers. This conclusion has 
also been reported by Cover and Van Campenhout [31] 
who showed that all possible combinations of features 
must be evaluated to determine the best patterns. To avoid 
this exhaustive search, the heuristics approaches ( sequen- 
tial forward selection, sequential backward selection, and 
plus 1-take away r )  described by Devijver and Kittler [13] 
could be useful. However, these techniques do not guar- 
antee that the best patterns will be found. 

The Gaussian-Bayesian classifier and the nearest 
neighbor classifier using the Mahalanobis distance are the 
most discriminant classifiers because they both take into 
consideration the statistical properties of the diagnostic 
patterns. The estimated performance of the classifiers de- 
scribed in the present study when the number of diagnos- 
tic features is four or less, is probably highly conservative 
because of the following: 

1) Care has been taken to respect recognized criteria 
determining the ratio of the sample dimension to the num- 
ber of features that should be used in the design of the 
pattern recognition systems. 

2) The probability of error of the classifiers was eval- 
uated with the conservative leave-one-out method. 

3) All four classifier algorithms tested showed that 
many patterns can provide a level of 90% correct classi- 
fications or more. 
4) The bioprosthetic valve status was known more pre- 

cisely than in the study of Joo et al. [9]. This is especially 
true for the degenerated valves, which were examined and 
their degree of degeneration quantified after surgical re- 
moval. 

One interesting aspect of our study is the fact that a 
simple FFT algorithm can provide discriminant diagnos- 
tic features. As emphasized in section I1 of the paper, once 
the discriminant function of the Bayes classifier or the dis- 
tance metric and the K parameter of the nearest neighbor 
classifier are known, the classification of an unknown bio- 
prosthesis status can be fast (within a few seconds) if the 
spectral estimate of the valve closure sound does not re- 
quire a long computational time. This could be an impor- 
tant advantage of the FFT technique over the Steiglitz- 
McBride pole-zero method which may require between 2 
and 5 min of computing time on an IBM-PC/AT personal 
computer before the diagnostic patterns can be extracted 
from the valve closure sound spectrum. 

The present study shows that reliable diagnostic infor- 
mation about the status of bioprosthetic valves inserted in 
the mitral position is contained in the spectrum of the first 
heart sound. The results obtained are encouraging and in- 
dicate that it is now possible to design a low-cost nonin- 
vasive system for periodic evaluation and detection of de- 
generated bioprosthetic heart valves. 
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