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Bias and Variability of Diagnostic Spectral Parameters 
Extracted from Closing Sounds Produced by 

Bioprosthetic Valves Implanted 
in the Mitral Position 

GUY CLOUTIER, STUDENT MEMBER, IEEE, LOUIS-GILLES DURAND, SENIOR MEMBER, IEEE, 
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Abstract-A method is proposed to  estimate the bias and variability 
of eight diagnostic spectral parameters extracted from mitral closing 
sounds produced by bioprosthetic heart valves. These spectral param- 
eters are: the frequency of the dominant ( F l )  and second dominant 
( F 2 )  spectral peaks, the highest frequency of the spectrum found at  
-3 dB ( F - 3 ) ,  -10 dB (F-10) and -20 dB (F-20) below the highest 
peak, the relative integrated area above -20 dB of the dominant peak 
(RIAZO), the bandwidth at  -3 dB of the dominant spectral peak (BW3), 
and the ratio of F1 divided by BW3 (Ql). The bias and variability of 
four spectral techniques were obtained by comparing parameters ex- 
tracted from each technique with the parameters of a spectral “stan- 
dard.”  This “s tandard” consisted of 19 normal mitral sound spectra 
computed analytically by evaluating the Z transform of a sum of de- 
caying sinusoids on the unit circle. Truncation of the synthesized mi- 
tral signals and addition of random noise were used to simulate the 
physiological characteristics of the closing sounds. Results show that 
the fast Fourier transform method with rectangular window provides 
the best estimates of F1 and Ql, that  the Steiglitz-McBride method 
with maximum entropy ( pole-zero modeling with four poles and four 
zeros) can best evaluate F2 ,  F-20, RIA20 and BW3, and that  the all- 
pole modeling with covariance method (16 poles) is best suited to com- 
pute F-3. It was also shown that both the all-pole modeling and the 
Steiglitz-McBride methods can be used to estimate F-10. It is con- 
cluded that a single algorithm would not provide the best estimates of 
all spectral parameters. 

I. INTRODUCTION 
A .  Selection of the Mitral Component ( M I )  of the First 
Heart Sound ( S I )  

According to Shaver et al. [ l ] ,  Tilkian and Boudreau 
Conover [2], and Leatham [3], the first heart sound S 1 is 
composed of two major transient waves, M I  and T1, 
which are related, respectively, to the closure of the mi- 
tral and tricuspid heart valves. Normally, T1 follows M1 
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and the duration of normal S1 ranges between 100 and 
120 ms [2], [4]. The normal splitting interval between M 1 
and T1 depends largely on the recording site of the 
phonocardiogram (PCG). Leatham [3] reported a splitting 
interval ranging between 20 and 30 ms for PCG’s re- 
corded at the lower left sternal edge. No apparent splitting 
interval was found between M I  and T1 for PCG’s re- 
corded at the apex [2]. 

To study closing sounds produced by bioprosthetic heart 
valves implanted in the mitral position, only the M 1 com- 
ponent of S 1 is of interest. However, the selection of the 
mitral component may be difficult because M 1 and T 1 are 
often merged together. Transient waves such as ejection 
sounds of stenotic aortic valves [ l ] ,  [2], [5] and opening 
clicks of prosthetic aortic valves [6], appearing close to 
S 1 and often superimposed on T 1, also increase the dif- 
ficulty in selecting M 1. For this reason, most investiga- 
tors have used the entire first heart sound to assess mitral 
heart valve dysfunctions by the spectral analysis of the 
phonocardiogram. In the present paper, extraction of M 1 
will be performed by a semi-automatic method previously 
developed to select aortic heart sound components from 
the second heart sound [71, 181. 

B. Spectral Analysis of MI and SI  
Detection of mitral valve diseases by the spectral anal- 

ysis of S 1 has gained in acceptance since the early 1980’s. 
The work of Stein et al. [9], [lo] has largely contributed 
to increase the diagnostic utility of this technique. Their 
studies on natural and porcine bioprosthetic valves have 
clearly demonstrated that the dominant spectral peak ( F  1 ) 
of S1  shifts towards the higher frequencies as a result of 
calcification, fibrosis, and stiffening. Recently, Durand et 
al. [l 11 have described a pattern recognition algorithm 
based on nine spectral diagnostic features for detecting 
the degeneration of aortic and mitral bioprosthetic valves. 
Correct classification seemed promising with the use of 
multiple spectral diagnostic features, and the use of ad- 
ditional spectral features is being explored. 

A statistical analysis was performed by Arnott et al. 
[12] on a group of normal and hypertensive patients to 
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relate sex, blood pressure, and body surface area with the 
frequency content of normal first and second ( S 2 )  heart 
sounds. The values of F 1, extracted from the spectra of 
SI and S2, appeared to be unrelated to any of these pa- 
rameters. They have shown, however, that the high fre- 
quency content of S 1 (above 160 Hz) decreases as body 
surface increases and systolic pressure decreases. 

Recently, Cloutier et al. [ 131 and Durand et al. [8] have 
shown that changes in background noise and signal du- 
ration of aortic closing sounds can affect the accuracy of 
FFT-based and parametric methods in estimating diag- 
nostic spectral parameters. Stein et al. [SI, [ lo] and Dur- 
and et al. [ 1 I] used the fast Fourier transform with rect- 
angular window and Arnott et al. [ 121 used the fast Fourier 
transform with Hamming window to estimate these pa- 
rameters. No other spectral techniques were tested in these 
studies. In spite of the promising results reported by Dur- 
and et al. [ 111, other investigations are needed to better 
characterize the effect of background noise and signal 
truncation on the extraction of spectral features from mi- 
tral heart sounds. 

C. Outline of the Paper 
The objective of the present paper is to evaluate the bias 

and variability of various spectral estimation techniques 
in the extraction of diagnostic spectral parameters used to 
detect valvular degeneration. In this paper, we evaluated 
the difference between the parameters extracted from 
closing sound spectra using various algorithms and the 
parameters obtained from a reliable ‘‘standard. ” This 
“standard” was synthesized by adding a series of expo- 
nentially decaying sinusoids, and is used solely to eval- 
uate the performance of the tested spectral algorithms. The 
‘‘standard’ ’ spectrum was computed analytically by eval- 
uating the Z transform of the synthesized signals on the 
unit circle. Addition of random noise and truncation of 
the synthesized sounds were then used to assess the ac- 
curacy of the various methods in estimating eight diag- 
nostic spectral parameters. The results obtained suggest 
that the utilization of the optimal spectral technique for 
each parameter should provide diagnostic features having 
better discriminant properties. 

11. MATERIALS AND METHODS 

A. Data Acquisition 

A group of 19 patients with normal functioning Io- 
nescu-Shiley bioprosthetic valves implanted in the mitral 
position was selected from subjects in postoperative fol- 
low-up and in the early recovery period. The valve status 
was assessed by clinical history and was considered “nor- 
mal” when the subject had no symptom or auscultatory 
sign of valve degeneration or malfunction. 

For each patient, the electrocardiogram (ECG) and 
phonocardiogram were recorded with a multichannel FM 
recorder having a bandwidth of 0-2500 Hz. The PCG was 
captured with a Hewlett-Packard contact microphone (no. 
21050A) placed at the apex, while the patient was in a 

supine position. Prior to recording, the PCG was prepro- 
cessed by a third-order high-pass filter ( 18 dB/octave) 
with a cutoff frequency of 100 Hz. This high-pass filter is 
used for: 1) emphasizing the acoustic components of the 
precordial vibrations, 2) compensating the attenuation 
slope of the heart sounds, and 3 )  maximizing the signal- 
to-noise ratio of the PCG. At playback, the PCG was low- 
pass filtered at 900 Hz with an eight-order filter ( -48 
dB/octave) to prevent frequency aliasing. The ECG and 
PCG were then digitized with 12-bit resolution at sam- 
pling rates of 250 and 2500 Hz, respectively. 

The beginning of each cardiac cycle was automatically 
identified by a QRS detection algorithm applied to the 
ECG. A typical mitral closing sound was chosen man- 
ually by moving a window on the PCG and saved as a 
reference closing sound. The Q waves of the ECG were 
then used to synchronize the selection of M 1. Time align- 
ment with the reference mitral sound was done automat- 
ically by a correlation technique and an ensemble average 
of 20 mitral closing sounds was computed for each patient 
to estimate the acoustic signature of the mitral valve. 

This semi-automatic heart sound selection procedure 
was previously used by our group to extract the aortic 
component of S2 from digitized PCG 171, [8]. The main 
advantages of this approach are the exclusion of undesir- 
able transient sounds such as T1 and the increase of the 
signal-to-noise ratio (SNR) of M 1.  However, this tech- 
nique truncates the portion of M 1 superimposed on T1. 

B.  Synthesis of Mitral Heart Sounds 
For each patient studied, a synthesized bioprosthetic 

mitral closing sound was established by adding a series of 
exponentially decaying sinusoids of variable amplitude, 
frequency, damping, and phase. More precisely, each 
acoustic mitral signature s ( n )  was modeled by 

i ( n )  = C A(i)e-’ll’“’sin (nw(i)  + +(i)) 
R 

n L o 

( 1 )  

i =  I 

where 

i (n ) = synthesized mitral acoustic signature 

A( i ) = amplitude of the ith sinusoid 
T (  i ) = decay time constant of the ith sinusoid ( s )  
w ( i  ) = frequency of the ith sinusoid ( rad/s ) + ( i ) = phase of the ith sinusoid (rad).  

Valve closing sounds were synthesized as follows [7], 
[14]. First, the FFT power spectrum of the valve closing 
sound to be synthesized was computed. A priori knowl- 
edge of the duration of M 1 was used to choose the decay 
time constant of the synthesized sound. From this spec- 
trum, the relative amplitude and frequency location of the 
dominant peak were used as first estimates for the param- 
eters of the first decaying sinusoid ( R  = 1 ). Phase values 
of 0 and R radians were used as initial estimates. Then, 
the FFT power spectrum of the synthesized sound was 

R = number of decaying sinusoids 
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evaluated after truncating the signal to the same duration 
as the valve sound and computing its root-mean-square 
(rms) value. The synthesized and valve closing sound 
spectra were normalized with respect to their rms values, 
compared, and the parameters readjusted to obtain a closer 
fit. Depending on the morphology of the valve closing 
sound being synthesized, other decaying sinusoids were 
added. The three last steps of this interactive procedure, 
involving the parameter adjustment and the spectral com- 
parison, were repeated until the synthesized sound 
matched the valve sound within a level of precision de- 
termined by the four criteria described next. 

Another group has recently proposed a different ap- 
proach for modeling mitral heart sounds with a series of 
exponentially decaying cosinusoids [ 151. Their method is 
based on the recursive implementation of Prony ’s method 
for estimating the parameters of (1). The required number 
of decaying cosinusoids was estimated with the Levin- 
son-Durbin order selection method. Both Prony ’s and 
Levinson-Durbin’s methods are described in the review 
paper of Kay and Marple [ 161. 

In our paper, the synthesized sounds were considered 
to be representative of the real mitral sounds only if the 
following criteria were met: 

I )  The maximal value of the correlation function be- 
tween the acoustic signature of a given mitral valve and 
the corresponding synthesized sound was greater than 98 
percent. 

2) The normalized root-mean-square error (NRMSE), ’ 
found at maximum correlation, was less than 20 percent. 

3) The envelope of the synthesized sound was such that 
9.5 percent of the sound energy was contained in the first 
50 ms segment. 

4) 99 percent of the energy was contained in the first 
75 ms segment. 

The percentage of sound energy was obtained by divid- 
ing the sound energy of the 50 and 75 ms segments with 
the energy of the synthesized sound computed over a du- 
ration of 120 ms. The last two criteria are used to ensure 
that the duration of the synthesized sounds was in accor- 
dance with information published in the literature. 

The power spectra of the synthesized sounds ŝ  ( n ) ,  used 
as a “gold standard” in this analysis, were computed an- 
alytically by evaluating the Z transform of i( n )  on the 
unit circle. 

and the denominator 

Although an infinite resolution characterized the syn- 
thesized spectra, the computation was done by dividing 
the unit circle into 1024 samples to obtain the same num- 
ber of samples as those used in the spectral algorithms 
evaluated (FFT-based and parametric algorithms). 

C.  Spectral Analysis of the Mitral Sounds 
Four algorithms of spectral estimation were tested to 

extract eight diagnostic spectral features from the synthe- 
sized mitral sounds after truncation and noise contami- 
nation. The algorithms were: a) the fast Fourier transform 
with rectangular (FFTR) and b) Hamming (FFTM) win- 
dows, c) the Steiglitz-McBride method with maximum 
entropy (SMME) [17], [18], and d) the all-pole modeling 
with covariance method (APC) [19], [20]. 

The number of poles ( P  ) and zeros (Q)  for parametric 
modeling was evaluated by computing, for different val- 
ues of P and Q, the normalized root-mean-square error 
(NRMSE) function between the real mitral acoustic sig- 
nature of each patient and the impulse response of SMME 
and APC. The NRMSE was computed at maximal cor- 
relation of the signals and on the interval corresponding 
to the duration of the mitral acoustic signatures. Optimal 
values of P and Q were then chosen at the point marking 
the beginning of the plateau of the NRMSE curve [21]. 

This procedure represents a compromise between the 
criterion proposed by Childers [22] and that reported by 
Joo 1231. Other criteria, based on the statistical properties 
and the autocorrelation function of modeled zero mean 
random signals, have also been proposed. Among these, 
the Akaike criteria are widely used [24], [25]. However, 
these criteria have not been used in our analysis mostly 
because the acoustic closing sounds are not random sig- 
nals but transient signals. 

An additional test was performed to ensure that the cho- 
sen values of P and Q minimized the bias and variability 
of the spectral parameters. For instance, spectra of the 19 
synthesized mitral sounds were computed with SMME and 
APC following truncation and noise contamination. Bias 
and variability measurements were then evaluated for dif- 
ferent values of P and Q and compared to the results ob- 
tained by using the values estimated from the NRMSE 
function. 

D. Extraction of the Spectral Parameters 
Eight spectral parameters, initially proposed by Durand 

et al. [ 1 I], were extracted from each spectrum. These pa- 
rameters, shown in Fig. l ,  are as follows: 

a) F1 :  the frequency of the dominant spectral peak 
(Hz) ,  

b) F2: the frequency of the second dominant spectral 
peak ( Hz 1, 

c) F-3: the highest frequency found at -3 dB below 

d) F-10: the highest frequency found at - 10 dB below 

e) F-20: the highest frequency found at -20 dB below 

the dominant spectral peak (Hz) ,  

the dominant spectral peak (Hz) ,  

the dominant spectral peak (Hz) ,  
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Fig. 1. Description of the spectral parameters F1, F 2 ,  F-3, F-IO. F-20.  
RIA20, and BW3. Parameter Ql is computed by dividing F1 by BW3. 

f )  RIA20: the relative integrated area above -20 dB 

g) BW3: the bandwidth at -3  dB of the dominant 

h) Ql:  the ratio of F l  divided by BW3. 
The following criteria were imposed for the estimation 

of the spectral parameters. First, search of the spectral 
peaks and computation of RIA20 were limited to the fre- 
quency band of 20-500 Hz. These boundaries were used 
to minimize the sidelobe effects of FFTR and spurious 
production of false spectral peaks by the APC and SMME 
algorithms. For instance, appearance of spurious details 
was reported when using the maximum entropy spectral 
algorithms with a high-order model [16], [22], [26] or a 
low SNR [27]. In addition, Steiglitz and McBride [17] 
and Joo [23] reported that the high-order pole-zero algo- 
rithms tend to model the noise, thus exhibiting spurious 
peaks on the spectrum. 

A peak detection algorithm was used as a second cri- 
terion to differentiate an inflection on the spectrum from 
a true peak. This was done by centering a window over 
each potential peak and accepting it as a true peak only if 
at least two samples (4.9 Hz) before and after it were of 
lower intensity. Finally, to prevent noise from appearing 
as the second dominant peak, all peaks with an intensity 
of - 35 dB lower than that of F 1 were rejected. 

Additional constraints were utilized for the extraction 
of the spectral parameters. The estimation of the highest 
frequencies found at -3, - 10, and -20 dB was confined 
to frequencies between F 1  and 600 Hz. The parameter 
RIA20, expressed in percent, was related to a rectangle 
having a height of 20 dB and a length of 480 Hz on a 
linear scale. Finally, if a minimum was found before the 
amplitude of the dominant peak had decreased by -3 dB, 
the frequency of this minimum was used in computing 
BW3. 

of the dominant spectral peak (percent ), 

spectral peak (Hz) ,  

E. Bias and Variability of the Spectral Parameters 
The “reference” values of the spectral parameters were 

computed from the synthesized spectra. As described pre- 
viously, these spectra were computed by evaluating the 2 
transform, on the unit circle, of the synthesized sounds 
untruncated and uncontaminated by random noise. Then, 
the spectral parameters were extracted from the FFTR, 
FFTM, APC, and SMME algorithms after truncating the 
synthesized sounds and adding random noise. Computa- 
tion of the bias and variability of a given spectral algo- 
rithm was done by comparing the “reference” values of 
the spectral parameters with those extracted with the tested 
algorithms, by using each patient synthesized closing 
sound spectrum as its own reference. Details concerning 
the computation of the bias and variability of the spectral 
parameters are described next. 

For each patient, the bias of a given algorithm was 
computed individually by subtracting the value of the 
“reference” parameter, from the value of the same pa- 
rameter estimated with the tested algorithm. The sign of 
this difference indicated the direction of the bias. The var- 
iability of the tested algorithms was evaluated, for each 
patient, by computing the absolute difference between the 
parameters extracted from the synthesized spectrum and 
those estimated with FFTR, FFTM, APC, or SMME 
spectra. The variability of an algorithm was always greater 
than or equal to its bias. Bias and variability measure- 
ments were finally average over the 19 patients. These 
mean values were used to characterize the bias and vari- 
ability of each spectral algorithms. 

F. Estimation of the Truncation Level and SNR of the 
Mitral Sounds 

In a previous analysis, we have proposed a method to 
estimate the truncation level and signal-to-noise ratio of 
aortic closing sounds [7]. A similar approach has been 
used in this paper to estimate these two characteristics of 
mitral acoustic signatures. 

The information on M 1  that was lost during coherent 
detection and averaging of M1 was computed from the 
synthesized sounds using 

percent of truncation 

= io0 - ( (E(MI)/E(SMI))  x 100) (3)  

where E ( M 1 )  is the energy of the synthesized sound 
computed on the interval corresponding to the duration of 
the real mitral acoustic signature and E ( S M  1 ) is the en- 
ergy of the entire synthesized sound computed on an in- 
terval of 120 ms (see Fig. 2). This procedure is justified 
by the fact that the decay rate of the synthesized sounds 
was chosen to match that of the real mitral closing sounds. 

The signal-to-noise ratio of the mitral sounds was es- 
timated by repeating the data acquisition with the same 
QRS detection algorithm. However, the 19 PCG’s ana- 
lyzed were extended by 200 ms before the onset of M l 
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Fig 2 Comparison of a synthesized sound with the corresponding mitral 
signature of a patient with a Ionescu-Shiley bioprosthetic heart valve A 
correlation level of 98 1 percent and a normalized rms error of 19 4 per- 
cent were obtained between these signals 

with a portion of the diastolic phase. For each patient, 20 
PCG segments as well as an ensemble average were saved 
for further analysis. 

Assuming that the background noise in the selected nor- 
mal PCG’s was stationary and that no diastolic murmur 
or significant fourth heart sound occurred in the extended 
200 ms segment before S 1, the SNR of the mitral sounds 
was estimated by 

SNR = io log ( @ ( M I )  - E ( N ) ) / E ( N ) )  (4)  
where E (  M 1 ) is the energy of the mitral component of 
duration M ,  and E ( N  ) the energy of the background noise 
computed during the diastolic phase by using the first M 
samples of the extended PCG segments. Two measure- 
ments of the SNR ratio were taken from each PCG: the 
mean SNR of M I  (averaged from the 20 PCG segments 
of each patient) and the mean SNR of the mitral acoustic 
signature obtained from the mean PCG segment of each 
patient. 

G. Perturbation of the Synthesized Mitral Sounds 
Normal mitral closing sounds are characterized by a pa- 

tient to patient variation in SNR and duration of M l .  The 
effects of adding random noise and truncating the synthe- 
sized mitral sounds, on the accuracy of the spectral al- 
gorithms, were investigated by adding various levels 
( -45, -35, and -25 dB) of random noise and by trun- 
cating the signals. Truncation levels of 2,  6,  and 10 per- 
cent of the signal energy, computed over a duration of 120 
ms, were tested. 

111. RESULTS 
The mitral acoustic signatures obtained by coherent av- 

eraging were characterized by a duration of 32 f 12 ms 
( mean & standard deviation ). . The minimum and maxi- 
mum durations of M1 were 18.8 and 50.8 ms, respec- 

tively. The durations of the corresponding synthesized 
sounds after truncation by 2, 6 ,  and 10 percent of their 
total energy were, respectively, 42 k 11 ms (range of 
14.8-68.0 ms), 30 f 8 ms (range of 10.8-48.8 ms), and 
25 k 6 ms (range of 9.6-34.8 ms). A mean correlation 
level of 99.0 + 0.5 percent (range of 98.1-99.8 percent) 
and a mean NRMSE of 14 f 4 percent (range of 6-19 
percent ) were obtained between the synthesized sounds 
and the acoustic signatures of M I .  These performances 
were achieved by summing between 3 and 12 decaying 
sinusoids in the synthesis process [parameter R of ( l ) ] .  

The percentages of total energy found in the synthe- 
sized sounds during the first 50 and 75 ms segments were 
99 k 1 percent (range of 95-100 percent) and 99.9 f 
0.1 percent (range of 99.4-100 percent), respectively. 
These results indicate that the decay rate of the synthe- 
sized sounds was similar to that of the real valve closing 
sounds. Fig. 2 presents a comparison of a synthesized 
sound with the corresponding mitral signature of a patient 
with a Ionescu-Shiley bioprosthetic heart valve. 

A. Truncation Level and SNR of M I  
The mean energy of the part of M1 truncated by the 

QRS detection algorithm was 6 f 4 percent (range of 0.4- 
13 percent). The mean SNR of the mitral sounds, esti- 
mated by averaging the SNR of 20 PCG segments for each 
patient, was 24 f 7 dB (range of 15-38 dB). The mean 
SNR of the acoustic mitral signature of each patient, com- 
puted from the averaged PCG segments, was 35 k 7 dB 
(range of 26-45 dB). This result proves the effectiveness 
of coherent averaging for improving the SNR of M 1. In- 
deed, a mean increase in the SNR by 11 dB was obtained. 

B. Number of Poles and Zeros for the APC and SMME 
Algorithms 

The averaged NRMSE functions for the 19 patients are 
shown in Fig. 3 for APC and SMME. No plateau but a 
minimum was observed on the NRMSE curve computed 
with APC. The optimal number of poles for modeling 
normal mitral acoustic signatures with the all-pole algo- 
rithm and covariance method was found to be 16. This 
value corresponds to the minimum of the NRMSE curve 
computed for P (number of poles) varying from 4 to 24. 
For the pole-zero Steiglitz-McBride method, the NRMSE 
function was evaluated for Q (number of zeros) = P 
where P varied from 6 to 24. A first plateau was found at 
P = Q = 8 and a second at P = Q = 20. The optimal 
number of poles and zeros was chosen at 20 because it 
corresponds to the beginning of the plateau with the low- 
est values of the NRMSE. 

An additional analysis was performed with the synthe- 
sized mitral sounds to ensure that the selected values of 
P and Q minimized the bias and variability of the spectral 
parameters. Synthesized mitral sounds truncated by 6 per- 
cent of their energy and contaminated by -35 dB of ran- 
dom noise were used to test the effect of varying P and 



820 

BW3 
(Ea) 

01 

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. VOL 36. NO. 8. AUGUST 19x9 

B =  - 4 . 5  B =  7.0 B =  12.3 12.5 B =  13.3 
V = 15.5 V = 23.1 V = 26.2 V 25.0 V = 26.3 

B = 3.2 B = 2.0 B = 0 . 5  B = 0 . 6  B i 0.7 
V = 4.2 V = 4.7 V = 3.6 V = 3.9 v 3.8 

68 i 

67 + 

I 

66 - 

0 

65 

P - 8  

~ 64' 

k? 63- 
L 

a 

P = 12 P = 16 

APC 

P1 
(nz) 
P2 

(Ea)  

P-3 
(nz) 

P 

B = -3 .6 B = 7 . 3  B = 1 . 9  
V = 12.3 V = 13.5 v = 11 .1  

B = 288.2 B = 2 4 1 . 8  B = 158.0 
V = 295.5 V = 261.6 v = 179.8 

B = 21.0 B = 6 . 8  B = 0 . 4  
V = 23.0 V = 1 4 . 3  V = 11.6 

9 ;  ', 

P-20 

4 8 12 16 20 24 
NUMBER OF POLES (P) 

Fig. 3 .  Average normalized root-mean-square error ( N R M S E )  as a func- 
tion of the number of poles ( P ) .  NRMSE was computed between the 
mitral acoustic signatures and the impulse responses of the all-pole model 
with covariance method ( A P C )  and the Steiglitz-McBride method with 
maximum entropy ( S M M E ) .  The number of zeros ( Q )  used for SMME 
was equal to the value of P .  
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natures. 
Table I presents the results obtained with APC by vary- 

ing P from 8 to 16. Results for lower values of P were 
not shown because the resulting spectra appeared to be 
oversmoothed and no second dominant spectral peak could 
be observed. Results for values of P higher than 16 were 
also rejected because of &he occurrence of false spectral 
peaks and because no benefit was observed in Fig. 3 when 
increasing P over 16. Except for F-20 and Q l ,  P equals 
to 16 always resulted in a minimum of the variability of 
the spectral parameters. The bias also decreased progres- 
sively for F2 ,  F-3, F-IO, RIA20, and BW3 when P in- 

TABLE I1 
BIAS ( B  ) A N D  VARIABILITY ( v )  OF THE STEIGLITZ-MCBRIDE METHOD 

WITH M A X I M U M  ENTROPY ( S M M E )  FOR DIFFERENT VALCES OF THE 

ESTIMATED FOR THE EIGHT DIAGNOSTIC SPECTRAL P A R A M E T E R S  AFTER 
TRCNCATING THE SYNTHESIZED SOENDS BY 6 PERCENT OF THEIR ENERGY 

A N D  AFTER ADDING -35 dB OF RANDOM NOISE 

NUMBER OF POLES I P ) A N D  THE NUMBER OF ZEROS I Q) .  B A N D  V A R E  

12 16 20 

P-20 B = - 9 . 2  B = 49.9 B = 116.2 B = 113.8 B = 123.1 
(EZ) V = 24.0 V = 6 5 . 5  V = 127.5 V = 124.4 V = 140.7 

B =  -1.5 B =  1.8 B =  2 . 5  B =  2.8 B. 2.3 
(%I V = 3.7 V = 5.6 V = 6 . 0  V = 5.7 V = 5.7 

SMME, P = Q = 2 0  

t 

c SMME. P=Qz12 

Z ; t  
SMME, P=0=4 t 

m -  

z c 
SYNTHESIZED SPECTRUM ; t  

e -  

I , --J 
20 100 1000 

FREQUENCY IN HZ 

Fig. 4.  Comparison of a synthesized mitral sound spectrum with the spec- 
tra estimated with the Steiglitz-McBride method ( S M M E )  for P (number 
of poles) and Q (number of zeros) = 4, 12, and 20. The pole-zero 
spectra were computed after truncating the synthesized sound by 6 per- 
cent of their energy and after adding -35 dB of random noise. 

creased up to 16. For this reason, the optimal value of the 
number of poles was kept at 16 for modeling mitral heart 
sounds with APC. 

The bias and variability of the spectral parameters es- 
timated with SMME are presented in Table I1 for P and 
Q varying from 4 to 20. Except for Q l ,  the bias and var- 
iability of the spectral parameters did not improve as P 
and Q were increased. On the other hand, the bias and 
variability of F2 ,  F-20, RIA20, and BW3 worsen as P 
and Q are increased to 20. Increasing P and Q has a par- 
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(d) 
Fig. 5. Bias and variability of F1 (a), F 2  (b), F-3 (c), and F-10 (d) for the 

FFTR, FFTM, SMME, and APC algorithms following truncation of the 
mitral sounds and addition of random noise. The mean f SD range of 
the reference parameter are represented, respectively, by the horizontal 
line and the shaded zone. 

ticularly strong effect on F 2  and F-20. With four poles 
qnd four zeros, the bias and variability of F 2  and F-20 
were, respectively, -2.5 and 25.2 Hz, and -9.2 and 24.0 
Hz. With 20 poles and 20 zeros, the bias and variability 
of F 2  increased to 82.7 and 97.5 Hz, and that of 
F-20 to 123.1 and 140.7 Hz, respectively. 

An example of a synthesized spectrum of M1 and the 
corresponding SMME spectra computed for P and Q = 
4,  12, and 20 is shown in Fig. 4. Spurious peaks in the 
high frequency range (above 300 Hz) and a broadening 

of the dominant spectral peak are observed for P and Q 
= 12 and 20. The number of false spectral peaks in- 
creased with higher P and Q values. 

The poor results obtained by using high values of P and 
Q for SMME are clearly demonstrated in Table I1 and in 
Fig. 4. The optimal number of poles and zeros for SMME 
was then chosen to be four because these values provided 
the lowest bias and variability of five parameters ( F l ,  
F2 ,  F-20, RIA20, and BW3). Values of P and Q lower 
than four were evaluated and resulted in oversmoothed 
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Fig. 6 .  Bias and variability of F-20 (a), RIA20 (b), BW3 (c), and Ql (d) 
for the FFTR, FFTM, SMME, and APC algorithms following truncation 
of the mitral sounds and addition of random noise. The mean rt SD range 
of the reference parameter are represented, respectively, by the horizon- 
tal line and the shaded zone. 

spectra with no second dominant spectral peak. In addi- 
tion, we also observed an increase of the bias and varia- 
bility of F-10, F-20, RIA20, and Ql when using two or 
three poles and zeros. Other combinations of P and Q were 
not tested. 

C.  Bias and Variability of the Spectral Parameters 
The results on the bias and variability of the spectral 

parameters are shown in Figs. 5 and 6 .  Seven combina- 
tions of truncation levels and SNR’s were used to test the 
accuracy of the algorithms. The horizontal line on these 

figures represents the mean value of the spectral parame- 
ter extracted from the 19 synthesized reference spectra, 
uncontaminated by truncation and random noise. The 
shaded zone indicates the standard deviation (SD) of the 
parameter. The bias of each diagnostic spectral parameter 
is proportional to the distance between the mean value 
estimated with a given algorithm and the horizontal line. 
The variability in the spectral parameter is proportional to 
the range of the vertical deviations. 

The bias and variability of F 1 are shown in Fig. 5(a). 
Except for SMME when the synthesized sounds were 
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PABAlwrm (ALGORITBII) BIAS 

P1 (PPTR) - 1 . 4  Hz 

P2 (SIMB) - 2 . 5  HZ 

P-3 (APC) 0.4 Hz 

1-10 (APC) 5.0 Hz 

P-20 (SIMB) - 9 . 2  Hz 

RIA20 (Slocp) - 1 . 5  x 
BY3 (Slocp) - 4 . 5  Hz 

ai - 1 . 4  

truncated by 10 percent and for APC for a truncation level 
of 10 percent and a SNR of 25 dB, all algorithms provide 
good estimates of F1. However, the fast Fourier trans- 
form with rectangular window is the best technique to 
minimize the variability of F 1 for all truncation levels and 
SNR’s. As shown in Fig. 5(a), this algorithm also pre- 
sents the lowest bias value. As shown in Fig. 5(b), only 
SMME should be used to estimate the second dominant 
spectral peak of normal mitral heart sounds. It is interest- 
ing to note that the variability of F 2  estimated with SMME 
increases rather slowly with the perturbation level. 

The bias and variability of F-3 and F-10 are shown in 
Fig. 5(c) and (d), respectively. Except for truncation lev- 
els and SNR’s of 6 percent and 45 dB, and 10 percent and 
25 dB, APC is the best technique to minimize the bias of 
F-3. This algorithm also minimizes the variability of F-3 
for truncation levels and SNR’s of 6 percent and 35 dB, 
6 percent and 25 dB, and 10 percent and 45 dB. Although 
APC presents a high bias and variability for two trunca- 
tion levels and SNR’s ( 6  percent and 45 dB, and 10 per- 
cent and 25 dB),  this algorithm should be preferred when 
estimating F-3. 

APC and SMME are the best techniques to estimate 
F-10. APC minimizes both bias and variability for a trun- 
cation level of 2 percent. On the other hand, SMME re- 
sults in minimal bias and variability for a truncation level 
of 6 percent. For a truncation level of 10 percent, APC 
reduces the bias and SMME minimizes the variability. 
Both spectral techniques can thus be used to estimate 

Similarly to F 2 ,  only SMME should be used to estimate 
F-20, as shown in Fig. 6(a). Generally, the bias of F-20 
increases with higher truncation levels and SNR’s. Fig. 
6(b) and (c) show the results obtained for RIA20 and 
BW3. Except for a truncation level of 10 percent, SMME 
minimizes both bias and variability of RIA20. This al- 
gorithm also minimizes bias and variability of BW3 for 
all truncation levels and SNR’s. SMME should then be 
preferred for estimating RIA20 and BW3. 

The bias and variability of Ql are shown in Fig. 6(d). 
FFTR minimizes the variability of Q l  for all truncation 
levels and SNR’s. Except for a truncation level of 10 per- 
cent and a SNR of 25 dB, APC, and SMME alternatively 
minimize the bias of Q l  . Because the variabilities of APC 
and SMME are high compared to the values obtain with 
FFTR, for truncation levels of 6 and 10 percent, FFTR is 
recommended to estimate Q l .  However, as seen in Fig. 
6(d), the variability of Q l  estimated with FFTR is in the 
same range as the mean value estimated from the synthe- 
sized spectra. Although this technique minimizes the 
variability of Q l ,  the diagnostic use of this parameter is 
questionable. 

D. Minimum Threshold of the Bias and Variability of 
the Spectral Parameters 

According to the results reported in Figs. 5 and 6,  the 
use of an optimal spectral technique for each parameter is 
recommended. Table I11 shows the minimum values of 

F-10. 

vmAB1L.ITI 

5 . 0  Hz 

25.2  Hz 

11.6 Hz 

1 9 . 2  Hz 

2 4 . 0  Hz 

3 . 7  4 

15.5  Hz 

1 . 4  

tion level and SNR of the normal mitral acoustic signa- 
tures ( 6  percent and 35 dB). The results presented in this 
table are those obtained with the spectral algorithm that 
minimized the bias and variability of each parameter. 

IV. DISCUSSION 

A .  Truncation Level and SNR of the Mitral Sounds 

The truncation level and SNR of normal mitral valve 
signatures were estimated respectively from the synthe- 
sized sounds and from the PCG segments of 19 patients. 
The absence of significant diastolic acoustic activity was 
assumed in the estimation of the SNR of normal mitral 
heart sounds. Diastolic murmurs may be found in patients 
with aortic regurgitation, mitral stenosis, or tricuspid ste- 
nosis [2]. However, none of the patients used in our data 
base had these pathologies. It was also reported that the 
diastolic fourth heart sound of the PCG may be heard at 
the apex [2]. This sound which follows the onset of the P 
wave of the electrocardiogram by approximately 70 ms 
[28] was excluded from the diastolic PCG segments used 
to compute the background noise of the mitral heart 
sounds. Only the first M samples (where M represents the 
number of samples in the selected mitral heart sound) of 
the 200 ms PCG segment preceding S 1 were used to com- 
pute the SNR. 

In the present study, the synthesized mitral sounds were 
perturbed by truncating them by 2, 6, and 10 percent of 
their total energy, and by adding -45, -35, and -25 dB 
of random noise. These values were chosen specifically 
to match those observed on the real acoustic mitral sig- 
natures. 

B. Number of Poles and Zeros fo r  SMME and APC 
Algorithms 

The number of poles ( P  ) and zeros ( Q )  used in para- 
metric methods is very important in the assessment of the 
spectral characteristics. A low-order model produces a 
smoothed spectrum with low-frequency resolution, 
whereas a high order model introduces spurious peaks and 
details for maximum entropy spectral analysis [ 161, [22], 
[26]. In this paper, the presence of false spectral peaks 
for high order models was clearly demonstrated in Fig. 4 

the bias and variability of the parameters for the trunca- for the Steiglitz-McBride method with maximum en- 
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tropy. However, the use of a low-order model did not 
clearly show a reduction in frequency resolution. Indeed, 
as shown on Table 11, the minimum bias and variability 
for the two most dominant spectral peaks were obtained 
with a model using four poles and four zeros. In addition, 
increasing the values of P and Q did not improve the res- 
olution of the third and fourth spectral peaks of the syn- 
thesized reference spectrum shown in Fig. 4.  

To prevent oversmoothing or production of false spec- 
tral peaks, we have proposed to select P and Q where the 
plateau of the NRMSE function begins [21]. Using this 
criterion, 16 poles were found to be optimal for estimat- 
ing mitral heart sound spectra with the all-pole modeling 
and covariance method. This value of P was also shown 
to minimize variability of six spectral parameters. This 
criterion did not however perform well with SMME. As 
shown on Table 11, lower bias and variability of the pa- 
rameters were obtained by using four poles and four zeros 
instead of 20 poles and 20 zeros. 

Our criterion was based on the work of Childers [22] 
and Joo [23]. Childers [22] proposed the calculation of 
the mean-square error between the modeled signal and the 
impulse response of the all-pole model, for different val- 
ues of P .  When the error suddenly decreases by a signif- 
icant step, this value of P was suggested as optimal. A 
different criterion was proposed by Joo [23] for pole-zero 
modeling of valve closing sounds. Essentially, it consists 
in comparing the signal to the impulse response of the 
model as P and Q are varied and to select the combination 
that provides the minimum error. According to the results 
presented here, our criterion was good for all-pole mod- 
eling but not very useful for pole-zero modeling. Even if 
this criterion is optimal for modeling the signal, it does 
not allow the minimization of the bias and variability of 
the parameters selected from the pole-zero spectral esti- 
mates. This is mainly due to the presence of false spectral 
peaks. 

C .  Bias and Variability of the Spectral Parameters 
Additional information is given here Concerning the re- 

sults shown in Figs. 5 and 6. All bias and variability mea- 
surements were averaged for the 19 patients. Parameter 
F 2  could only be extracted from 15 of the 19 synthesized 
spectra. In addition, each algorithm extracted a different 
number of F 2  peaks. For instance, FFTR and FFTM tend 
to extract F 2  even when it is missing. F 2  was observed 
on most FFTR spectra for all truncation levels and SNR’s. 
Between 16 and 18 F 2  peaks were extracted with FFTM. 
The number of spectra with a second dominant peak tends 
to decrease with increasing truncation level. The best al- 
gorithm for detecting F 2 ,  for all truncation levels and 
SNR’s is APC. An average of 15.4 F 2  peaks (range of 
14-17) were detected with this algorithm. Finally, as with 
FFTM, the number of SMME spectra with a second dom- 
inant peak tends to decrease with increasing truncation 
level. For truncation levels of 2, 6 ,  and 10 percent, the 
average number of detected F 2  were, respectively, 18, 
14.3, and 1 1 .  

V.  CONCLUSION 
The power spectra of 19 synthesized mitral acoustic 

signatures were used as standard to compare four algo- 
rithms (FFTR, FFTM, APC, and SMME) in extracting 
eight diagnostic spectral parameters. Because of the high 
correlation (99 percent) and low NRMSE (14 percent) 
found between the mitral acoustic signatures and the syn- 
thesized sounds, it is estimated that the synthesized ref- 
erence power spectra correspond well to the theoretical 
spectra of normal mitral heart sounds and can thus be 
termed as “reliable standard.” 

Bias and variability of diagnostic spectral parameters 
were presented in this paper for different truncation levels 
and SNR’s of normal mitral heart sounds. An important 
finding of this paper is that no single spectral estimation 
algorithm is ideal for extracting all eight parameters. For 
instance, the fast Fourier transform with rectangular win- 
dow should be used for F 1 and Q l ,  the Steiglitz-McBride 
method with maximum entropy (four poles and four ze- 
ros) for F 2 ,  F-20, RIA20, and BW3, the all-pole mod- 
eling with covariance method ( 16 poles) for F-3, and 
either APC or SMME for F-IO. If the same method must 
be used to extract the eight parameters, SMME is rec- 
ommended because this technique minimizes the bias and 
variability of five of them. 

The worse results concerning the extraction of the spec- 
tral parameters were obtained by using the fast Fourier 
transform with Hamming window. The fast Fourier trans- 
form with rectangular window also performed badly for 
extracting parameters F 2 ,  F-3, F-10, F-20, RIA20, and 
BW3. Generally, the parametric spectral techniques were 
superior to the FFT-based techniques. However, bias and 
variability similar to that of the FFT-based techniques 
were obtained with APC for extracting F 2  and F-20. Ex- 
cept for Q l ,  SMME always gave consistent results. 

In a previous paper [ 131, accuracy of diagnostic spec- 
tral parameters extracted from normal aortic heart valves 
were presented. Eight techniques were tested and for each 
of them, three parameters were extracted. These were F 1 ,  
F2 ,  and the bandwidth at -30 dB of the spectrum. FFTR 
was the best technique to estimate F 1 .  Bias and variabil- 
ity of 4.0 and 10.0 Hz were obtained for the truncation 
level and SNR of normal aortic heart sounds ( 8  percent 
and 40 dB).  In this paper, bias and variability of - 1.4 
and 5.0 Hz were reported when FI was extracted with 
FFTR. This confirms the stability of this method for ex- 
tracting F 1 .  

Similarly, SMME was also the best technique to esti- 
mate F 2  of normal aortic heart sounds [ 131. Bias and var- 
iability of 22.0 and 50.0 Hz were reported. These high 
bias and variability, compared to the values of -2.5 and 
25.2 Hz reported here, can be explained by the different 
values of P and Q used in the previous study (14 poles 
and 14 zeros). These values were computed from the 
NRMSE function but were not validated to confirm if they 
minimized the bias and variability of F 2 .  Better results 
could probably have been obtained by using lower values 
of P and Q. 
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In conclusion, the results presented in this paper pro- 
vide new information for improving the performance of 
pattern recognition techniques based on the extraction of 
spectral diagnostic features from the valve closing sound 
spectra. Better discrimination between normal and degen- 
erated bioprosthetic valves, implanted in the mitral posi- 
tion, should be obtained by using the optimal spectral al- 
gorithm for each diagnostic parameter. 
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